1932

Abstract

Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-022048
2022-06-13
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-022048.html?itemId=/content/journals/10.1146/annurev-anchem-061020-022048&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Burbach JPH. 2011. What are neuropeptides?. Neuropeptides: Methods and Protocols A Merighi 1–36 Totowa, NJ: Humana Press
    [Google Scholar]
  2. 2.
    Meriney SD, Fanselow EE 2019. Neuropeptide transmitters. Synaptic Transmission SD Meriney, EE Fanselow 421–34 Amsterdam: Academic
    [Google Scholar]
  3. 3.
    Navratilova E, Porreca F. 2019. Substance P and inflammatory pain: getting it wrong and right simultaneously. Neuron 101:3353–55
    [Google Scholar]
  4. 4.
    Wang C, Wang Q, Ji B, Pan Y, Xu C et al. 2018. The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci. 11:220
    [Google Scholar]
  5. 5.
    Garrahy A, Thompson CJ 2019. Vasopressin. Encyclopedia of Endocrine Diseases I Huhtaniemi, L Martini 29–35 Oxford, UK: Academic. , 2nd ed..
    [Google Scholar]
  6. 6.
    van der Klaauw AA. 2018. Neuropeptides in obesity and metabolic disease. Clin. Chem. 64:1173–82
    [Google Scholar]
  7. 7.
    Sah R, Geracioti TD. 2013. Neuropeptide Y and posttraumatic stress disorder. Mol. Psychiatry 18:6646–55
    [Google Scholar]
  8. 8.
    Mendel HC, Kaas Q, Muttenthaler M. 2020. Neuropeptide signalling systems—an underexplored target for venom drug discovery. Biochem. Pharmacol. 181:114129
    [Google Scholar]
  9. 9.
    DeLaney K, Sauer CS, Vu NQ, Li L. 2018. Recent advances and new perspectives in capillary electrophoresis-mass spectrometry for single cell “omics. .” Molecules 24:142
    [Google Scholar]
  10. 10.
    Abid MSR, Mousavi S, Checco JW. 2021. Identifying receptors for neuropeptides and peptide hormones: challenges and recent progress. ACS Chem. Biol. 16:2251–63
    [Google Scholar]
  11. 11.
    Bowman AP, Blakney GT, Hendrickson CL, Ellis SR, Heeren RMA, Smith DF. 2020. Ultra-high mass resolving power, mass accuracy, and dynamic range MALDI mass spectrometry imaging by 21-T FT-ICR MS. Anal. Chem. 92:43133–42
    [Google Scholar]
  12. 12.
    May JC, McLean JA. 2016. Advanced multidimensional separations in mass spectrometry: navigating the big data deluge. Annu. Rev. Anal. Chem. 9:387–409
    [Google Scholar]
  13. 13.
    Vu NQ, DeLaney K, Li L 2021. Neuropeptidomics: improvements in mass spectrometry imaging analysis and recent advancements. Curr. Protein Pept. Sci. 22:2158–69
    [Google Scholar]
  14. 14.
    Timp W, Timp G. 2020. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 6:2eaax8978
    [Google Scholar]
  15. 15.
    Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. 2018. Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425:22–35
    [Google Scholar]
  16. 16.
    Hui K-S 2007. Neuropeptidases. Handbook of Neurochemistry and Molecular Neurobiology: Neural Protein Metabolism and Function A Lajtha 625–51 New York: Springer
    [Google Scholar]
  17. 17.
    Fridjonsdottir E, Nilsson A, Wadensten H, Andrén PE 2018. Brain tissue sample stabilization and extraction strategies for neuropeptidomics. Peptidomics: Methods and Strategies M Schrader, L Fricker 41–49 New York: Springer
    [Google Scholar]
  18. 18.
    O'Callaghan JP, Sriram K. 2004. Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins. J. Neurosci. Methods 135:1159–68
    [Google Scholar]
  19. 19.
