1932

Abstract

An emerging arena of archaeological research is beginning to deploy remote sensing technologies—including aerial and satellite imagery, digital topographic data, and drone-acquired and terrestrial geophysical data—not only in support of conventional fieldwork but also as an independent means of exploring the archaeological landscape. This article provides a critical review of recent research that relies on an ever-growing arsenal of imagery and instruments to undertake innovative investigations: mapping regional-scale settlement histories, documenting ancient land use practices, revealing the complexity of settled spaces, building nuanced pictures of environmental contexts, and monitoring at-risk cultural heritage. At the same time, the disruptive nature of these technologies is generating complex new challenges and controversies surrounding data access and preservation, approaches to a deluge of information, and issues of ethical remote sensing. As we navigate these challenges, remote sensing technologies nonetheless offer revolutionary ways of interrogating the archaeological record and transformative insights into the human past.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-101819-110344
2021-10-21
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/anthro/50/1/annurev-anthro-101819-110344.html?itemId=/content/journals/10.1146/annurev-anthro-101819-110344&mimeType=html&fmt=ahah

Literature Cited

  1. Adams RMC. 1965. Land Behind Baghdad: A History of Settlement on the Diyala Plains Chicago: Univ. Chicago Press
  2. Agapiou A, Lysandrou V, Hadjimitsis D. 2017. Optical remote sensing potentials for looting detection. Geosciences 7:498 https://doi.org/10.3390/geosciences7040098
    [Crossref] [Google Scholar]
  3. Bachagha N, Wang X, Luo L, Li L, Khatteli H, Lasaponara R. 2020. Remote sensing and GIS techniques for reconstructing the military fort system on the Roman boundary (Tunisian section) and identifying archaeological sites. Remote Sens. Environ. 236:111418 https://doi.org/10.1016/j.rse.2019.111418
    [Crossref] [Google Scholar]
  4. Bauer AM, Ellis EC. 2018. The Anthropocene divide: obscuring understanding of social-environmental change. Curr. Anthropol. 59:2209–27
    [Google Scholar]
  5. Beck A, Philip G, Abdulkarim M, Donoghue D 2007. Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity 81:311161–75
    [Google Scholar]
  6. Bernardini F, Vinci G. 2020. Archaeological landscape in central northern Istria (Croatia) revealed by airborne LiDAR: from prehistoric sites to Roman centuriation. Archaeol. Anthropol. Sci. 12:133 https://link.springer.com/article/10.1007/s12520-020-01070-w
    [Google Scholar]
  7. Bevan A. 2015. The data deluge. Antiquity 89:3491473–84
    [Google Scholar]
  8. Bewley R, Wilson AI, Kennedy D, Mattingly D, Banks R et al. 2016. Endangered archaeology in the Middle East and North Africa: introducing the EAMENA project. Keep the Revolution Going: Proceedings of the 43rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology (CAA2015) S Campana, R Scopigno, G Carpentiero, M Cirillo 919–32 Oxford, UK: Archaeopress
    [Google Scholar]
  9. Borie C, Parcero-Oubiña C, Kwon Y, Salazar D, Flores C et al. 2019. Beyond site detection: the role of satellite remote sensing in analysing archaeological problems. A case study in lithic resource procurement in the Atacama Desert, Northern Chile. Remote Sens 11:7869 https://doi.org/10.3390/rs11070869
    [Crossref] [Google Scholar]
  10. Braidwood R. 1937. Mounds in the Plain of Antioch: An Archeological Survey Chicago: Univ. Chicago Press
  11. Branting S. 2013. New geospatial technologies leading to new strategies: the case of Kerkenes Dağ, Turkey. See Comer & Harrower 2013 229–39
  12. Bunker BE, Tullis JA, Cothren J, Casana J, Aly MH. 2016. Object-based dimensionality reduction in land surface phenology classification. AIMS Geosci 2:4302–28
    [Google Scholar]
  13. Burks J. 2014. Geophysical survey at Ohio Earthworks: updating nineteenth century maps and filling the “empty” spaces. Archaeol. Prospect 21:15–13
    [Google Scholar]
  14. Cajigas R. 2017. An integrated approach to surveying an Early Agricultural period landscape: magnetic gradiometry and satellite imagery at La Playa, Sonora, Mexico. J. Archaeol. Sci. Rep. 15:381–92
    [Google Scholar]
  15. Campana S. 2017a. Drones in archaeology: state-of-the-art and future perspectives. Archaeol. Prospect. 24:4275–96
    [Google Scholar]
  16. Campana S. 2017b. Emptyscapes: filling an “empty” Mediterranean landscape at Rusellae, Italy. Antiquity 91:3591223–40
    [Google Scholar]
  17. Casana J. 2013. Radial route systems and agro-pastoral strategies in the Fertile Crescent: new discoveries from western Syria and southwestern Iran. J. Anthropol. Archaeol 32:257–73
    [Google Scholar]
  18. Casana J 2014a. A landscape context for paleoethnobotany: the contribution of aerial and satellite remote sensing. Theory and Method in Paleoethnobotany JM Marston, J d'Alpoim-Guedes, C Warinner 315–35 Boulder: Univ. Press Colo.
