1932

Abstract

Ever since scientists realized that cells are the basic building blocks of all life, they have been developing tools to look inside them to reveal the architectures and mechanisms that define their biological functions. Whereas “looking into cells” is typically said in reference to optical microscopy, high-resolution in-cell and on-cell nuclear magnetic resonance (NMR) spectroscopy is a powerful method that offers exciting new possibilities for structural and functional studies in and on live cells. In contrast to conventional imaging techniques, in- and on-cell NMR methods do not provide spatial information on cellular biomolecules. Instead, they enable atomic-resolution insights into the native cell states of proteins, nucleic acids, glycans, and lipids. Here we review recent advances and developments in both fields and discuss emerging concepts that have been delineated with these methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-023136
2014-05-06
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-023136.html?itemId=/content/journals/10.1146/annurev-biophys-051013-023136&mimeType=html&fmt=ahah

Literature Cited

  1. Amata I, Maffei M, Igea A, Gay M, Vilaseca M. 1.  et al. 2013. Multi-phosphorylation of the intrinsically disordered unique domain of c-Src studied by in-cell and real-time NMR spectroscopy. ChemBioChem 141820–27
  2. Arnesano F, Banci L, Bertini I, Felli IC, Losacco M, Natile G. 2.  2011. Probing the interaction of cisplatin with the human copper chaperone Atox1 by solution and in-cell NMR spectroscopy. J. Am. Chem. Soc. 133:18361–69 [Google Scholar]
  3. Assadi-Porter FM, Tonelli M, Maillet E, Hallenga K, Benard O. 3.  et al. 2008. Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J. Am. Chem. Soc. 130:7212–13 [Google Scholar]
  4. Augustus AM, Reardon PN, Spicer LD. 4.  2009. MetJ repressor interactions with DNA probed by in-cell NMR. Proc. Natl. Acad. Sci. USA 106:5065–69 [Google Scholar]
  5. Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M. 5.  2011. Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J. Magn. Reson. 212:450–54 [Google Scholar]
  6. Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS. 6.  et al. 2011. Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. ChemBioChem 12:1992–95 [Google Scholar]
  7. Azarkh M, Singh V, Okle O, Dietrich DR, Hartig JS, Drescher M. 7.  2012. Intracellular conformations of human telomeric quadruplexes studied by electron paramagnetic resonance spectroscopy. ChemPhysChem 13:1444–47 [Google Scholar]
  8. Azarkh M, Singh V, Okle O, Seemann IT, Dietrich DR. 8.  et al. 2013. Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment. Nat. Protoc. 8:131–47 [Google Scholar]
  9. Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J, Freedberg DI. 9.  2007. Extracellular structure of polysialic acid explored by on cell solution NMR. Proc. Natl. Acad. Sci. USA 104:11557–61 [Google Scholar]
  10. Banci L, Barbieri L, Bertini I, Cantini F, Luchinat E. 10.  2011. In-cell NMR in E. coli to monitor maturation steps of hSOD1. PLoS ONE 6:e23561 [Google Scholar]
  11. Banci L, Barbieri L, Bertini I, Luchinat E, Secci E. 11.  et al. 2013. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat. Chem. Biol. 9:297–99First in-cell NMR study in human cells using protein overexpression; maturation of hSOD1 depended on the availability of different metals. [Google Scholar]
  12. Banci L, Barbieri L, Luchinat E, Secci E. 12.  2013. Visualization of redox-controlled protein fold in living cells. Chem. Biol. 20:747–52 [Google Scholar]
  13. Barb AW, Freedberg DI, Battistel MD, Prestegard JH. 12a.  2011. NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides. J. Biomol. NMR 51:163–71 [Google Scholar]
  14. Barnes CO, Monteith WB, Pielak GJ. 13.  2011. Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy. ChemBioChem 12:390–91 [Google Scholar]
  15. Barnes CO, Pielak GJ. 14.  2011. In-cell protein NMR and protein leakage. Proteins 79:347–51 [Google Scholar]
  16. Benton LA, Smith AE, Young GB, Pielak GJ. 15.  2012. Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51:9773–75 [Google Scholar]
  17. Bertrand K, Reverdatto S, Burz DS, Zitomer R, Shekhtman A. 16.  2012. Structure of proteins in eukaryotic compartments. J. Am. Chem. Soc. 134:12798–806First protein in-cell NMR study in yeast; spectral quality correlated with intracellular localization. [Google Scholar]