    Secher A, Kelstrup CD, Conde-Frieboes KW, Pyke C, Raun K et al. 2016. Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nat. Commun. 7:11436
    [Google Scholar]
  20. 20.
    Yang N, Anapindi KDB, Romanova EV, Rubakhin SS, Sweedler JV. 2017. Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst 142:234476–85
    [Google Scholar]
  21. 21.
    Keller D, Erö C, Markram H. 2018. Cell densities in the mouse brain: a systematic review. Front. Neuroanat. 12:83
    [Google Scholar]
  22. 22.
    Russo AF. 2017. Overview of neuropeptides: Awakening the senses?. Headache 57:Suppl. 237–46
    [Google Scholar]
  23. 23.
    Reubi JC. 1995. Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging. J. Nucl. Med. 36:101825–35
    [Google Scholar]
  24. 24.
    Ediage EN, Aerts T, Lubin A, Cuyckens F, Dillen L, Verhaeghe T. 2019. Strategies and analytical workflows to extend the dynamic range in quantitative LC-MS/MS analysis. Bioanalysis 11:121189–1206
    [Google Scholar]
  25. 25.
    Hohenester UM, Barbier Saint-Hilaire P, Fenaille F, Cole RB 2020. Investigation of space charge effects and ion trapping capacity on direct introduction ultra-high-resolution mass spectrometry workflows for metabolomics. J. Mass Spectrom. 55:10e4613
    [Google Scholar]
  26. 26.
    Anapindi KDB, Yang N, Romanova EV, Rubakhin SS, Tipton A et al. 2019. PACAP and other neuropeptide targets link chronic migraine and opioid-induced hyperalgesia in mouse models. Mol. Cell. Proteom. 18:122447–58
    [Google Scholar]
  27. 27.
    Unsihuay D, Sanchez DM, Laskin J. 2021. Quantitative mass spectrometry imaging of biological systems. Annu. Rev. Phys. Chem. 72:307–29
    [Google Scholar]
  28. 28.
    Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13:92513–26
    [Google Scholar]
  29. 29.
    Chen C, Hou J, Tanner JJ, Cheng J. 2020. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int. J. Mol. Sci. 21:82873
    [Google Scholar]
  30. 30.
    Harno E, Gali Ramamoorthy T, Coll AP, White A 2018. POMC: the physiological power of hormone processing. Physiol. Rev. 98:42381–2430
    [Google Scholar]
  31. 31.
    Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E. 2019. Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J. Neurochem. 149:5582–604
    [Google Scholar]
  32. 32.
    Webb-Robertson BJM, Wiberg HK, Matzke MM, Brown JN, Wang J et al. 2015. Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J. Proteome Res. 14:51993–2001
    [Google Scholar]
  33. 33.
    Song M, Greenbaum J, Luttrell J, Zhou W, Wu C et al. 2020. A review of integrative imputation for multi-omics datasets. Front Genet. 11:570255
    [Google Scholar]
  34. 34.
    Lazar C, Gatto L, Ferro M, Bruley C, Burger T. 2016. Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J. Proteome Res. 15:41116–25
    [Google Scholar]
  35. 35.
    Bramer LM, Irvahn J, Piehowski PD, Rodland KD, Webb-Robertson B-JM. 2021. A review of imputation strategies for isobaric labeling-based shotgun proteomics. J. Proteome Res. 20:11–13
    [Google Scholar]
  36. 36.
    Pascovici D, Handler DC, Wu JX, Haynes PA. 2016. Multiple testing corrections in quantitative proteomics: a useful but blunt tool. Proteomics 16:182448–53
    [Google Scholar]
  37. 37.
    Korthauer K, Kimes PK, Duvallet C, Reyes A, Subramanian A et al. 2019. A practical guide to methods controlling false discoveries in computational biology. Genome Biol 20:1118
    [Google Scholar]
  38. 38.
    Saidi M, Beaudry F. 2015. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1−/− mouse spinal cords reveals significant lower concentration of opioid peptides. Neuropeptides 52:79–87
    [Google Scholar]
  39. 39.