    [Google Scholar]
  19. Casana J. 2014b. Regional-scale archaeological remote sensing in the age of big data: automated detection versus brute force methods. Adv. Archaeol. Pract. 2:3222–33
    [Google Scholar]
  20. Casana J. 2015. Satellite imagery–based analysis of archaeological looting in Syria. Near East. Archaeol. 78:3142–52
    [Google Scholar]
  21. Casana J 2020a. Beyond survey boundaries: satellite remote sensing–based classification and dating of archaeological sites in the Northern Fertile Crescent. New Agendas in Remote Sensing and Landscape Archaeology in the Near East D Lawrence, M Altaweel, G Philip 154–74 Oxford, UK: Archaeopress
    [Google Scholar]
  22. Casana J. 2020b. Global-scale archaeological prospection using CORONA satellite imagery: automated, crowd-sourced, and expert-led approaches. J. Field Archaeol. 45:Suppl. 1S89–100
    [Google Scholar]
  23. Casana J, Cothren J, Kalayci T. 2012. Swords into ploughshares: archaeological applications of CORONA satellite imagery in the Near East. Internet Archaeol 32:2 https://doi.org/10.11141/ia.32.2
    [Crossref] [Google Scholar]
  24. Casana J, Herrmann JT. 2010. Settlement history and urban planning at Zincirli Höyük, southern Turkey. J. Mediterr. Archaeol 23:155–80
    [Google Scholar]
  25. Casana J, Kantner J, Wiewel A, Cothren J. 2014. Archaeological aerial thermography: a case study from the Chaco-period Blue J community, New Mexico. J. Archaeol. Sci 45:207–19
    [Google Scholar]
  26. Casana J, Laugier EJ. 2017. Satellite imagery–based monitoring of archaeological site damage in the Syrian Civil War. PLOS ONE 12:11e0188589
    [Google Scholar]
  27. Casana J, Laugier EJ, Hill AC, Blakeslee D. 2020. A council circle at Etzanoa? Multi-sensor drone survey at an ancestral Wichita settlement in southeastern Kansas. Am. Antiq. 85:4761–80
    [Google Scholar]
  28. Casana J, Wiewel A, Cool A, Hill AC, Laugier EJ, Fisher K. 2017. Archaeological aerial thermography in theory and practice. Adv. Archaeol. Pract. 5:4310–27
    [Google Scholar]
  29. Chase AF, Chase DZ, Fisher CT, Leisz SJ, Weishampel JF 2012. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. PNAS 109:3212916–21
    [Google Scholar]
  30. Chase AF, Chase DZ, Weishampel JF, Drake JB, Shrestha RL et al. 2011. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeol. Sci 38:387–98
    [Google Scholar]
  31. Chase AF, Reese-Taylor K, Fernández-Diaz JC, Chase DZ. 2016. Progression and issues in the Mesoamerican geospatial revolution: an introduction. Adv. Archaeol. Pract. 4:3219–31
    [Google Scholar]
  32. Chase ASZ, Chase D, Chase A 2020. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3:151–62
    [Google Scholar]
  33. Chase ASZ, Weishampel J. 2016. Using lidar and GIS to investigate water and soil management in the agricultural terracing at Caracol, Belize. Adv. Archaeol. Pract 4:3357–70
    [Google Scholar]
  34. Clynes T. 2017. Space archaeology 101: the next frontier of exploration. National Geographic July 1. https://www.nationalgeographic.com/news/2017/01/archaeologists-parcak-globalxplorer-looting-ted-prize/
    [Google Scholar]
  35. Cohen A, Klassen S, Evans D. 2020. Ethics in archaeological lidar. J. Comput. Appl. Archaeol. 3:176–91
    [Google Scholar]
  36. Comer DC, Comer JA, Dumitru IA, Ayres WS, Levin MJ et al. 2019. Airborne LiDAR reveals a vast archaeological landscape at the Nan Madol World Heritage Site. Remote Sens 11:182152
    [Google Scholar]
  37. Comer DC, Harrower MJ 2013. Mapping Archaeological Landscapes from Space New York: Springer
  38. Contreras DA. 2010. Huaqueros and remote sensing imagery: assessing looting damage in the Virú Valley, Peru. Antiquity 84:324544–55