  18. Bodart J-F, Wieruszeski J-M, Amniai L, Leroy A, Landrieu I. 17.  et al. 2008. NMR observation of Tau in Xenopus oocytes. J. Magn. Reson. 192:252–57 [Google Scholar]
  19. Burz DS, Dutta K, Cowburn D, Shekhtman A. 18.  2006. Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat. Methods 3:91–93 [Google Scholar]
  20. Claasen B, Axmann M, Meinecke R, Meyer B. 19.  2005. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin αIIbβ3 in native platelets than in liposomes. J. Am. Chem. Soc. 127:916–19 [Google Scholar]
  21. Costa JL, Dobson CM, Kirk KL, Poulsen FM, Valeri CR, Vecchione JJ. 20.  1979. Studies of human platelets by 19F and 31P NMR. FEBS Lett. 99:141–46 [Google Scholar]
  22. Costa JL, Dobson CM, Kirk KL, Poulsen FM, Valeri CR, Vecchione JJ. 21.  1980. Nuclear magnetic resonance studies of blood platelets. Philos. Trans. R. Soc. Lond. B 289:413–23 [Google Scholar]
  23. Crowley PB, Chow E, Papkovskaia T. 22.  2011. Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy. ChemBioChem 12:1043–48 [Google Scholar]
  24. Crowley PB, Kyne C, Monteith WB. 23.  2012. Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. 48:10681–83 [Google Scholar]
  25. Curtis-Fisk J, Spencer RM, Weliky DP. 24.  2008. Native conformation at specific residues in recombinant inclusion body protein in whole cells determined with solid-state NMR spectroscopy. J. Am. Chem. Soc. 130:12568–69 [Google Scholar]
  26. Danielsson J, Inomata K, Murayama S, Tochio H, Lang L. 25.  et al. 2013. Pruning the ALS-associated protein SOD1 for in-cell NMR. J. Am. Chem. Soc. 13510266–69
  27. Deeds EJ, Ashenberg O, Shakhnovich EI. 26.  2006. A simple physical model for scaling in protein-protein interaction networks. Proc. Natl. Acad. Sci. USA 103:311–16 [Google Scholar]
  28. Deszo EL, Steenbergen SM, Freedberg DI, Vimr ER. 27.  2005. Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc. Natl. Acad. Sci. USA 102:5564–69 [Google Scholar]
  29. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M. 28.  2011. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000 [Google Scholar]
  30. Ellis RJ. 29.  2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114–19 [Google Scholar]
  31. Ellis RJ. 30.  2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597–604 [Google Scholar]
  32. Feig M, Sugita Y. 31.  2012. Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding. J. Phys. Chem. B 116:599–605 [Google Scholar]
  33. Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ, Tian F. 32.  2011. In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR. J. Am. Chem. Soc. 133:12370–73 [Google Scholar]
  34. Hamatsu J, O'Donovan D, Tanaka T, Shirai T, Hourai Y. 33.  et al. 2013. High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system. J. Am. Chem. Soc. 135:1688–91First protein in-cell NMR study in insect Sf9 cells. [Google Scholar]
  35. Hammill JT, Miyake-Stoner S, Hazen JL, Jackson JC, Mehl RA. 34.  2007. Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat. Protoc. 2:2601–7 [Google Scholar]
  36. Hänsel R, Foldynová-Trantírková S, Dötsch V, Trantírek L. 35.  2013. Investigation of quadruplex structure under physiological conditions using in-cell NMR. Top. Curr. Chem. 33047–65
  37. Hänsel R, Foldynová-Trantírková S, Löhr F, Buck J, Bongartz E. 36.  et al. 2009. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 131:15761–68 [Google Scholar]
  38. Hänsel R, Löhr F, Foldynová-Trantírková S, Bamberg E, Trantírek L, Dötsch V. 37.  2011. The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res. 39:5768–75G-quadruplex structures in Xenopus oocytes were different from those in vitro topologies. [Google Scholar]
  39. Hänsel R, Löhr F, Trantírek L, Dötsch V. 38.  2013. High-resolution insight into G-overhang architecture. J. Am. Chem. Soc. 135:2816–24 [Google Scholar]
  40. Heo M, Maslov S, Shakhnovich E. 39.  2011. Topology of protein interaction network shapes protein abundances and strengths of their functional and nonspecific interactions. Proc. Natl. Acad. Sci. USA 108:4258–63 [Google Scholar]
  41. Holder IT, Drescher M, Hartig JS. 40.  2013. Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorganic Med. Chem. 216156–61
