1932

Abstract

Our review in the 2008 volume of this journal detailed the use of mechanical circulatory support (MCS) for treatment of heart failure (HF). MCS initially utilized bladder-based blood pumps generating pulsatile flow; these pulsatile flow pumps have been supplanted by rotary blood pumps, in which cardiac support is generated via the high-speed rotation of computationally designed blading. Different rotary pump designs have been evaluated for their safety, performance, and efficacy in clinical trials both in the United States and internationally. The reduced size of the rotary pump designs has prompted research and development toward the design of MCS suitable for infants and children. The past decade has witnessed efforts focused on tissue engineering–based therapies for the treatment of HF. This review explores the current state and future opportunities of cardiac support therapies within our larger understanding of the treatment options for HF.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-121120
2019-06-04
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-062117-121120.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-121120&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Simon MA, Watson J, Baldwin JT, Wagner WR, Borovetz HS 2008. Current and future considerations in the use of mechanical circulatory support devices. Annu. Rev. Biomed. Eng. 2008.59–84
    [Google Scholar]
  2. 2.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW et al. 2015. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 34:1495–504
    [Google Scholar]
  3. 3.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE et al. 2017. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. Circulation 136:e137–61
    [Google Scholar]
  4. 4.
    McCarthy PM, Smedira NO, Vargo RL, Goormastic M, Hobbs RE et al. 1998. One hundred patients with the HeartMate left ventricular assist device: evolving concepts and technology. J. Thorac. Cardiovasc. Surg. 115:904–12
    [Google Scholar]
  5. 5.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW et al. 2001. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345:1435–43
    [Google Scholar]
  6. 6.
    Alba AC, Alba LF, Delgado DH, Rao V, Ross HJ, Goeree R 2013. Cost-effectiveness of ventricular assist device therapy as a bridge to transplantation compared with nonbridged cardiac recipients. Circulation 127:2424–35
    [Google Scholar]
  7. 7.
    Frazier OH, Rose EA, McCarthy P, Burton NA, Tector A et al. 1995. Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann. Surg. 222:327–38
    [Google Scholar]
  8. 8.
    Kavarana MN, Sinha P, Naka Y, Oz MC, Edwards NM 2003. Mechanical support for the failing cardiac allograft: a single-center experience. J. Heart Lung Transplant. 22:542–7
    [Google Scholar]
  9. 9.
    FDA (US Food Drug Admin.) 2017. PMA P100047/S090: FDA Summary of safety and effectiveness data Report, FDA Washington, DC: https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100047S090B.pdf
  10. 10.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K et al. 2013. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J. Heart Lung Transplant. 32:157–87
    [Google Scholar]
  11. 11.
    Flint KM, Matlock DD, Lindenfeld J, Allen LA 2012. Frailty and the selection of patients for destination therapy left ventricular assist device. Circ. Heart Fail. 5:286–93
    [Google Scholar]
  12. 12.
    Houston BA, Shah KB, Mehra MR, Tedford RJ 2017. A new “twist” on right heart failure with left ventricular assist systems. J. Heart Lung Transplant. 36:701–7
    [Google Scholar]
  13. 13.
    Miller LW, Guglin M. 2013. Patient selection for ventricular assist devices. J. Am. Coll. Cardiol. 61:1209–21
    [Google Scholar]
  14. 14.
    Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ et al. 2013. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J. Heart Lung Transplant. 32:1–11
    [Google Scholar]
  15. 16.
    Stevenson LW, Pagani FD, Young JB, Jessup M, Miller L et al. 2009. INTERMACS profiles of advanced heart failure: the current picture. J. Heart Lung Transplant. 28:535–41
    [Google Scholar]
  16. 17.
    INTERMACS. 2017. INTERMACS quarterly statistical report, 2016 Q4. Implant and event dates: June 23, 2006 to December 31, 2016 Report, Univ. Ala Birmingham:
  17. 18.
    INTERMACS. 2015. INTERMACS quarterly statistical report, 2014 Q4. Implant and event dates: June 23, 2006 to December 31, 2014 Report, Univ. Ala Birmingham:
  18. 19.
    Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS et al. 2017. Intrapericardial left ventricular assist device for advanced heart failure. N. Engl. J. Med. 376:451–60
    [Google Scholar]
  19. 20.
    Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JCJ et al. 2017. A fully magnetically levitated circulatory pump for advanced heart failure. N. Engl. J. Med. 376:440–50
    [Google Scholar]
  20. 21.