    [Google Scholar]
  39. Contreras DA, Brodie N 2010. The utility of publicly-available satellite imagery for investigating looting of archaeological sites in Jordan. J. Field Archaeol. 35:1101–14
    [Google Scholar]
  40. Cowley D, Banaszek Ł, Geddes G, Gannon A, Middleton M, Millican K. 2020. Making LiGHT work of large area survey? Developing approaches to rapid archaeological mapping and the creation of systematic national-scaled heritage data. J. Comput. Appl. Archaeol 3:1109–21
    [Google Scholar]
  41. d'Alpoim-Guedes J, Manning SW, Bocinsky RK. 2016. A 5,500-year model of changing crop niches on the Tibetan Plateau. Curr. Anthropol. 57:4517–22
    [Google Scholar]
  42. Ebert C, Hoggarth J, Awe J. 2016. Integrating quantitative lidar analysis and settlement survey in the Belize River Valley. Adv. Archaeol. Pract. 4:3284–300
    [Google Scholar]
  43. Ellis EC, Gauthier N, Goldewijk KK, Bliege Bird R, Boivin N et al. 2021. People have shaped most of terrestrial nature for at least 12,000 years. PNAS 118:17e2023483118
    [Google Scholar]
  44. Evans DH, Fletcher RJ, Pottier C, Chevance J-B, Soutif D et al. 2013. Uncovering archaeological landscapes at Angkor using lidar. PNAS 110:3112595–600
    [Google Scholar]
  45. Fenger-Nielsen R, Hollesen J, Matthiesen H, Andersen E, Westergaard-Nielsen A et al. 2019. Footprints from the past: the influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Sci. Total Environ 654:895–905
    [Google Scholar]
  46. Fernández-Diaz JC, Cohen AS, González AM, Fisher CT. 2018. Shifting perspectives and ethical concerns in the era of remote sensing technologies. SAA Archaeol. Rec. 18:28–15
    [Google Scholar]
  47. Fisher CT, Fernández-Diaz JC, Cohen AS, Cruz ON, Gonzáles AM et al. 2016. Identifying ancient settlement patterns through LiDAR in the Mosquitia region of Honduras. PLOS ONE 11:8e0159890 https://doi.org/10.1371/journal.pone.0159890
    [Crossref] [Google Scholar]
  48. Fisher KD, Creekmore AT III 2014. Making ancient cities: new perspectives on the production of urban places. Making Ancient Cities: Space and Place in Early Urban Societies AT Creekmore III, KD Fisher 1–31 New York: Cambridge Univ. Press
    [Google Scholar]
  49. Forte M, Campana S 2016. Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing Berlin: Springer
  50. Fradley M, Sheldrick N. 2017. Satellite imagery and heritage damage in Egypt: a response to Parcak et al. (2016). Antiquity 91:357784–92
    [Google Scholar]
  51. Franklin K, Hammer E. 2018. Untangling palimpsest landscapes in conflict zones: a “remote survey” in Spin Boldak, Southeast Afghanistan. J. Field Archaeol 43:158–73
    [Google Scholar]
  52. Fredheim LH. 2020. Decoupling ‘open’ and ‘ethical’ archaeologies: rethinking deficits and expertise for ethical public participation in archaeology and heritage. Nor. Archaeol. Rev. 53:15–22
    [Google Scholar]
  53. Freeland T, Heung B, Burley DV, Clark G, Knudby A 2016. Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci 69:64–74
    [Google Scholar]
  54. Gaffney C, Gaffney V, Neubauer W, Baldwin E, Chapman H et al. 2012. The Stonehenge Hidden Landscapes Project. Archaeol. Prospect. 19:2147–55
    [Google Scholar]
  55. Garrison TG, Houston S, Alcover Firpi O 2019. Recentering the rural: lidar and articulated landscapes among the Maya. J. Anthropol. Archaeol. 53:133–46
    [Google Scholar]
  56. Garrison TG, Houston S, Golden CW, Inomata T, Nelson Z, Munson J 2008. Evaluating the use of IKONOS satellite imagery in lowland Maya settlement archaeology. J. Archaeol. Sci 35:102770–77
