1932

Abstract

Planets are expected to conclude their growth through a series of giant impacts: energetic, global events that significantly alter planetary composition and evolution. Computer models and theory have elucidated the diverse outcomes of giant impacts in detail, improving our ability to interpret collision conditions from observations of their remnants. However, many open questions remain, as even the formation of the Moon—a widely suspected giant-impact product for which we have the most information—is still debated. We review giant-impact theory, the diverse nature of giant-impact outcomes, and the governing physical processes. We discuss the importance of computer simulations, informed by experiments, for accurately modeling the impact process. Finally, we outline how the application of probability theory and computational advancements can assist in inferring collision histories from observations, and we identify promising opportunities for advancing giant-impact theory in the future.

  • ▪  Giant impacts exhibit diverse possible outcomes leading to changes in planetary mass, composition, and thermal history depending on the conditions.
  • ▪  Improvements to computer simulation methodologies and new laboratory experiments provide critical insights into the detailed outcomes of giant impacts.
  • ▪  When colliding planets are similar in size, they can merge or escape one another with roughly equal probability, but with different effects on their resulting masses, densities, and orbits.
  • ▪  Different sequences of giant impacts can produce similar planets, encouraging the use of probability theory to evaluate distinct formation hypothesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-055545
2023-05-31
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-055545.html?itemId=/content/journals/10.1146/annurev-earth-031621-055545&mimeType=html&fmt=ahah

Literature Cited

  1. Adibekyan V, Dorn C, Sousa SG, Santos NC, Bitsch B et al. 2021. A compositional link between rocky exoplanets and their host stars. Science 374:6565330–32
    [Google Scholar]
  2. Agertz O, Moore B, Stadel J, Potter D, Miniati F et al. 2007. Fundamental differences between SPH and grid methods. MNRAS 380:3963–78
    [Google Scholar]
  3. Agnor C, Asphaug E. 2004. Accretion efficiency during planetary collisions. Astrophys. J. 613:L157–60
    [Google Scholar]
  4. Agnor CB, Canup RM, Levison HF. 1999. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–37
    [Google Scholar]
  5. Asphaug E. 2010. Similar-sized collisions and the diversity of planets. Geochemistry 70:199–219
    [Google Scholar]
  6. Asphaug E. 2014. Impact origin of the Moon?. Annu. Rev. Earth Planet. Sci. 42:551–78
    [Google Scholar]
  7. Asphaug E, Agnor CB, Williams Q. 2006. Hit-and-run planetary collisions. Nature 439:155–60
    [Google Scholar]
  8. Asphaug E, Emsenhuber A, Cambioni S, Gabriel TSJ, Schwartz SR. 2021. Collision chains among the terrestrial planets. III. Formation of the Moon.. Planet. Sci. J. 2:5200
    [Google Scholar]
  9. Asphaug E, Reufer A. 2014. Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat. Geosci. 7:8564–68
    [Google Scholar]
  10. Barnes J, Hut P. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature 324:446–49
    [Google Scholar]
  11. Benz W, Anic A, Horner J, Whitby JA. 2007. The origin of Mercury. Space Sci. Rev. 132:189–202
    [Google Scholar]
  12. Benz W, Asphaug E. 1999. Catastrophic disruptions revisited. Icarus 142:5–20
    [Google Scholar]
  13. Benz W, Slattery WL, Cameron AGW. 1986. The origin of the moon and the single-impact hypothesis. I. Icarus 66:515–35
    [Google Scholar]
  14. Benz W, Slattery WL, Cameron AGW. 1988. Collisional stripping of Mercury's mantle. Icarus 74:516–28
    [Google Scholar]
  15. Brown ME, Barkume KM, Ragozzine D, Schaller EL. 2007. A collisional family of icy objects in the Kuiper belt. Nature 446:7133294–96