  42. Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T. 41.  et al. 2010. Distance determination in proteins inside Xenopus laevis oocytes by double electron-electron resonance experiments. J. Am. Chem. Soc. 132:8228–29First protein in-cell EPR study; spin-spin distance measurements showed that ubiquitin retained its overall folding topology. [Google Scholar]
  43. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T. 42.  et al. 2009. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–9 [Google Scholar]
  44. Ito Y, Selenko P. 43.  2010. Cellular structural biology. Curr. Opin. Struct. Biol. 20:640–48 [Google Scholar]
  45. Jachymek W, Niedziela T, Petersson C, Lugowski C, Czaja J, Kenne L. 44.  1999. Structures of the O-specific polysaccharides from Yokenella regensburgei (Koserella trabulsii) strains PCM 2476, 2477, 2478, and 2494: high-resolution magic-angle spinning NMR investigation of the O-specific polysaccharides in native lipopolysaccharides and directly on the surface of living bacteria. Biochemistry 38:11788–95 [Google Scholar]
  46. Jackson JC, Hammill JT, Mehl RA. 45.  2007. Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J. Am. Chem. Soc. 129:1160–66 [Google Scholar]
  47. Jacso T, Franks WT, Rose H, Fink U, Broecker J. 46.  et al. 2012. Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew. Chem. Int. Ed. 51:432–35 [Google Scholar]
  48. Kern T, Giffard M, Hediger S, Amoroso A, Giustini C. 47.  et al. 2010. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J. Am. Chem. Soc. 132:10911–19 [Google Scholar]
  49. Kern T, Hediger S, Müller P, Giustini C, Joris B. 48.  et al. 2008. Toward the characterization of peptidoglycan structure and protein-peptidoglycan interactions by solid-state NMR spectroscopy. J. Am. Chem. Soc. 130:5618–19 [Google Scholar]
  50. Kim SJ, Schaefer J. 49.  2008. Hydrophobic side-chain length determines activity and conformational heterogeneity of a vancomycin derivative bound to the cell wall of Staphylococcus aureus. Biochemistry 47:10155–61Fluorinated antibiotics were localized in regions of partially labeled peptidoglycan using solid-state NMR REDOR experiments on cells. [Google Scholar]
  51. Kim SJ, Singh M, Schaefer J. 50.  2009. Oritavancin binds to isolated protoplast membranes but not intact protoplasts of Staphylococcus aureus. J. Mol. Biol. 391:414–25 [Google Scholar]
  52. Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF. 51.  2011. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. 50:5070–74 [Google Scholar]
  53. Kubo S, Nishida N, Udagawa Y, Takarada O, Ogino S, Shimada I. 52.  2013. A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew. Chem. Int. Ed. 52:1208–11 [Google Scholar]
  54. Latham MP, Kay LE. 53.  2012. Is buffer a good proxy for a crowded cell-like environment? A comparative NMR study of calmodulin side-chain dynamics in buffer and E. coli lysate. PLoS ONE 7:e48226 [Google Scholar]
  55. Latham MP, Kay LE. 54.  2013. Probing nonspecific interactions of Ca2+-calmodulin in E. coli lysate. J. Biomol. NMR 55:239–47NMR studies of side-chain dynamics in bacterial cell extracts delineated different types of calmodulin interactions. [Google Scholar]
  56. Li C, Liu M. 55.  2013. Protein dynamics in living cells studied by in-cell NMR spectroscopy. FEBS Lett. 587:1008–11 [Google Scholar]
  57. Li C, Lutz EA, Slade KM, Ruf RA, Wang GF, Pielak GJ. 56.  2009. 19F NMR studies of α-synuclein conformation and fibrillation. Biochemistry 48:8578–84 [Google Scholar]
  58. Li C, Wang G-F, Wang Y, Creager-Allen R, Lutz EA. 57.  et al. 2010. Protein 19F NMR in Escherichia coli. J. Am. Chem. Soc. 132:321–27 [Google Scholar]
  59. Linden AH, Lange S, Franks WT, Akbey U, Specker E. 58.  et al. 2011. Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J. Am. Chem. Soc. 133:19266–69 [Google Scholar]
  60. Link AJ, Robison K, Church GM. 59.  1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18:1259–313 [Google Scholar]
  61. Liu CC, Schultz PG. 60.  2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413–44 [Google Scholar]
  62. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K. 61.  2012. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–10 [Google Scholar]
  63. Maldonado AY, Burz DS, Shekhtman A. 62.  2011. In-cell NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 59:197–212 [Google Scholar]