    [Google Scholar]
  57. Giardino MJ. 2011. A history of NASA remote sensing contributions to archaeology. J. Archaeol. Sci. 38:92003–9
    [Google Scholar]
  58. Gupta N, Blair S, Nicholas R. 2020. What we see, what we don't see: data governance, archaeological spatial databases and the rights of Indigenous peoples in an age of Big Data. J. Field Archaeol. 45:Suppl. 1S39–50
    [Google Scholar]
  59. Hadjimitsis D, Themistocleous K, Cuca B, Agapiou A, Lysandrou V et al. 2020. Remote Sensing for Archaeology and Cultural Landscapes: Best Practices and Perspectives Across Europe and the Middle East Berlin: Springer
  60. Hammer E, Ur J. 2019. Near Eastern landscapes and declassified U2 aerial imagery. Adv. Archaeol. Pract 7:2107–26
    [Google Scholar]
  61. Hanson WS, Oltean IA 2013. Archaeology from Historical Aerial and Satellite Archives New York: Springer
  62. Harrower MJ, Schuetter J, McCorriston J, Goel PK, Senn MJ. 2013. Survey, automated detection, and spatial distribution analysis of cairn tombs in ancient Southern Arabia. See Comer & Harrower 2013.259–68
    [Google Scholar]
  63. Henry ER, Shields CR, Kidder TR. 2019. Mapping the Adena-Hopewell landscape in the Middle Ohio Valley, USA: multi-scalar approaches to LiDAR-derived imagery from Central Kentucky. J. Archaeol. Method Theory 26:41513–55
    [Google Scholar]
  64. Hill AC, Casana J, Williamson M, Laugier EJ, Limp F. 2019. A new era in spatial data recording: low cost GNSS. Adv. Archaeol. Pract. 7:2169–77
    [Google Scholar]
  65. Hill AC, Laugier EJ, Casana J. 2020. Archaeological remote sensing using multi-temporal, drone-acquired thermal and near infrared (NIR) imagery: a case study at the Enfield Shaker Village, New Hampshire. Remote Sens 12:4690 https://doi.org/10.3390/rs12040690
    [Crossref] [Google Scholar]
  66. Howey MCL, Palace M, McMichael C, Braswell B. 2014. Moderate-resolution remote sensing and geospatial analyses of microclimates, mounds, and maize in the Northern Great Lakes. Adv. Archaeol. Pract 2:3195–207
    [Google Scholar]
  67. Howey MCL, Sullivan FB, Brouwer Burg M, Palace MW. 2020. Remotely sensed big data and iterative approaches to cultural feature detection and past landscape process analysis. J. Field Archaeol. 45:Suppl. 1S27–38
    [Google Scholar]
  68. Hritz C. 2010. Tracing settlement patterns and channel systems in Southern Mesopotamia using remote sensing. J. Field Archaeol. 35:2184–203
    [Google Scholar]
  69. Johnson J 2006. Remote Sensing in Archaeology: An Explicitly North American Perspective Tuscaloosa: Univ. Ala. Press
  70. Johnson KM, Ouimet WB. 2014. Rediscovering the lost archaeological landscape of southern New England using airborne light detection and ranging (LiDAR). J. Archaeol. Sci. 43:9–20
    [Google Scholar]
  71. Jotheri J, Altaweel M, Tuji A, Anma R, Pennington B et al. 2018. Holocene fluvial and anthropogenic processes in the region of Uruk in southern Mesopotamia. Quat. Int. 483:57–69
    [Google Scholar]
  72. Kalayci T. 2016. Settlement sizes and agricultural production territories: a remote sensing case study for the Early Bronze Age in Upper Mesopotamia. Sci. Technol. Archaeol Res. 2:2217–34
    [Google Scholar]
  73. Kansa SW, Kansa EC. 2018. Data beyond the archive in digital archaeology. Adv. Archaeol. Pract. 6:289–92
    [Google Scholar]
  74. Kantner J. 2008. The archaeology of regions: from discrete analytical toolkit to ubiquitous spatial perspective. J. Archaeol. Res. 16:137–81
    [Google Scholar]
  75. Keay S, Earl G, Hay S, Kay S, Ogden J, Strutt KD. 2009. The role of integrated geophysical survey methods in the assessment of archaeological landscapes: the case of Portus. Archaeol. Prospect. 16:3154–66