    Mast DH, Checco JW, Sweedler JV. 2020. Differential post-translational amino acid isomerization found among neuropeptides in Aplysia californica. ACS Chem. Biol. 15:1272–81
    [Google Scholar]
  40. 40.
    Mani DR, Abbatiello SE, Carr SA. 2012. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinform. 13:16S9
    [Google Scholar]
  41. 41.
    Kaklamanos G, Aprea E, Theodoridis G 2020. Mass spectrometry: principles and instrumentation. Chemical Analysis of Food Y Pico 525–52 London: Academic. , 2nd ed..
    [Google Scholar]
  42. 42.
    Virág D, Dalmadi-Kiss B, Vékey K, Drahos L, Klebovich I et al. 2020. Current trends in the analysis of post-translational modifications. Chromatographia 83:11–10
    [Google Scholar]
  43. 43.
    Chen B, OuYang C, Tian Z, Xu M, Li L. 2018. A high resolution atmospheric pressure matrix-assisted laser desorption/ionization-quadrupole-Orbitrap MS platform enables in situ analysis of biomolecules by multi-mode ionization and acquisition. Anal. Chim. Acta 1007:16–25
    [Google Scholar]
  44. 44.
    Saidi M, Kamali S, Beaudry F. 2019. Neuropeptidomics: comparison of parallel reaction monitoring and data-independent acquisition for the analysis of neuropeptides using high-resolution mass spectrometry. Biomed. Chromatogr. 33:7e4523
    [Google Scholar]
  45. 45.
    Lombard-Banek C, Yu Z, Swiercz AP, Marvar PJ, Nemes P. 2019. A microanalytical capillary electrophoresis mass spectrometry assay for quantifying angiotensin peptides in the brain. Anal. Bioanal. Chem. 411:194661–71
    [Google Scholar]
  46. 46.
    Bąchor R, Waliczek M, Stefanowicz P, Szewczuk Z. 2019. Trends in the design of new isobaric labeling reagents for quantitative proteomics. Molecules 24:4701
    [Google Scholar]
  47. 47.
    Krasny L, Huang PH. 2021. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol. Omics 17:129–42
    [Google Scholar]
  48. 48.
    Willforss J, Chawade A, Levander F. 2019. NormalyzerDE: online tool for improved normalization of omics expression data and high-sensitivity differential expression analysis. J. Proteome Res. 18:2732–40
    [Google Scholar]
  49. 49.
    Välikangas T, Suomi T, Elo LL. 2018. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform. 19:11–11
    [Google Scholar]
  50. 50.
    Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H, Marcus K. 2021. Quantitative mass spectrometry-based proteomics: an overview. Methods Mol. Biol. 2228:85–116
    [Google Scholar]
  51. 51.
    Li X, Yang X, Hoang V, Liu Y-H. 2019. Characterization of protein disulfide linkages by MS in-source dissociation comparing to CID and ETD tandem MS. J. Am. Soc. Mass Spectrom. 30:3519–28
    [Google Scholar]
  52. 52.
    Liu Y, Li G, Li L. 2021. Targeted top-down mass spectrometry for the characterization and tissue-specific functional discovery of crustacean hyperglycemic hormones (CHH) and CHH precursor-related peptides in response to low pH stress. J. Am. Soc. Mass Spectrom. 32:61352–60
    [Google Scholar]
  53. 53.
    Ankney JA, Muneer A, Chen X. 2018. Relative and absolute quantitation in mass spectrometry-based proteomics. Annu. Rev. Anal. Chem. 11:49–77
    [Google Scholar]
  54. 54.
    Tillmaand EG, Anapindi KDB, De La Toba EA, Guo CJ, Krebs J et al. 2020. Quantitative characterization of the neuropeptide level changes in dorsal horn and dorsal root ganglia regions of the murine itch models. J. Proteome Res. 19:31248–57
    [Google Scholar]
  55. 55.