    [Google Scholar]
  16. Buckingham E. 1914. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4:4345–76
    [Google Scholar]
  17. Burger C, Bazsó Á, Schäfer CM. 2020. Realistic collisional water transport during terrestrial planet formation: self-consistent modeling by an N-body–SPH hybrid code. Astron. Astrophys. 634:A76
    [Google Scholar]
  18. Cambioni S, Asphaug E, Emsenhuber A, Gabriel TSJ, Furfaro R, Schwartz SR. 2019. Realistic on-the-fly outcomes of planetary collisions: machine learning applied to simulations of giant impacts. Astrophys. J. 875:40
    [Google Scholar]
  19. Cambioni S, Asphaug E, Furfaro R 2022. Combining machine-learned regression models with Bayesian inference to interpret remote sensing data. Machine Learning for Planetary Science J Helbert, M D'Amore, M Aye, H Kerner 193–207. Amsterdam: Elsevier
    [Google Scholar]
  20. Cambioni S, Jacobson SA, Emsenhuber A, Asphaug E, Rubie DC et al. 2021. The effect of inefficient accretion on planetary differentiation. Planet. Sci. J. 2:393
    [Google Scholar]
  21. Cameron AGW. 2000. Higher-resolution simulations of the giant impact. Origin of the Earth and Moon RM Canup, K Righter 133–44. Tucson, AZ: Univ. Arizona Press
    [Google Scholar]
  22. Cameron AGW, Benz W. 1991. The origin of the moon and the single impact hypothesis IV. Icarus 92:2204–16
    [Google Scholar]
  23. Cameron AGW, Ward WR. 1976. The origin of the Moon. Lunar Planet. Sci. Conf. Abstr. 7:120
    [Google Scholar]
  24. Canup RM. 2004. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42:441–75
    [Google Scholar]
  25. Canup RM. 2011. On a giant impact origin of Charon, Nix, and Hydra. Astron. J. 141:35
    [Google Scholar]
  26. Chambers JE. 2013. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224:43–56
    [Google Scholar]
  27. Chau A, Reinhardt C, Helled R, Stadel J. 2018. Forming Mercury by giant impacts. Astrophys. J. 865:35
    [Google Scholar]
  28. Ćuk M, Stewart ST. 2012. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:61101047–52
    [Google Scholar]
  29. Davies EJ, Carter PJ, Root S, Kraus RG, Spaulding DK et al. 2020. Silicate melting and vaporization during rocky planet formation. J. Geophys. Res. Planets 125:2e06227
    [Google Scholar]
  30. Dean RB, Dixon WJ. 1951. Simplified statistics for small numbers of observations. Anal. Chem. 23:4636–38
    [Google Scholar]
  31. DeMeo FE, Carry B 2014. Solar System evolution from compositional mapping of the asteroid belt. Nature 505:7485629–34
    [Google Scholar]
  32. Denman TR, Leinhardt ZM, Carter PJ. 2022. Atmosphere loss in oblique Super-Earth collisions. MNRAS 513:21680–700
    [Google Scholar]
  33. Dienes J, Walsh J. 1970. Theory of impact: some general principles and the method of eulerian codes. High-Velocity Impact Phenomena, Vol. 2 R Kinslow 45–104. New York: Academic
    [Google Scholar]
  34. Dobrovolskis AR. 1990. Tidal disruption of solid bodies. Icarus 88:124–38
    [Google Scholar]
  35. Dorn C, Khan A, Heng K, Connolly JAD, Alibert Y et al. 2015. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements?. Astron. Astrophys. 577:A83
    [Google Scholar]
  36. Ebel DS, Stewart ST 2018. The elusive origin of Mercury. Mercury: The View After MESSENGER SC Solomon, LR Nittler, BJ Anderson 497–515. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  37. Emsenhuber A, Asphaug E. 2019a. Fate of the runner in hit-and-run collisions. Astrophys. J. 875:295
    [Google Scholar]
  38. Emsenhuber A, Asphaug E. 2019b. Graze-and-merge collisions under external perturbers. Astrophys. J. 881:102
    [Google Scholar]
  39. Emsenhuber A, Cambioni S, Asphaug E, Gabriel TSJ, Schwartz SR, Furfaro R. 2020. Realistic on-the-fly outcomes of planetary collisions. II. Bringing machine learning to N-body simulations. Astrophys. J. 691:6
    [Google Scholar]