    [Google Scholar]
  76. Keeney J, Hickey R. 2015. Using satellite image analysis for locating prehistoric archaeological sites in Alaska's Central Brooks Range. J. Archaeol. Sci. Rep. 3:80–89
    [Google Scholar]
  77. Kennedy D. 1998. Declassified satellite photographs and archaeology in the Middle East: case studies from Turkey. Antiquity 72:277553–61
    [Google Scholar]
  78. Kersel MM, Hill AC. 2019. The (w)hole picture: responses to a looted landscape. Int. J. Cult. Prop 26:3305–29
    [Google Scholar]
  79. Khalaf N, Insoll T. 2019. Monitoring Islamic archaeological landscapes in Ethiopia using open source satellite imagery. J. Field Archaeol 44:401–19
    [Google Scholar]
  80. Kintigh KW, Altschul JH, Kinzig AP, Limp WF, Michener WK et al. 2016. Cultural dynamics, deep time, and data: planning cyberinfrastructure investments for archaeology. Adv. Archaeol. Pract 3:11–15
    [Google Scholar]
  81. Klassen S, Evans D. 2020. Top-down and bottom-up water management: a diachronic model of changing water management strategies at Angkor, Cambodia. J. Anthropol. Archaeol 58:101166
    [Google Scholar]
  82. Kosok P. 1965. Life, Land, and Water in Ancient Peru: An Account of the Discovery, Exploration, and Mapping of Ancient Pyramids, Canals, Roads, Towns, Walls, and Fortresses of Coastal Peru with Observations of Various Aspects of Peruvian Life, Both Ancient and Modern New York: Long Island Univ. Press
  83. Kouchoukos N. 2001. Satellite images and Near Eastern landscapes. Near East. Archaeol 64:1/280–91
    [Google Scholar]
  84. Kvamme KL. 2003. Geophysical surveys as landscape archaeology. Am. Antiq. 68:3435–57
    [Google Scholar]
  85. Kvamme KL. 2006. Integrating multidimensional geophysical data. Archaeol. Prospect. 13:157–72
    [Google Scholar]
  86. Kvamme KL. 2018. Geophysical correlation: global versus local perspectives. Archaeol. Prospect. 25:2111–20
    [Google Scholar]
  87. Ladefoged TN, Flaws A, Stevenson CM. 2013. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol Sci 40:21203–12
    [Google Scholar]
  88. Lambers K, Verschoof-van der Vaart WB, Bourgeois QPJ. 2019. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote Sens 11:7794 https://doi.org/10.3390/rs11070794
    [Crossref] [Google Scholar]
  89. Lasaponara R, Leucci G, Masini N, Persico R, Scardozzi G. 2016. Towards an operative use of remote sensing for exploring the past using satellite data: the case study of Hierapolis (Turkey). Remote Sens. Environ. 174:148–64
    [Google Scholar]
  90. Lasaponara R, Masini N 2012. Satellite Remote Sensing: A New Tool for Archaeology Berlin: Springer
  91. Lasaponara R, Masini N, Deiana R, Leucci G, Martorana R. 2018. Space-based identification of archaeological illegal excavations and a new automatic method for looting feature extraction in desert areas. Surv. Geophys 39:61323–46
    [Google Scholar]
  92. Lawrence D, Philip G, Hunt H, Snape-Kennedy L, Wilkinson TJ. 2016. Long term population, city size and climate trends in the Fertile Crescent: a first approximation. PLOS ONE 11:3e0152563
    [Google Scholar]
  93. Lawrence D, Philip G, Wilkinson K, Buylaert JP, Murray AS et al. 2017. Regional power and local ecologies: accumulated population trends and human impacts in the northern Fertile Crescent. Quat. Int. 437:B60–81
    [Google Scholar]
  94. Lauricella A, Cannon J, Branting S, Hammer E. 2017. Semi-automated detection of looting in Afghanistan using multispectral imagery and principal component analysis. Antiquity 91:3591344–55
    [Google Scholar]
