1932

Abstract

Three areas where time-independent disorder plays a key role in biological dynamics far from equilibrium are reviewed. We first discuss the anomalous localization dynamics that arises when a single species spreads in space and time via diffusion and fluid advection in the presence of frozen heterogeneities in the growth rate. Next we treat the unzipping of double-stranded DNA as a function of force and temperature, a challenge that must be surmounted every time a cell divides. Heterogeneity in the DNA sequence dominates the physics of single-molecule force-extension curves for a broad range of forces upon approaching a sharp unzipping transition. The dynamics of the unzipping fork exhibits anomalous drift and diffusion in a similar range above this transition, with energy barriers that scale as the square root of the genome size. Finally, we describe how activated peptidoglycan strand extension sites, called dislocations in materials science, can mediate the growth of bacterial cell walls. Enzymatically driven circumferential motions of a few dozen of these defects are sufficient to describe the exponential elongation rates observed in experiments on in a nutrient-rich environment. However, long-range elastic forces transmitted by the peptidoglycan meshwork cause the moving dislocations to interact not only with each other, but also with a disorderly array of frozen, inactivated strand ends.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-042910-155236
2012-06-09
2024-05-11
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biophys-042910-155236
Loading
/content/journals/10.1146/annurev-biophys-042910-155236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error