    Hetzer R, Delmo Walter EM 2017. Mechanical circulatory support devices—in progress. N. Engl. J. Med. 376:487–89
    [Google Scholar]
  21. 22.
    Welden CV, Truss W, McGwin G, Weber F, Peter S 2018. Clinical predictors for repeat hospitalizations in left ventricular assist device (LVAD) patients with gastrointestinal bleeding. Gastroenterol. Res. 11:100–5
    [Google Scholar]
  22. 23.
    Sakatsume K, Saito K, Akiyama M, Sasaki K, Kawatsu S et al. 2018. Association between the severity of acquired von Willebrand syndrome and gastrointestinal bleeding after continuous-flow left ventricular assist device implantation. Eur. J. Cardio-Thorac. Surg. 54:841–46
    [Google Scholar]
  23. 24.
    Zayat R, Goetzenich A, Grottke O, Stoppe C, Ahmad U et al. 2018. Platelet function, von Willebrand factor and hemocompatibility-related adverse events in Heartmate 3 and Heartmate II patients: a propensity score matched study. J. Heart Lung Transplant. 37:S366
    [Google Scholar]
  24. 25.
    Vincent F, Rauch A, Loobuyck V, Robin E, Nix C et al. 2018. Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support. J. Am. Coll. Cardiol. 71:2106–18
    [Google Scholar]
  25. 26.
    Badimon JJ, Santos-Gallego CG. 2018. Modulatory role of pulsatility on von Willebrand factor: implications for mechanical circulatory support-associated bleeding. J. Am. Coll. Cardiol. 71:2119–21
    [Google Scholar]
  26. 27.
    Grady KL, Naftel D, Stevenson L, Dew MA, Weidner G et al. 2014. Overall quality of life improves to similar levels after mechanical circulatory support regardless of severity of heart failure before implantation. J. Heart Lung Transplant. 33:412–21
    [Google Scholar]
  27. 28.
    Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al. 2017. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J. Heart Lung Transplant. 36:1080–86
    [Google Scholar]
  28. 29.
    Nagpal AD, Singal RK, Arora RC, Lamarche Y 2017. Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection. Can. J. Cardiol. 33:110–18
    [Google Scholar]
  29. 30.
    Thoratec. 2012. Thoratec® CentriMag® and PediMag® blood pump fact sheet http://www.thoratec.com/downloads/CentriMag_Product_Fact_Sheet-B100-0812.pdf
  30. 31.
    John R, Long JW, Massey HT, Griffith BP, Sun BC et al. 2011. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J. Thorac. Cardiovasc. Surg. 141:932–39
    [Google Scholar]
  31. 32.
    Naidu SS. 2011. Novel percutaneous cardiac assist devices: the science of and indications for hemodynamic support. Circulation 123:533–43
    [Google Scholar]
  32. 33.
    Tempelhof MW, Klein L, Cotts WG, Benzuly KH, Davidson CJ et al. 2011. Clinical experience and patient outcomes associated with the TandemHeart percutaneous transseptal assist device among a heterogeneous patient population. ASAIO J 57:254–61
    [Google Scholar]
  33. 34.
    Baran DA, Stelling K, Pieretti J, Gidea C, Kapoor S et al. 2017. Outcomes of tandem percutanous LVAD support. J. Heart Lung Transplant. 36:S323
    [Google Scholar]
  34. 35.
    Berg DD, Sukul D, O'Brien M, Scirica BM, Sobieszczyk PS et al. 2015. Outcomes in patients undergoing percutaneous ventricular assist device implantation for cardiogenic shock. Eur. Heart J. 5:108–16
    [Google Scholar]
  35. 36.
    Lemaire A, Anderson MB, Lee LY, Scholz P, Prendergast T et al. 2014. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann. Thorac. Surg. 97:133–38
    [Google Scholar]
  36. 37.
    DAIC (Diagn. Interv. Cardiol.). 2017. New Imprella percutaneous VAD designed for ease of use in high-risk PCI and in the ICU https://www.dicardiology.com/product/abiomed-introduces-third-generation-impella-cp-heart-pump
  37. 38.
    O'Neill WW, Kleiman NS, Moses J, Henriques JPS, Dixon S et al. 2012. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II Study. Circulation 126:1717–27
    [Google Scholar]
  38. 39.
    Griffith BP, Anderson MB, Samuels LE, Pae WE Jr, Naka Y, Frazier OH 2013. The RECOVER I: a multicenter prospective study of Impella 5.0/LD for postcardiotomy circulatory support. J. Thorac. Cardiovasc. Surg 145:548–54
    [Google Scholar]
  39. 40.