  95. Limp F. 1989. The use of multi-spectral digital imagery in archaeological investigations Ark. Archaeol. Surv. Res. Ser. 34, Fayetteville
  96. Lin AY-M, Huynh A, Lanckriet G, Barrington L. 2014. Crowdsourcing the unknown: the satellite search for Genghis Khan. PLOS ONE 9:12e114046 https://doi.org/10.1371/journal.pone.0114046
    [Crossref] [Google Scholar]
  97. Luo L, Wang X, Guo H, Liu C, Liu J et al. 2014. Automated extraction of the archaeological tops of qanat shafts from VHR imagery in Google Earth. Remote Sens 6:1211956–76
    [Google Scholar]
  98. Macrae S, Iannone G. 2016. Understanding ancient Maya agricultural terrace systems through lidar and hydrological mapping. Adv. Archaeol. Pract 4:3371–92
    [Google Scholar]
  99. McCoy M. 2017. Geospatial Big Data and archaeology: prospects and problems too great to ignore. J. Archaeol. Sci 84:74–94
    [Google Scholar]
  100. McCoy MD, Asner GP, Graves MW. 2011. Airborne LiDAR survey of irrigated agricultural landscapes: an application of the slope contrast method. J. Archaeol. Sci 38:92141–54
    [Google Scholar]
  101. McKinnon D, Haley BS 2017. Archaeological Remote Sensing in North America: Innovative Techniques for Anthropological Applications Tuscaloosa: Univ. Ala. Press
  102. McLeester M, Casana J. 2021. Finding fields: locating archaeological agricultural landscapes using historical aerial photographs. Am. Antiq. 86:2283–304
    [Google Scholar]
  103. Menze BH, Ur JA 2012. Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale. PNAS 109:E778–87
    [Google Scholar]
  104. Miller BK, Furholt M, Bayarsaikhan J, Tüvshinjargal T, Brandtstätter L et al. 2019. Proto-urban establishments in Inner Asia: surveys of an Iron Age walled site in Eastern Mongolia. J. Field Archaeol. 44:4267–86
    [Google Scholar]
  105. Miller W, Sever T, Lee CD 1991. Applications of ecological concepts and remote sensing technologies in archaeological site reconnaissance. Applications of Space-Age Technology in Anthropology C Behrens, T Sever 121–36 Washington, DC: NASA
    [Google Scholar]
  106. Millhauser JK, Morehart CT. 2016. The ambivalence of maps: a historical perspective on sensing and representing space in Mesoamerica. See Forte & Campana 2016 247–68
  107. Morehart CT, Millhauser JK. 2016. Monitoring cultural landscapes from space: evaluating archaeological sites in the Basin of Mexico using very high resolution satellite imagery. J. Archaeol. Sci. Rep 10:363–76
    [Google Scholar]
  108. Morrison KD, Hammer E, Boles O, Madella M, Whitehouse N et al. 2021. Mapping past human land use using archaeological data: a new classification for global land use synthesis and data harmonization. PLOS ONE 16:4e0246662 https://doi.org/10.1371/journal.pone.0246662
    [Crossref] [Google Scholar]
  109. Ninfo A, Mozzi P, Abbà T 2016. Integration of LiDAR and cropmark remote sensing for the study of fluvial and anthropogenic landforms in the Brenta-Bacchiglione alluvial plain (NE Italy). Geomorphology 260:64–78
    [Google Scholar]
  110. Opitz R, Cowley D. 2013. Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation Oxford, UK: Oxbow
  111. Opitz R, Herrmann J. 2018. Recent trends and long-standing problems in archaeological remote sensing. J. Comput. Appl. Archaeol 1:119–41
    [Google Scholar]
  112. Orengo H, Petrie C. 2017. Large-scale, multi-temporal remote sensing of palaeo-river networks: a case study from Northwest India and its implications for the Indus civilisation. Remote Sens 9:7735 https://doi.org/10.3390/rs9070735
    [Crossref] [Google Scholar]