  64. Mari S, Invernizzi C, Spitaleri A, Alberici L, Ghitti M. 63.  et al. 2010. 2D TR-NOESY experiments interrogate and rank ligand-receptor interactions in living human cancer cells. Angew. Chem. Int. Ed. 49:1071–74 [Google Scholar]
  65. Mari S, Serrano-Gómez D, Cañada FJ, Corbí AL, Jiménez-Barbero J. 64.  2004. 1D saturation transfer difference NMR experiments on living cells: the DC-SIGN/oligomannose interaction. Angew. Chem. Int. Ed. 44:296–98 [Google Scholar]
  66. Miklos AC, Li C, Sharaf NG, Pielak GJ. 65.  2010. Volume exclusion and soft interaction effects on protein stability under crowded conditions. Biochemistry 49:6984–91 [Google Scholar]
  67. Miklos AC, Li C, Sorrell CD, Lyon LA, Pielak GJ. 66.  2011. An upper limit for macromolecular crowding effects. BMC Biophys. 4:13 [Google Scholar]
  68. Miklos AC, Sarkar M, Wang Y, Pielak GJ. 67.  2011. Protein crowding tunes protein stability. J. Am. Chem. Soc. 133:7116–20 [Google Scholar]
  69. Minton AP. 68.  2000. Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 10:34–39 [Google Scholar]
  70. Minton AP. 69.  2001. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276:10577–80 [Google Scholar]
  71. Minton AP. 70.  2013. Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding. Biopolymers 99:239–44 [Google Scholar]
  72. Ogino S, Kubo S, Umemoto R, Huang S, Nishida N, Shimada I. 71.  2009. Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J. Am. Chem. Soc. 131:10834–35 [Google Scholar]
  73. Patti GJ, Kim SJ, Yu T-Y, Dietrich E, Tanaka KSE. 72.  et al. 2009. Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J. Mol. Biol. 392:1178–91 [Google Scholar]
  74. Pielak GJ, Li C, Miklos AC, Schlesinger AP, Slade KM. 73.  et al. 2009. Protein nuclear magnetic resonance under physiological conditions. Biochemistry 48:226–34 [Google Scholar]
  75. Pielak GJ, Tian F. 74.  2012. Membrane proteins, magic-angle spinning, and in-cell NMR. Proc. Natl. Acad. Sci. USA 109:4715–16 [Google Scholar]
  76. Potenza D, Belvisi L. 75.  2008. Transferred-NOE NMR experiments on intact human platelets: receptor-bound conformation of RGD-peptide mimics. Org. Biomol. Chem. 6:258–62 [Google Scholar]
  77. Potenza D, Vasile F, Belvisi L, Civera M, Araldi EMV. 76.  2011. STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells. ChemBioChem 12:695–99 [Google Scholar]
  78. Reckel S, Lopez JJ, Löhr F, Glaubitz C, Dötsch V. 77.  2012. In-cell solid-state NMR as a tool to study proteins in large complexes. ChemBioChem 13:534–37 [Google Scholar]
  79. Renault M, Cukkemane A, Baldus M. 78.  2010. Solid-state NMR spectroscopy on complex biomolecules. Angew. Chem. Int. Ed. 49:8346–57 [Google Scholar]
  80. Renault M, Pawsey S, Bos MP, Koers EJ, Nand D. 79.  et al. 2012. Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew. Chem. Int. Ed. 51:2998–3001 [Google Scholar]
  81. Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M. 80.  2012. Cellular solid-state nuclear magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 109:4863–68Benchmark solid-state on-cell NMR study of integral bacterial membrane proteins, endogenous periplasmic proteoglycans, and outer membrane lipopolysaccharides. [Google Scholar]
  82. Sakai T, Tochio H, Inomata K, Sasaki Y, Tenno T. 81.  et al. 2007. Fluoroscopic assessment of protein leakage during Xenopus oocytes in-cell NMR experiment by co-injected EGFP. Anal. Biochem. 371:247–49 [Google Scholar]
  83. Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T. 82.  et al. 2006. In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J. Biomol. NMR 36:179–88 [Google Scholar]
  84. Sarkar M, Li C, Pielak GJ. 83.  2013. Soft interactions and crowding. Biophys. Rev. 1:1–8 [Google Scholar]
  85. Schlesinger AP, Wang Y, Tadeo X, Millet O, Pielak GJ. 84.  2011. Macromolecular crowding fails to fold a globular protein in cells. J. Am. Chem. Soc. 133:8082–85 [Google Scholar]
  86. Selenko P, Frueh DP, Elsaesser SJ, Haas W, Gygi SP, Wagner G. 85.  2008. In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat. Struct. Mol. Biol. 15:321–29 [Google Scholar]
  87. Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G. 86.  2006. Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc. Natl. Acad. Sci. USA 103:11904–9 [Google Scholar]