    Miller L. 2016. Cardiogenic shock in acute myocardial infarction. J. Am. Coll. Cardiol. 67:1881–84
    [Google Scholar]
  40. 41.
    Jeevanandam V, Song T, Onsager D, Ota T, LaBuhn CJ et al. 2018. The first-in-human experience with a minimally invasive, ambulatory, counterpulsation heart assist system for advanced congestive heart failure. J. Heart Lung Transplant. 37:1–6
    [Google Scholar]
  41. 42.
    Costantini H, Juricek C, Kagan V, Song T, Onsager D et al. 2017. Management of a counterpulsation device outside of the intensive care unit. J. Heart Lung Transplant. 36:S356–57
    [Google Scholar]
  42. 43.
    Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG et al. 2010. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. J. Thorac. Cardiovasc. Surg. 140:1181–88
    [Google Scholar]
  43. 44.
    Gohean JR, George MJ, Pate TD, Kurusz M, Longoria RG, Smalling RW 2013. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device. ASAIO J 59:107–16
    [Google Scholar]
  44. 45.
    SBIR (Small Bus. Innov. Res.). 2016. Development and preclinical testing of the TORVAD ventricular assist system in preparation for first in human implantation Fact sheet, SBIR.gov Washington, DC: https://www.sbir.gov/sbirsearch/detail/1165943
  45. 46.
    Timms D, Fraser J, Hayne M, Dunning J, McNeil K, Pearcy M 2008. The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif. Organs 32:816–19
    [Google Scholar]
  46. 47.
    Karimov JH, Moazami N, Kobayashi M, Sale S, Such K et al. 2015. First report of 90-day support of two calves with a continuous-flow total artificial heart. J. Thorac. Cardiovasc. Surg. 150:687–93
    [Google Scholar]
  47. 48.
    Karimov JH, Steffen RJ, Byram N, Sunagawa G, Horvath D et al. 2015. Human fitting studies of Cleveland Clinic continuous-flow total artificial heart. ASAIO J 61:424–28
    [Google Scholar]
  48. 49.
    Cohn WE, Arabia F, Timms DL, Greatrex N, Kleinheyer M et al. 2017. Pulsatile outflow in cows supported long-term with the BiVACOR Rotary TAH. J. Heart Lung Transplant. 36:S14
    [Google Scholar]
  49. 50.
    Glynn J, Song H, Hull B, Withers S, Gelow J et al. 2017. The Oregon Heart total artificial heart: design and performance on a mock circulatory loop. Artif. Organs 41:904–10
    [Google Scholar]
  50. 51.
    Carpentier A, Latrémouille C, Cholley B, Smadja DM, Roussel J-C et al. 2015. First clinical use of a bioprosthetic total artificial heart: report of two cases. Lancet 386:1556–63
    [Google Scholar]
  51. 52.
    Latrémouille C, Carpentier A, Leprince P, Roussel J-C, Cholley B et al. 2018. A bioprosthetic total artificial heart for end-stage heart failure: results from a pilot study. J. Heart Lung Transplant. 37:33–37
    [Google Scholar]
  52. 53.
    Cohn WE, Timms DL, Frazier OH 2015. Total artificial hearts: past, present and future. Nat. Rev. Cardiol. 12:609–17
    [Google Scholar]
  53. 54.
    John R, Holley CT, Eckman P, Roy SS, Cogswell R et al. 2016. A decade of experience with continuous-flow left ventricular assist devices. Semin. Thorac. Cardiovasc. Surg. 28:363–75
    [Google Scholar]
  54. 55.
    Wever-Pinzon O, Naka Y, Garan AR, Takeda K, Pan S et al. 2016. National trends and outcomes in device-related thromboembolic complications and malfunction among heart transplant candidates supported with continuous-flow left ventricular assist devices in the United States. J. Heart Lung Transplant. 35:884–92
    [Google Scholar]
  55. 56.
    Soltani S, Kaufmann F, Vierecke J, Kretzschmar A, Hennig E et al. 2014. Design changes in continuous-flow left ventricular assist devices and life-threatening pump malfunctions. Eur. J. Cardio-Thorac. Surg. 47:984–89
    [Google Scholar]
  56. 57.
    Pal JD, Smith JW, Dardas T, Mahr C, Farrar DJ et al. 2015. Outcomes of external repair of HeartMate II percutaneous leads. J. Heart Lung Transplant. 34:S27
    [Google Scholar]
  57. 58.