    Ye H, Wang J, Tian Z, Ma F, Dowell J et al. 2017. Quantitative mass spectrometry reveals food intake-induced neuropeptide level changes in rat brain: functional assessment of selected neuropeptides as feeding regulators. Mol. Cell. Proteom. 16:111922–37
    [Google Scholar]
  56. 56.
    Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE et al. 2012. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol. Cell. Proteom. 11:5202–14
    [Google Scholar]
  57. 57.
    Sauer CS, Li L. 2021. Mass spectrometric profiling of neuropeptides in response to copper toxicity via isobaric tagging. Chem. Res. Toxicol. 34:51329–36
    [Google Scholar]
  58. 58.
    Frost DC, Feng Y, Li L. 2020. 21-Plex DiLeu isobaric tags for high-throughput quantitative proteomics. Anal. Chem. 92:128228–34
    [Google Scholar]
  59. 59.
    Boonen K, De Haes W, Van Houtven J, Verdonck R, Baggerman G et al. 2018. Quantitative peptidomics with isotopic and isobaric tags. Methods Mol. Biol. 1719:141–59
    [Google Scholar]
  60. 60.
    Wang X, Shen S, Rasam SS, Qu J. 2019. MS1 ion current-based quantitative proteomics: a promising solution for reliable analysis of large biological cohorts. Mass Spectrom. Rev. 38:6461–82
    [Google Scholar]
  61. 61.
    Barkovits K, Pacharra S, Pfeiffer K, Steinbach S, Eisenacher M et al. 2020. Reproducibility, specificity and accuracy of relative quantification using spectral library-based data-independent acquisition. Mol. Cell. Proteom. 19:1181–97
    [Google Scholar]
  62. 62.
    DeLaney K, Li L. 2019. Data independent acquisition mass spectrometry method for improved neuropeptidomic coverage in crustacean neural tissue extracts. Anal. Chem. 91:85150–58
    [Google Scholar]
  63. 63.
    DeLaney K, Hu M, Wu W, Nusbaum MP, Li L. 2022. Mass spectrometry profiling and quantitation of changes in circulating hormones secreted over time in cancer borealis hemolymph due to feeding behavior. Anal. Bioanal. Chem. 414:1533–43
    [Google Scholar]
  64. 64.
    Kiontke A, Oliveira-Birkmeier A, Opitz A, Birkemeyer C. 2016. Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLOS ONE 11:12e0167502
    [Google Scholar]
  65. 65.
    Hopkins K, Mukherjee S, Ponce D, Mangum J, Jacobson LH, Hoyer D. 2021. Development of a LC-ESI-MRM method for the absolute quantification of orexin A in the CSF of individual mice. Med. Drug Discov. 11:100102
    [Google Scholar]
  66. 66.
    Morris CB, Poland JC, May JC, McLean JA. 2020. Fundamentals of ion mobility-mass spectrometry for the analysis of biomolecules. Methods Mol. Biol. 2084:1–31
    [Google Scholar]
  67. 67.
    Mun D-G, Vanderboom PM, Madugundu AK, Garapati K, Chavan S et al. 2021. DIA-based proteome profiling of nasopharyngeal swabs from COVID-19 patients. J. Proteome Res. 20:84165–75
    [Google Scholar]
  68. 68.
    Pfammatter S, Wu Z, Bonneil E, Bailey DJ, Prasad S et al. 2021. Integration of segmented ion fractionation and differential ion mobility on a Q-exactive hybrid quadrupole orbitrap mass spectrometer. Anal. Chem. 93:289817–25
    [Google Scholar]
  69. 69.
    Do TD, Checco JW, Tro M, Shea J-E, Bowers MT, Sweedler JV. 2018. Conformational investigation of the structure-activity relationship of GdFFD and its analogues on an achatin-like neuropeptide receptor of Aplysia californica involved in the feeding circuit. Phys. Chem. Chem. Phys. 20:3422047–57
    [Google Scholar]
  70. 70.
    Bleiholder C, Dupuis NF, Bowers MT. 2013. Dimerization of chirally mutated Enkephalin neurotransmitters: implications for peptide and protein aggregation mechanisms. J. Phys. Chem. B 117:61770–79
    [Google Scholar]
  71. 71.