  88. Serber Z, Corsini L, Durst F, Dötsch V. 87.  2005. In-cell NMR spectroscopy. Methods Enzymol. 394:17–41 [Google Scholar]
  89. Serber Z, Keatinge-Clay AT, Ledwidge R, Kelly AE, Miller SM, Dötsch V. 88.  2001. High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. 123:2446–47 [Google Scholar]
  90. Serber Z, Ledwidge R, Miller SM, Dötsch V. 89.  2001. Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J. Am. Chem. Soc. 123:8895–901 [Google Scholar]
  91. Serber Z, Selenko P, Hänsel R, Reckel S, Löhr F. 90.  et al. 2006. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat. Protoc. 1:2701–9 [Google Scholar]
  92. Sharaf NG, Barnes CO, Charlton LM, Young GB, Pielak GJ. 91.  2010. A bioreactor for in-cell protein NMR. J. Magn. Reson. 202:140–46 [Google Scholar]
  93. Shi P, Li D, Chen H, Xiong Y, Wang Y, Tian C. 92.  2012. In situ19F NMR studies of an E. coli membrane protein. Protein Sci. 21:596–600 [Google Scholar]
  94. Shulman RG, Ogawa S, Mayer A, Castillo CL. 93.  1973. High-resolution proton NMR studies of low affinity hemoglobins. Ann. N.Y. Acad. Sci. 222:9–20 [Google Scholar]
  95. Singh V, Azarkh M, Exner TE, Hartig JS, Drescher M. 94.  2009. Human telomeric quadruplex conformations studied by pulsed EPR. Angew. Chem. Int. Ed. 48:9728–30 [Google Scholar]
  96. Slade KM, Baker R, Chua M, Thompson NL, Pielak GJ. 95.  2009. Effects of recombinant protein expression on green fluorescent protein diffusion in Escherichia coli. Biochemistry 48:5083–89 [Google Scholar]
  97. Snyder GK. 96.  1977. Blood corpuscles and blood hemoglobins: a possible example of coevolution. Science 195:412–13 [Google Scholar]
  98. Spitzer J, Poolman B. 97.  2009. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence. Microbiol. Mol. Biol. Rev. 73:371–88 [Google Scholar]
  99. Tadeo X, López-Méndez B, Trigueros T, Laín A, Castaño D, Millet O. 98.  2009. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol. 7:e1000257 [Google Scholar]
  100. Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre J-P, Hediger S. 99.  2013. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J. Am. Chem. Soc. 135:5105–10 [Google Scholar]
  101. Wang Q, Zhuravleva A, Gierasch LM. 100.  2011. Exploring weak, transient protein–protein interactions in crowded in vivo environments by in-cell nuclear magnetic resonance spectroscopy. Biochemistry 50:9225–36Comparative analysis of nonspecific protein interactions and their effects on in-cell NMR spectral quality in E. coli. [Google Scholar]
  102. Wang Y, Sarkar M, Smith AE, Krois AS, Pielak GJ. 101.  2012. Macromolecular crowding and protein stability. J. Am. Chem. Soc. 134:16614–18 [Google Scholar]
  103. Wasmer C, Benkemoun L, Sabaté R, Steinmetz MO, Coulary-Salin B. 102.  et al. 2009. Solid-state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218–289) are amyloids. Angew. Chem. Int. Ed. 48:4858–60 [Google Scholar]
  104. Wieruszeski JM, Bohin A, Bohin JP, Lippens G. 103.  2001. In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J. Magn. Reson. 151:118–23 [Google Scholar]
  105. Ye Y, Liu X, Zhang Z, Wu Q, Jiang B. 104.  et al. 2013. 19F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells. Chem. Eur. J. 1912705–10
  106. Zandomeneghi G, Ilg K, Aebi M, Meier BH. 105.  2012. On-cell MAS NMR: physiological clues from living cells. J. Am. Chem. Soc. 134:17513–19On-cell NMR analysis of changes in bacterial membrane composition during different growth stages. [Google Scholar]
  107. Zhong J, Frases S, Wang H, Casadevall A, Stark RE. 106.  2008. Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry 47:4701–10 [Google Scholar]
  108. Zhou X, Cegelski L. 107.  2012. Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy. Biochemistry 51:8143–53 [Google Scholar]
  109. Zigoneanu IG, Pielak GJ. 108.  2012. Interaction of α-synuclein and a cell penetrating fusion peptide with higher eukaryotic cell membranes assessed by 19F NMR. Mol. Pharm. 9:1024–29 [Google Scholar]
  110. Zigoneanu IG, Yang YJ, Krois AS, Haque E, Pielak GJ. 109.  2012. Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. Biochim. Biophys. Acta 1818:512–19 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-023136
Loading
/content/journals/10.1146/annurev-biophys-051013-023136
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error