    Kerk K, Sivathasan C, Lim C, Sim D, Tan T 2014. Device malfunction in long term mechanical circulatory support devices—a single centre experience. J. Heart Lung Transplant. 33:S260
    [Google Scholar]
  58. 59.
    Kormos RL, McCall M, Schaub RD, Lockard KL, Bermudez CA et al. 2015. Device malfunction in contemporary rotary blood pumps: the relevant burden of all components. J. Heart Lung Transplant. 34:S26–27
    [Google Scholar]
  59. 60.
    Kormos RL, McCall M, Althouse AD, Luigi L, Schaub RD et al. 2017. Left ventricular assist device malfunctions: It's more than just the pump. Circulation 136:1714–25
    [Google Scholar]
  60. 61.
    Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT et al. 2006. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355:1873–84
    [Google Scholar]
  61. 62.
    Birks EJ, George RS, Hedger M, Bahrami T, Wilton P et al. 2011. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123:381–90
    [Google Scholar]
  62. 63.
    Jakovljevic DG, Yacoub MH, Schueler S, MacGowan GA, Velicki L et al. 2017. Left ventricular assist device as a bridge to recovery for patients with advanced heart failure. J. Am. Coll. Cardiol. 69:1924–33
    [Google Scholar]
  63. 64.
    Jung MH, Gustafsson F. 2015. Exercise in heart failure patients supported with a left ventricular assist device. J. Heart Lung Transplant. 34:489–96
    [Google Scholar]
  64. 65.
    Reiss N, Schmidt T, Workowski A, Willemsen D, Schmitto JD et al. 2016. Physical capacity in LVAD patients: hemodynamic principles, diagnostic tools and training control. Int. J. Artif. Organs 39:451–59
    [Google Scholar]
  65. 66.
    Haufe S, Bara C, Eigendorf J, Chobanyan-Jürgens K, Rojas SV et al. 2017. Physical activity guided by pulse pressure in patients with continuous flow left ventricular assist devices. Circulation 135:1567–69
    [Google Scholar]
  66. 67.
    Ihnat CL, Zimmerman H, Copeland JG, Meaney FJ, Sobonya RE et al. 2011. Left ventricular assist device support as a bridge to recovery in young children. Congenit. Heart Dis. 6:234–40
    [Google Scholar]
  67. 68.
    Blume ED, VanderPluym C, Lorts A, Baldwin JT, Rossano JW et al. 2018. Second annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: pre-implant characteristics and outcomes. J. Heart Lung Transplant. 37:38–45
    [Google Scholar]
  68. 69.
    Blume ED, Rosenthal DN, Rossano JW, Baldwin JT, Eghtesady P et al. 2016. Outcomes of children implanted with ventricular assist devices in the United States: first analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J. Heart Lung Transplant. 35:578–84
    [Google Scholar]
  69. 70.
    Villa CR, Khan MS, Zafar F, Morales DLS, Lorts A 2017. United States trends in pediatric ventricular assist implantation as bridge to transplantation. ASAIO J 63:470–75
    [Google Scholar]
  70. 71.
    Fraser CD Jr, Jaquiss RD, Rosenthal DN, Humpl T, Canter CE et al. 2012. Prospective trial of a pediatric ventricular assist device. N. Engl. J. Med. 367:532–41
    [Google Scholar]
  71. 72.
    Adachi I, Burki S, Zafar F, Morales DL 2015. Pediatric ventricular assist devices. J. Thorac. Dis. 7:2194–202
    [Google Scholar]
  72. 73.
    Maeda K, Rosenthal DN, Reinhartz O 2018. Ventricular assist devices for neonates and infants. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 21:9–14
    [Google Scholar]
  73. 74.
    Miera O, Kirk R, Buchholz H, Schmitt KR, VanderPluym C et al. 2016. A multicenter study of the HeartWare ventricular assist device in small children. J. Heart Lung Transplant. 35:679–81
    [Google Scholar]
  74. 75.
    Gohean JR, Larson ER, Hsi BH, Kurusz M, Smalling RW, Longoria RG 2017. Scaling the low-shear pulsatile TORVAD for pediatric heart failure. ASAIO J 63:198–206
    [Google Scholar]
  75. 76.
    Baldwin JT, Adachi I, Teal J, Almond CA, Jaquiss RD et al. 2017. Closing in on the PumpKIN trial of the Jarvik 2015 ventricular assist device. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 20:9–15
    [Google Scholar]
  76. 77.