    Vrkoslav V, Muck A, Brown JM, Hubálek M, Cvačka J. 2018. The matrix-assisted laser desorption/ionisation in-source decay of peptides using ion mobility enabled quadrupole-time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 32:242099–2105
    [Google Scholar]
  72. 72.
    Jeanne Dit Fouque K, Moreno J, Fernandez-Lima F 2019. Exploring the conformational space of growth-hormone-releasing hormone analogues using dopant assisted trapped ion mobility spectrometry-mass spectrometry. J. Phys. Chem. B 123:296169–77
    [Google Scholar]
  73. 73.
    Zhang L, Khattar N, Kemenes I, Kemenes G, Zrinyi Z et al. 2018. Subcellular peptide localization in single identified neurons by capillary microsampling mass spectrometry. Sci. Rep. 8:112227
    [Google Scholar]
  74. 74.
    Harvey SR, MacPhee CE, Barran PE. 2011. Ion mobility mass spectrometry for peptide analysis. Methods 54:4454–61
    [Google Scholar]
  75. 75.
    Paglia G, Astarita G. 2019. Traveling wave ion mobility mass spectrometry: metabolomics applications. Methods Mol. Biol. 1978:39–53
    [Google Scholar]
  76. 76.
    Meier F, Park MA, Mann M. 2021. Trapped ion mobility spectrometry and parallel accumulation–serial fragmentation in proteomics. Mol. Cell. Proteom. 20:100138
    [Google Scholar]
  77. 77.
    Spraggins JM, Djambazova KV, Rivera ES, Migas LG, Neumann EK et al. 2019. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. Anal. Chem. 91:2214552–60
    [Google Scholar]
  78. 78.
    Meier F, Brunner A-D, Koch S, Koch H, Lubeck M et al. 2018. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17:122534–45
    [Google Scholar]
  79. 79.
    Mast DH, Checco JW, Sweedler JV. 2021. Advancing d-amino acid-containing peptide discovery in the metazoan. Biochim. Biophys. Acta Proteins Proteom. 1869:1140553
    [Google Scholar]
  80. 80.
    Mast DH, Liao H-W, Romanova EV, Sweedler JV. 2021. Analysis of peptide stereochemistry in single cells by capillary electrophoresis-trapped ion mobility spectrometry mass spectrometry. Anal. Chem. 93:156205–13
    [Google Scholar]
  81. 81.
    Peeters MKR, Baggerman G, Gabriels R, Pepermans E, Menschaert G, Boonen K. 2021. Ion mobility coupled to a time-of-flight mass analyzer combined with fragment intensity predictions improves identification of classical bioactive peptides and small open reading frame-encoded peptides. Front. Cell Dev. Biol. 9:720570
    [Google Scholar]
  82. 82.
    Willems S, Voytik E, Skowronek P, Strauss MT, Mann M. 2021. Alphatims: indexing trapped ion mobility spectrometry-TOF data for fast and easy accession and visualization. Mol. Cell. Proteom. 20:100149
    [Google Scholar]
  83. 83.
    Caprioli RM, Farmer TB, Gile J. 1997. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69:234751–60
    [Google Scholar]
  84. 84.
    Nemes P, Woods AS, Vertes A. 2010. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 82:3982–88
    [Google Scholar]
  85. 85.
    Phan NTN, Mohammadi AS, Dowlatshahi Pour M, Ewing AG 2016. Laser desorption ionization mass spectrometry imaging of Drosophila brain using matrix sublimation versus modification with nanoparticles. Anal. Chem. 88:31734–41
    [Google Scholar]
  86. 86.
    Dill AL, Ifa DR, Manicke NE, Ouyang Z, Cooks RG. 2009. Mass spectrometric imaging of lipids using desorption electrospray ionization. J. Chromatogr. B 877:262883–89
    [Google Scholar]
  87. 87.