  40. Emsenhuber A, Jutzi M, Benz W. 2018. SPH calculations of Mars-scale collisions: the role of the equation of state, material rheologies, and numerical effects. Icarus 301:247–57
    [Google Scholar]
  41. Frontiere N, Raskin CD, Owen JM. 2017. CRKSPH—a conservative reproducing kernel smoothed particle hydrodynamics scheme. J. Comput. Phys. 332:160–209
    [Google Scholar]
  42. Gabriel TSJ, Allen-Sutter H. 2021. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. 915:2L32
    [Google Scholar]
  43. Gabriel TSJ, Jackson AP, Asphaug E, Reufer A, Jutzi M, Benz W. 2020. Gravity-dominated collisions: a model for the largest remnant masses with treatment for “hit and run” and density stratification. Astrophys. J. 892:40
    [Google Scholar]
  44. Genda H, Fujita T, Kobayashi H, Tanaka H, Suetsugu R, Abe Y. 2017. Impact erosion model for gravity-dominated planetesimals. Icarus 294:234–46
    [Google Scholar]
  45. Genda H, Kobayashi H, Kokubo E. 2015. Warm debris disks produced by giant impacts during terrestrial planet formation. Astrophys. J. 810:136
    [Google Scholar]
  46. Gilbert GK. 1893. The Moon's face: a study of the origin of its features. Bull. Philos. Soc. Washington 12:240–92
    [Google Scholar]
  47. Gingold RA, Monaghan JJ. 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181:3375–89
    [Google Scholar]
  48. Grady D, Hollenbach R, Schuler K, Callender J. 1977. Strain rate dependence in dolomite inferred from impact and static compression studies. J. Geophys. Res. 82:81325–33
    [Google Scholar]
  49. Grady D, Kipp M 1985. Geometric statistics and dynamic fragmentation. J. Appl. Phys. 58:31210–22
    [Google Scholar]
  50. Grimm SL, Stadel JG. 2014. The GENGA code: gravitational encounters in N-body simulations with GPU acceleration. Astrophys. J. 796:23
    [Google Scholar]
  51. Gurevich L, Lebedinsky A. 1950. Gravitational condensation of dust cloud. Dokl. Akad. Nauk SSSR 74:4673–75
    [Google Scholar]
  52. Haghighipour N, Maindl TI. 2022. Building terrestrial planets: why results of perfect-merging simulations are not quantitatively reliable approximations to accurate modeling of terrestrial planet formation. Astrophys. J. 926:2197
    [Google Scholar]
  53. Hartmann WK, Davis DR. 1975. Satellite-sized planetesimals and lunar origin. Icarus 24:504–14
    [Google Scholar]
  54. Holsapple KA. 1993. The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21:333–73
    [Google Scholar]
  55. Holsapple KA. 1994. Catastrophic disruptions and cratering of Solar System bodies: a review and new results. Planet. Space Sci. 42:121067–78
    [Google Scholar]
  56. Hosono N, Iwasawa M, Tanikawa A, Nitadori K, Muranushi T, Makino J. 2017. Unconvergence of very-large-scale giant impact simulations. PASJ 69:226
    [Google Scholar]
  57. Jackson AP, Gabriel TSJ, Asphaug EI. 2018. Constraints on the pre-impact orbits of Solar System giant impactors. MNRAS 474:2924–36
    [Google Scholar]
  58. Jackson AP, Wyatt MC. 2012. Debris from terrestrial planet formation: the Moon-forming collision. MNRAS 425:657–79
    [Google Scholar]
  59. Jackson AP, Wyatt MC, Bonsor A, Veras D. 2014. Debris from giant impacts between planetary embryos at large orbital radii. MNRAS 440:3757–77
    [Google Scholar]
  60. Johansen A, Dorn C. 2022. Nucleation and growth of iron pebbles explains the formation of iron-rich planets akin to Mercury. Astron. Astrophys. 662:A19
    [Google Scholar]
  61. Johansen A, Lambrechts M. 2017. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45:359–87
    [Google Scholar]
  62. Johansen A, Ronnet T, Bizzarro M, Schiller M, Lambrechts M et al. 2021. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7:8eabc0444
    [Google Scholar]
  63. Jutzi M. 2015. SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107:3–9
    [Google Scholar]
  64. Jutzi M, Michel P. 2020. Collisional heating and compaction of small bodies: constraints for their origin and evolution. Icarus 350:113867