    Olia SE, Wearden PD, Maul TM, Shankarraman V, Kocyildirim E et al. 2018. Preclinical performance of a pediatric mechanical circulatory support device: the PediaFlow ventricular assist device. J. Thorac. Cardiovasc. Surg. 156:1643–51
    [Google Scholar]
  77. 78.
    Cahill TJ, Choudhury RP, Riley PR 2017. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat. Rev. Drug Discov. 16:699–717
    [Google Scholar]
  78. 79.
    Nigro P, Bassetti B, Cavallotti L, Catto V, Carbucicchio C, Pompilio G 2018. Cell therapy for heart disease after 15 years: unmet expectations. Pharmacol. Res. 127:77–91
    [Google Scholar]
  79. 80.
    Golpanian S, Wolf A, Hatzistergos KE, Hare JM 2016. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol. Rev. 96:1127–68
    [Google Scholar]
  80. 81.
    Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM et al. 2017. Overcoming the roadblocks to cardiac cell therapy using tissue engineering. J. Am. Coll. Cardiol. 70:766–75
    [Google Scholar]
  81. 82.
    Oliveira MS, Saldanha-Araujo F, Goes AM, Costa FF, de Carvalho JL 2017. Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discov. Today 22:1730–39
    [Google Scholar]
  82. 83.
    Feric NT, Radisic M. 2016. Strategies and challenges to myocardial replacement therapy. Stem Cells Transl. Med. 5:410–16
    [Google Scholar]
  83. 84.
    Srivastava D, Yu P. 2015. Recent advances in direct cardiac reprogramming. Curr. Opin. Genet. Dev. 34:77–81
    [Google Scholar]
  84. 85.
    Reis LA, Chiu LLY, Feric N, Fu L, Radisic M 2014. Biomaterials in myocardial tissue engineering. J. Tissue Eng. Regen. Med. 10:11–28
    [Google Scholar]
  85. 86.
    Zhu Y, Matsumura Y, Wagner WR 2017. Ventricular wall biomaterial injection therapy after myocardial infarction: advances in material design, mechanistic insight and early clinical experiences. Biomaterials 129:37–53
    [Google Scholar]
  86. 87.
    Weinberger F, Mannhardt I, Eschenhagen T 2017. Engineering cardiac muscle tissue. Circ. Res. 120:1487–500
    [Google Scholar]
  87. 88.
    Masumoto H, Yamashita JK. 2016. Human iPS cell–derived cardiac tissue sheets: a platform for cardiac regeneration. Curr. Treat. Opt. Cardiovasc. Med. 18:65
    [Google Scholar]
  88. 89.
    Borovjagin AV, Ogle BM, Berry JL, Zhang J 2017. From microscale devices to 3D printing. Circ. Res. 120:150–65
    [Google Scholar]
  89. 90.
    Fleischer S, Feiner R, Dvir T 2017. Cutting-edge platforms in cardiac tissue engineering. Curr. Opin. Biotechnol. 47:23–29
    [Google Scholar]
  90. 91.
    Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP 2015. Drug and cell delivery for cardiac regeneration. Adv. Drug Deliv. Rev. 84:85–106
    [Google Scholar]
  91. 92.
    Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R et al. 2015. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J. R. Soc. Interface 12:20150254
    [Google Scholar]
  92. 93.
    Hernandez MJ, Christman KL. 2017. Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease. JACC Basic Transl. Sci. 2:212–26
    [Google Scholar]
  93. 94.
    Taylor DA, Parikh RB, Sampaio LC 2017. Bioengineering hearts: simple yet complex. Curr. Stem Cell Rep. 3:35–44
    [Google Scholar]
  94. 95.
    NHLBI (Natl. Heart Lung Blood Inst.) 1994. Request for proposals: innovative ventricular assist system (IVAS). Report HV-94-25, NHLBI Bethesda, MD:
    [Google Scholar]
  95. 96.
    NHLBI (Natl. Heart Lung Blood Inst.) 1984. Device readiness testing of implantable ventricular assist systems Report 84-1, NHLBI Bethesda, MD:
  96. 97.
    Kirklin JK, Xie R, Cowger J, de By T, Nakatani T et al. 2018. Second annual report from the ISHLT Mechanically Assisted Circulatory Support Registry. J. Heart Lung Transplant. 37:685–91
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-121120
Loading
/content/journals/10.1146/annurev-bioeng-062117-121120
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error