    Bergman H-M, Lundin E, Andersson M, Lanekoff I. 2016. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. Analyst 141:123686–95
    [Google Scholar]
  88. 88.
    Buchberger AR, Vu NQ, Johnson J, DeLaney K, Li L 2020. A simple and effective sample preparation strategy for MALDI-MS imaging of neuropeptide changes in the crustacean brain due to hypoxia and hypercapnia stress. J. Am. Soc. Mass Spectrom. 31:51058–65
    [Google Scholar]
  89. 89.
    Hulme H, Fridjonsdottir E, Gunnarsdottir H, Vallianatou T, Zhang X et al. 2020. Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and l-DOPA therapy. Neurobiol. Dis. 137:104738
    [Google Scholar]
  90. 90.
    Pratavieira M, da Silva Menegasso AR, Esteves FG, Sato KU, Malaspina O, Palma MS. 2018. MALDI imaging analysis of neuropeptides in Africanized honeybee (Apis mellifera) brain: effect of aggressiveness. J. Proteome Res. 17:72358–69
    [Google Scholar]
  91. 91.
    Habenstein J, Schmitt F, Liessem S, Ly A, Trede D et al. 2021. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J. Neurochem. 158:2391–412
    [Google Scholar]
  92. 92.
    Sui P, Watanabe H, Artemenko K, Sun W, Bakalkin G et al. 2017. Neuropeptide imaging in rat spinal cord with MALDI-TOF MS: method development for the application in pain-related disease studies. Eur. J. Mass Spectrom. 23:3105–15
    [Google Scholar]
  93. 93.
    Vu NQ, Buchberger AR, Johnson J, Li L 2021. Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes. Anal. Bioanal. Chem. 413:102665–73
    [Google Scholar]
  94. 94.
    Li G, Ma F, Cao Q, Zheng Z, DeLaney K et al. 2019. Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nat. Commun. 10:4697
    [Google Scholar]
  95. 95.
    Paine MRL, Ellis SR, Maloney D, Heeren RMA, Verhaert PDEM. 2018. Digestion-free analysis of peptides from 30-year-old formalin-fixed, paraffin-embedded tissue by mass spectrometry imaging. Anal. Chem. 90:159272–80
    [Google Scholar]
  96. 96.
    Cohen SL, Chait BT. 1996. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem. 68:131–37
    [Google Scholar]
  97. 97.
    Römpp A, Spengler B. 2013. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139:6759–83
    [Google Scholar]
  98. 98.
    Ly A, Ragionieri L, Liessem S, Becker M, Deininger S-O et al. 2019. Enhanced coverage of insect neuropeptides in tissue sections by an optimized mass-spectrometry-imaging protocol. Anal. Chem. 91:31980–88
    [Google Scholar]
  99. 99.
    DeLaney K, Li L. 2020. Neuropeptidomic profiling and localization in the crustacean cardiac ganglion using mass spectrometry imaging with multiple platforms. J. Am. Soc. Mass Spectrom. 31:122469–78
    [Google Scholar]
  100. 100.
    Potočnik NO, Fisher GL, Prop A, Heeren RMA. 2017. Sequencing and identification of endogenous neuropeptides with matrix-enhanced secondary ion mass spectrometry tandem mass spectrometry. Anal. Chem. 89:168223–27
    [Google Scholar]
  101. 101.
    Zavalin A, Yang J, Hayden K, Vestal M, Caprioli RM. 2015. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal. Bioanal. Chem. 407:82337–42
    [Google Scholar]
  102. 102.
    Kompauer M, Heiles S, Spengler B. 2017. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14:190–96
    [Google Scholar]
  103. 103.
    Li G, Cao Q, Liu Y, DeLaney K, Tian Z et al. 2019. Characterizing and alleviating ion suppression effects in atmospheric pressure matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 33:4327–35
    [Google Scholar]
  104. 104.