    [Google Scholar]
  65. Jutzi M, Michel P, Richardson DC. 2019. Fragment properties from large-scale asteroid collisions: I: results from SPH/N-body simulations using porous parent bodies and improved material models. Icarus 317:215–28
    [Google Scholar]
  66. Kenyon SJ, Bromley BC. 2014. The formation of Pluto's low-mass satellites. Astron. J. 147:18
    [Google Scholar]
  67. Kobayashi H, Isoya K, Sato Y. 2019. Importance of giant impact ejecta for orbits of planets formed during the giant impact era. Astrophys. J. 887:2226
    [Google Scholar]
  68. Kokubo E, Ida S 1996. On runaway growth of planetesimals. Icarus 123:180–91
    [Google Scholar]
  69. Kruschke JK. 2010. Bayesian data analysis. Wiley Interdiscip. Rev. Cogn. Sci. 1:5658–76
    [Google Scholar]
  70. Lambrechts M, Morbidelli A, Jacobson SA, Johansen A, Bitsch B et al. 2019. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627:A83
    [Google Scholar]
  71. Leinhardt ZM, Marcus RA, Stewart ST. 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophys. J. 714:1789–99
    [Google Scholar]
  72. Leinhardt ZM, Stewart ST. 2012. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745:79
    [Google Scholar]
  73. Levin BJ. 1972. Origin of the earth. Tectonophysics 13:1–47–29
    [Google Scholar]
  74. Levison HF, Kretke KA, Duncan MJ. 2015. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:7565322–24
    [Google Scholar]
  75. Levison HF, Thommes E, Duncan MJ. 2010. Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139:41297–314
    [Google Scholar]
  76. Lissauer JJ. 1993. Planet formation. Annu. Rev. Astron. Astrophys. 31:129–74
    [Google Scholar]
  77. Liu SF, Hori Y, Lin DNC, Asphaug E. 2015. Giant impact: an efficient mechanism for the devolatilization of super-Earths. Astrophys. J. 812:2164
    [Google Scholar]
  78. Lock SJ, Stewart ST. 2019. Giant impacts stochastically change the internal pressures of terrestrial planets. Sci. Adv. 5:9eaav3746
    [Google Scholar]
  79. Lock SJ, Stewart ST, Petaev MI, Leinhardt Z, Mace MT et al. 2018. The origin of the moon within a terrestrial synestia. J. Geophys. Res. Planets 123:4910–51
    [Google Scholar]
  80. Marcus RA, Sasselov D, Hernquist L, Stewart ST. 2010. Minimum radii of super-Earths: constraints from giant impacts. Astrophys. J. 712:L73–76
    [Google Scholar]
  81. Marcus RA, Stewart ST, Sasselov D, Hernquist L. 2009. Collisional stripping and disruption of super-Earths. Astrophys. J. 700:L118–22
    [Google Scholar]
  82. Marinova MM, Aharonson O, Asphaug E. 2011. Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211:960–85
    [Google Scholar]
  83. Melosh HJ, Kendall J, Horgan B, Johnson BC, Bowling T et al. 2017. South Pole–Aitken basin ejecta reveal the Moon's upper mantle. Geology 45:121063–66
    [Google Scholar]
  84. Meng HYA, Su KYL, Rieke GH, Stevenson DJ, Plavchan P et al. 2014. Large impacts around a solar-analog star in the era of terrestrial planet formation. Science 345:62001032–35
    [Google Scholar]
  85. Monaghan JJ. 2012. Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 44:323–46
    [Google Scholar]
  86. Morbidelli A, Lunine JI, O'Brien DP, Raymond SN, Walsh KJ. 2012. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40:251–75
    [Google Scholar]
  87. Movshovitz N, Nimmo F, Korycansky DG, Asphaug E, Owen JM 2016. Impact disruption of gravity-dominated bodies: new simulation data and scaling. Icarus 275:85–96
    [Google Scholar]
  88. Nakajima M, Golabek GJ, Wünnemann K, Rubie DC, Burger C et al. 2021. Scaling laws for the geometry of an impact-induced magma ocean. Earth Planet. Sci. Lett. 568:116983
    [Google Scholar]
  89. Nakajima M, Stevenson DJ. 2014. Investigation of the initial state of the Moon-forming disk: bridging SPH simulations and hydrostatic models. Icarus 233:259–67
    [Google Scholar]