  113. Palet JM, Orengo H. 2011. The Roman centuriated landscape: conception, genesis and development as inferred from the Ager Tarraconensis case. Am. J. Archaeol 115:3383–402. 10.3764/aja.115.3.0383
    [Google Scholar]
  114. Pan Y, Nie Y, Watene C, Zhu J, Liu F. 2017. Phenological observations on classical prehistoric sites in the middle and lower reaches of the Yellow River based on Landsat NDVI time series. Remote Sens 9:4374
    [Google Scholar]
  115. Parcak SH. 2019. Archaeology from Space: How the Future Shapes Our Past New York: Holt
  116. Pérez González ME, Gallego Revilla JI 2019. A new environmental and spatial approach to the Tiwanaku World Heritage Site (Bolivia) using remote sensing (UAV and satellite images). Geoarchaeology 35:3416–29
    [Google Scholar]
  117. Pollock S, Bernbeck R. 2018. Reflections on survey and surveillance in the archaeology of Western Asia. Origini 42:293–108
    [Google Scholar]
  118. Powlesland D, Lyall JS, Hopkinson G, Donoghue D, Beck M et al. 2006. Beneath the sand—remote sensing, archaeology, aggregates and sustainability: a case study from Heslerton, the Vale of Pickering, North Yorkshire, UK. Archaeol. Prospect 13:4291–99
    [Google Scholar]
  119. Rayne L, Bradbury J, Mattingly D, Philip G, Bewley R, Wilson A 2017. From above and on the ground: geospatial methods for recording endangered archaeology in the Middle East and North Africa. Geosciences 7:4100
    [Google Scholar]
  120. Rayne L, Donoghue D. 2018. A remote sensing approach for mapping the development of ancient water management in the Near East. Remote Sens 10:122042
    [Google Scholar]
  121. Reid SH. 2020. Forests of history: satellite remote sensing and archaeological survey in southern Ghana. Afr. Archaeol. Rev. 37:41–18
    [Google Scholar]
  122. Richardson LJ. 2018. Ethical challenges in digital public archaeology. J. Comput. Appl. Archaeol 1:164–73
    [Google Scholar]
  123. Sanders W, Parsons J, Santley R. 1979. The Basin of Mexico: The Ecological Processes in the Evolution of a Civilization New York: Academic
  124. Savage SH, Johnson A, Levy TE 2017. TerraWatchers, crowdsourcing, and at-risk world heritage in the Middle East. Heritage and Archaeology in the Digital Age ML Vincent, VM López-Menchero Bendicho, M Ioannides, TE Levy 67–77 Berlin: Springer
    [Google Scholar]
  125. Sea CD, Ernenwein EG. 2021. Frequency domain electromagnetic induction: an efficient method for investigating Fort Ancient village dynamics. Archaeol. Prospect 28:73–87
    [Google Scholar]
  126. Sivitskis AJ, Harrower MJ, David-Cuny H et al. 2018. Hyperspectral satellite imagery detection of ancient raw material sources: soft-stone vessel production at Aqir al-Shamoos (Oman). Archaeol. Prospect 25:363–74
    [Google Scholar]
  127. Soroush M, Mehrtash A, Khazraee E, Ur JA. 2020. Deep learning in archaeological remote sensing: automated qanat detection in the Kurdistan region of Iraq. Remote Sens 12:3500
    [Google Scholar]
  128. Stephens L, Fuller D, Boivin N, Rick T, Gauthier N et al. 2019. Archaeological assessment reveals Earth's early transformation through land use. Science 365:6456897–902
    [Google Scholar]
  129. Stewart C, Labreche G, Gonzalez DL. 2020. A pilot study on remote sensing and citizen science for archaeological prospection. Remote Sens 12:172795 https://doi.org/10.3390/rs12172795
    [Crossref] [Google Scholar]
  130. Stinson PT, Naglak MC, Mandel RD, Hoopes JW. 2016. The remote-sensing assessment of a threatened ancient water technology in Afghanistan. J. Archaeol. Sci. Rep 10:441–53
    [Google Scholar]
  131. Stone EC. 2008. Patterns of looting in southern Iraq. Antiquity 82:125–38
    [Google Scholar]