    Zhang Y, Buchberger A, Muthuvel G, Li L. 2015. Expression and distribution of neuropeptides in the nervous system of the crab Carcinus maenas and their roles in environmental stress. Proteomics 15:23–243969–79
    [Google Scholar]
  105. 105.
    Bivehed E, Strömvall R, Bergquist J, Bakalkin G, Andersson M. 2017. Region-specific bioconversion of dynorphin neuropeptide detected by in situ histochemistry and MALDI imaging mass spectrometry. Peptides 87:20–27
    [Google Scholar]
  106. 106.
    Ong T-H, Romanova EV, Roberts-Galbraith RH, Yang N, Zimmerman TA et al. 2016. Mass spectrometry imaging and identification of peptides associated with cephalic ganglia regeneration in Schmidtea mediterranea. J. Biol. Chem. 291:158109–20
    [Google Scholar]
  107. 107.
    DeLaney K, Hu M, Hellenbrand T, Dickinson PS, Nusbaum MP, Li L. 2021. Mass spectrometry quantification, localization, and discovery of feeding-related neuropeptides in Cancer borealis. ACS Chem. Neurosci. 12:4782–98
    [Google Scholar]
  108. 108.
    DeLaney K, Li L. 2020. Capillary electrophoresis coupled to MALDI mass spectrometry imaging with large volume sample stacking injection for improved coverage of C. borealis neuropeptidome. Analyst 145:161–69
    [Google Scholar]
  109. 109.
    Cao Q, Wang Y, Chen B, Ma F, Hao L et al. 2019. Visualization and identification of neurotransmitters in crustacean brain via multifaceted mass spectrometric approaches. ACS Chem. Neurosci. 10:31222–29
    [Google Scholar]
  110. 110.
    Shariatgorji M, Nilsson A, Källback P, Karlsson O, Zhang X et al. 2015. Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines. J. Am. Soc. Mass Spectrom. 26:6934–39
    [Google Scholar]
  111. 111.
    Kulkarni A, Anderson AG, Merullo DP, Konopka G. 2019. Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr. Opin. Biotechnol. 58:129–36
    [Google Scholar]
  112. 112.
    Liessem S, Ragionieri L, Neupert S, Büschges A, Predel R. 2018. Transcriptomic and neuropeptidomic analysis of the stick insect, Carausius morosus. J. Proteome Res. 17:62192–2204
    [Google Scholar]
  113. 113.
    Comi TJ, Do TD, Rubakhin SS, Sweedler JV. 2017. Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J. Am. Chem. Soc. 139:113920–29
    [Google Scholar]
  114. 114.
    Zhang G, Yuan W, Vilim FS, Romanova EV, Yu K et al. 2018. Newly identified Aplysia SPTR-gene family-derived peptides: localization and function. ACS Chem. Neurosci. 9:82041–53
    [Google Scholar]
  115. 115.
    Zhang G, Vilim FS, Liu D-D, Romanova EV, Yu K et al. 2017. Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. J. Biol. Chem. 292:4618775–89
    [Google Scholar]
  116. 116.
    Lee CY, Fan Y, Rubakhin SS, Yoon S, Sweedler JV. 2016. A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide. Sci. Rep. 6:126940
    [Google Scholar]
  117. 117.
    Do TD, Ellis JF, Neumann EK, Comi TJ, Tillmaand EG et al. 2018. Optically guided single cell mass spectrometry of rat dorsal root ganglia to profile lipids, peptides and proteins. ChemPhysChem 19:101180–91
    [Google Scholar]
  118. 118.
    Jansson ET, Comi TJ, Rubakhin SS, Sweedler JV. 2016. Single cell peptide heterogeneity of rat islets of langerhans. ACS Chem. Biol. 11:92588–95
    [Google Scholar]
  119. 119.
    Ong T-H, Kissick DJ, Jansson ET, Comi TJ, Romanova EV et al. 2015. Classification of large cellular populations and discovery of rare cells using single cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 87:147036–42
    [Google Scholar]
  120. 120.
    Rubakhin SS, Sweedler JV. 2007. Characterizing peptides in individual mammalian cells using mass spectrometry. Nat. Protoc. 2:81987–97
    [Google Scholar]
  121. 121.