  90. Natl. Acad. Sci. Eng. Med 2022. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 Washington, DC: Natl. Acad.
  91. Okamoto T, Jenkins A, Eke VR, Quilis V, Frenk CS. 2003. Momentum transfer across shear flows in smoothed particle hydrodynamic simulations of galaxy formation. MNRAS 345:2429–46
    [Google Scholar]
  92. Palme H, O'Neill HSC. 2003. Cosmochemical estimates of mantle composition. Treatise Geochem. 2:568
    [Google Scholar]
  93. Quintana EV, Barclay T, Borucki WJ, Rowe JF, Chambers JE. 2016. The frequency of giant impacts on Earth-like worlds. Astrophys. J. 821:126
    [Google Scholar]
  94. Ramesh KT, Hogan JD, Kimberley J, Stickle A 2015. A review of mechanisms and models for dynamic failure, strength, and fragmentation. Planet. Space Sci. 107:10–23
    [Google Scholar]
  95. Raskin C, Owen JM. 2016. Examining the accuracy of astrophysical disk simulations with a generalized hydrodynamical test problem. Astrophys. J. 831:26
    [Google Scholar]
  96. Raymond SN, Morbidelli A 2022. Planet formation: key mechanisms and global models. Demographics of Exoplanetary Systems: Lecture Notes of the 3rd Advanced School on Exoplanetary Science K Biazzo, V Bozza, L Mancini, A Sozzetti 3–82. Cham, Switz: Springer
    [Google Scholar]
  97. Read J, Hayfield T, Agertz O. 2010. Resolving mixing in smoothed particle hydrodynamics. MNRAS 405:31513–30
    [Google Scholar]
  98. Reufer A. 2011. Collisions in planetary systems PhD thesis, Univ. Bern Bern, Switz:.
  99. Reufer A, Meier MMM, Benz W, Wieler R. 2012. A hit-and-run giant impact scenario. Icarus 221:296–99
    [Google Scholar]
  100. Root S, Townsend JP, Davies E, Lemke RW, Bliss DE et al. 2018. The principal Hugoniot of forsterite to 950 GPa. Geophys. Res. Lett. 45:93865–72
    [Google Scholar]
  101. Rozehnal J, Brož M, Nesvorný D, Walsh KJ, Durda DD et al. 2022. SPH simulations of high-speed collisions between asteroids and comets. Icarus 383:115064
    [Google Scholar]
  102. Rubie DC, Laurenz V, Jacobson SA, Morbidelli A, Palme H et al. 2016. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation. Science 353:63041141–44
    [Google Scholar]
  103. Rufu R, Aharonson O, Perets HB. 2017. A multiple-impact origin for the Moon. Nat. Geosci. 10:89–94
    [Google Scholar]
  104. Safronov VS. 1964. The growth of terrestrial planets. Probl. Cosmogeny 6:71
    [Google Scholar]