  132. Stoner WD. 2017. Risk, agricultural intensification, political administration, and collapse in the classic period gulf lowlands: a view from above. J. Archaeol. Sci 80:83–95
    [Google Scholar]
  133. Stott D, Kristiansen SM, Lichtenberger A, Raja R 2018. Mapping an ancient city with a century of remotely sensed data. PNAS 115:24E5450–58
    [Google Scholar]
  134. Surovell T, Toohey J, Myers A, LaBelle J, Ahern J, Reisig B. 2017. The end of archaeological discovery. Am. Antiq. 82:2288–300
    [Google Scholar]
  135. Tapete D 2019. Earth Observation, Remote Sensing and Geoscientific Ground Investigations for Archaeological and Heritage Research Basel, Switz: MDPI
  136. Tapete D, Cigna F. 2017. Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. J. Archaeol. Sci. Rep 14:716–26
    [Google Scholar]
  137. Traviglia A, Torsello A. 2017. Landscape pattern detection in archaeological remote sensing. Geosciences 7:4128
    [Google Scholar]
  138. Trier SD, Larsen , Solberg R. 2009. Automatic detection of circular structures in high-resolution satellite images of agricultural land. Archaeol. Prospect. 16:11–15
    [Google Scholar]
  139. Ur JA. 2013. Spying on the past: declassified intelligence satellite photographs and Near Eastern landscapes. Near East. Archaeol. 76:28–36
    [Google Scholar]
  140. Ur JA 2018. Water for Arbail and Nimrud. Water for Assyria H Kühne 57–75 Wiesbaden, Ger: Harrassowitz
    [Google Scholar]
  141. Vacilotto A, Deiana R, Mozzi P. 2020. Understanding ancient landscapes in the Venetian Plain through an integrated geoarchaeological and geophysical approach. Remote Sens 12:182973
    [Google Scholar]
  142. VanValkenburgh P, Cushman KC, Butters LJC, Vega CR, Roberts CB et al. 2020. Lasers without lost cities: using drone LiDAR to capture architectural complexity at Kuelap, Amazonas, Peru. J. Field Archaeol. 45:Suppl. 1S75–88
    [Google Scholar]
  143. VanValkenburgh P, Dufton AJ. 2020. Big archaeology: horizons and blindspots. J. Field Archaeol 45:Suppl. 1S1–7
    [Google Scholar]
  144. Vella M-A, Ernenwein EG, Janusek JW, Koons M, Thiesson J et al. 2019. New insights into prehispanic urban organization at Tiwanaku (NE Bolivia): cross combined approach of photogrammetry, magnetic surveys and previous archaeological excavations. J. Archaeol. Sci. Rep. 23:464–77
    [Google Scholar]
  145. Vining BR. 2018. Cultural niche construction and remote sensing of ancient anthropogenic environmental change in the North Coast of Peru. J. Archaeol. Method Theory 25:559–86
    [Google Scholar]
  146. Wernke S, Adams J, Hooten E 2014. Capturing complexity. Adv. Archaeol. Pract 3:147–63
    [Google Scholar]
  147. Wernke S, VanValkenburgh P, Saito A. 2020. Interregional archaeology in the age of Big Data: building online collaborative platforms for virtual survey in the Andes. J. Field Archaeol 45:Suppl. 1S61–74
    [Google Scholar]
  148. Wilkinson TJ. 2003. Archaeological Landscapes of the Near East Tucson: Univ. Ariz. Press
  149. Wilkinson TJ, French C, Ur JA, Semple M. 2010. The geoarchaeology of route systems in Northern Syria. Geoarchaeology 25:745–71
    [Google Scholar]
  150. Willey G. 1953. Prehistoric Settlement Patterns in the Virú Valley Washington, DC: Bur. Am. Ethnol., Smithsonian Inst.
  151. Wilson DR. 1982. Air Photo Interpretation for Archaeologists London: Tempus
  152. Yaeger J, Brown M, Cap B. 2016. Locating and dating sites using LiDAR survey in a mosaic landscape in Western Belize. Adv. Archaeol. Pract 4:3339–56
    [Google Scholar]
/content/journals/10.1146/annurev-anthro-101819-110344
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error