    Comi TJ, Neumann EK, Do TD, Sweedler JV. 2017. microMS: a Python platform for image-guided mass spectrometry profiling. J. Am. Soc. Mass Spectrom. 28:91919–28
    [Google Scholar]
  122. 122.
    Neumann EK, Ellis JF, Triplett AE, Rubakhin SS, Sweedler JV. 2019. Lipid analysis of 30 000 individual rodent cerebellar cells using high-resolution mass spectrometry. Anal. Chem. 91:127871–78
    [Google Scholar]
  123. 123.
    Xie YR, Castro DC, Bell SE, Rubakhin SS, Sweedler JV. 2020. Single-cell classification using mass spectrometry through interpretable machine learning. Anal. Chem. 92:139338–47
    [Google Scholar]
  124. 124.
    Masuda-Nakagawa LM, Ito K, Awasaki T, O'Kane CJ. 2014. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Front. Neural Circuits 8:35
    [Google Scholar]
  125. 125.
    Page JS, Rubakhin SS, Sweedler JV. 2002. Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal. Chem. 74:3497–503
    [Google Scholar]
  126. 126.
    Neupert S, Fusca D, Kloppenburg P, Predel R. 2018. Analysis of single neurons by perforated patch clamp recordings and MALDI-TOF mass spectrometry. ACS Chem. Neurosci. 9:82089–96
    [Google Scholar]
  127. 127.
    Comi TJ, Makurath MA, Philip MC, Rubakhin SS, Sweedler JV. 2017. MALDI MS guided liquid microjunction extraction for capillary electrophoresis-electrospray ionization MS analysis of single pancreatic islet cells. Anal. Chem. 89:147765–72
    [Google Scholar]
  128. 128.
    Fisher JM, Sossin W, Newcomb R, Scheller RH. 1988. Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54:6813–22
    [Google Scholar]
  129. 129.
    Fumagalli G, Zanini A. 1985. In cow anterior pituitary, growth hormone and prolactin can be packed in separate granules of the same cell. J. Cell Biol. 100:62019–24
    [Google Scholar]
  130. 130.
    Bonnin EA, Rizzoli SO. 2020. Novel secondary ion mass spectrometry methods for the examination of metabolic effects at the cellular and subcellular levels. Front. Behav. Neurosci. 14:124
    [Google Scholar]
  131. 131.
    Altelaar AFM, van Minnen J, Jiménez CR, Heeren RMA, Piersma SR. 2005. Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal. Chem. 77:3735–41
    [Google Scholar]
  132. 132.
    Jiang Z, Lietz CB, Podvin S, Yoon MC, Toneff T et al. 2021. Differential neuropeptidomes of dense core secretory vesicles (DCSV) produced at intravesicular and extracellular pH conditions by proteolytic processing. ACS Chem. Neurosci. 12:132385–98
    [Google Scholar]
  133. 133.
    Rubakhin SS, Garden RW, Fuller RR, Sweedler JV. 2000. Measuring the peptides in individual organelles with mass spectrometry. Nat. Biotechnol. 18:2172–75
    [Google Scholar]
  134. 134.
    Castro DC, Xie YR, Rubakhin SS, Romanova EV, Sweedler JV. 2021. Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization. Nat. Methods 18:1233–38
    [Google Scholar]
  135. 135.
    Rubakhin SS, Churchill JD, Greenough WT, Sweedler JV. 2006. Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal. Chem. 78:207267–72
    [Google Scholar]
  136. 136.
    Rubakhin SS, Greenough WT, Sweedler JV. 2003. Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal. Chem. 75:205374–80
    [Google Scholar]
  137. 137.
    Rubakhin SS, Sweedler JV. 2008. Quantitative measurements of cell–cell signaling peptides with single-cell MALDI MS. Anal. Chem. 80:187128–36
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-022048
Loading
/content/journals/10.1146/annurev-anchem-061020-022048
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error