  105. Safronov VS. 1972. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets Jerusalem: Israel Program Sci. Transl.
  106. Schmidt OY. 1958. A Theory of the Origin of the Earth transl. GH Hannah London: Lawrence & Wishart. , 3rd ed..
  107. Schultz PH, Crawford DA. 2011. Origin of nearside structural and geochemical anomalies on the Moon. Geol. Soc. Am. Spec. Pap. 477:141–59
    [Google Scholar]
  108. Scora J, Valencia D, Morbidelli A, Jacobson S. 2020. Chemical diversity of super-Earths as a consequence of formation. MNRAS 493:44910–24
    [Google Scholar]
  109. Scott ERD, Haack H, Love SG. 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sci. 36:6869–91
    [Google Scholar]
  110. Shoemaker EM. 1962. Interpretation of lunar craters. Physics and Astronomy of the Moon Z Kopal 283–359. New York: Academic
    [Google Scholar]
  111. Smith JV. 1979. Mineralogy of the planets: a voyage in space and time. Philos. Trans. R. Soc. A 286:433–37
    [Google Scholar]
  112. Stevenson DJ. 1987. Origin of the moon—the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15:271–315
    [Google Scholar]
  113. Stewart ST, Leinhardt ZM. 2012. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. 751:32
    [Google Scholar]
  114. Stewart ST, Seifter A, Obst AW. 2008. Shocked H2O ice: thermal emission measurements and the criteria for phase changes during impact events. Geophys. Res. Lett. 35:23L23203
    [Google Scholar]
  115. Süli Á. 2021. Statistics of collision parameters computed from 2D simulations. MNRAS 503:44700–18
    [Google Scholar]
  116. Tatsumoto M, Rosholt JN. 1970. Age of the Moon: an isotopic study of uranium-thorium-lead systematics of lunar samples. Science 167:3918461
    [Google Scholar]
  117. Timpe ML, Han Veiga M, Knabenhans M, Stadel J, Marelli S 2020. Machine learning applied to simulations of collisions between rotating, differentiated planets. Comput. Astrophys. Cosmol. 7:12
    [Google Scholar]
  118. Vacondio R, Altomare C, De Leffe M, Hu X, Le Touzé D et al. 2021. Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput. Part. Mech. 8:3575–88
    [Google Scholar]
  119. Valencia D, Paracha E, Jackson AP. 2019. Can a machine learn the outcome of planetary collisions?. Astrophys. J. 882:35
    [Google Scholar]
  120. Violeau D. 2012. Fluid Mechanics and the SPH Method Oxford, UK: Oxford Univ. Press
  121. Voelkel O, Deienno R, Kretke K, Klahr H. 2021. Linking planetary embryo formation to planetesimal formation. II. The effect of pebble accretion in the terrestrial planet zone. Astron. Astrophys. 645:A132
    [Google Scholar]
  122. Weibull W. 1939. A Statistical Theory of Strength of Materials Stockholm: Gen. litogr. anst. forl.
  123. Weiss BP, Elkins-Tanton LT. 2013. Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41:529–60
    [Google Scholar]
  124. Wetherill GW. 1976. The role of large bodies in the formation of the Earth and Moon. Lunar Planet. Sci. Conf. Proc. 3:3245–57
    [Google Scholar]
  125. Wieczorek MA, Weiss BP, Stewart ST. 2012. An impactor origin for lunar magnetic anomalies. Science 335:60731212
    [Google Scholar]
  126. Williams JP, Cieza LA. 2011. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49:67–117
    [Google Scholar]
  127. Windmill RJ, Franchi IA, Hellmann JL, Schneider JM, Spitzer F et al. 2022. Isotopic evidence for pallasite formation by impact mixing of olivine and metal during the first 10 million years of the Solar System. PNAS Nexus 1:1pgac015
    [Google Scholar]
  128. Woo JMY, Grimm S, Brasser R, Stadel J. 2021. Growing Mars fast: high-resolution GPU simulations of embryo formation. Icarus 359:114305
    [Google Scholar]
  129. Wyatt MC. 2021. Debris disks. ExoFrontiers: Big Questions in Exoplanetary Science N Madhusudhan 2514–3433. Bristol, UK: IOP Publish.
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-055545
Loading
/content/journals/10.1146/annurev-earth-031621-055545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error