1932

Abstract

The strength of lithospheric plates is a central component of plate tectonics, governed by brittle processes in the shallow portion of the plate and ductile behavior in the deeper portion. We review experimental constraints on ductile deformation of olivine, the main mineral in the upper mantle and thus the lithosphere. Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding (GBS), and diffusion-accommodated grain-boundary sliding (diffusion creep). Deformation in most of the lithosphere is dominated by GBS, except in shear zones—in which diffusion creep dominates—and in the brittle-ductile transition—in which low-temperature plasticity may dominate. We find that observations from naturally deformed rocks are consistent with extrapolation of the experimentally constrained olivine flow laws to geological conditions but that geophysical observations predict a weaker lithosphere. The causes of this discrepancy are unresolved but likely reside in the uncertainty surrounding processes in the brittle-ductile transition, at which the lithosphere is strongest.

  • ▪  Ductile deformation of the lithospheric mantle is constrained by experimental data for olivine.
  • ▪  Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding, and diffusion creep.
  • ▪  Observations of naturally deformed rocks are consistent with extrapolation of olivine flow laws from experimental conditions.
  • ▪  Experiments predict stronger lithosphere than geophysical observations, likely due to gaps in constraints on deformation in the brittle-ductile transition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-063756
2023-05-31
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-063756.html?itemId=/content/journals/10.1146/annurev-earth-031621-063756&mimeType=html&fmt=ahah

Literature Cited

  1. Abercrombie RE, Ekström G. 2001. Earthquake slip on oceanic transform faults. Nature 410:682474–77
    [Google Scholar]
  2. Achenbach KL, Cheadle MJ, Faul UH, Kelemen PB, Swapp SM. 2011. Lattice-preferred orientation and microstructure of peridotites from ODP Hole 1274A (15°39·N), Mid-Atlantic Ridge: testing models of mantle upwelling and tectonic exhumation. Earth Planet. Sci. Lett. 301:1199–212
    [Google Scholar]
  3. Arzt E, Ashby MF, Verrall RA. 1983. Interface controlled diffusional creep. Acta Metall. 31:121977–89
    [Google Scholar]
  4. Ashby M, Sammis CG. 1990. The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 133:3489–521
    [Google Scholar]
  5. Austin NJ, Evans B. 2007. Paleowattmeters: a scaling relation for dynamically recrystallized grain size. Geology 35:4343–46
    [Google Scholar]
  6. Bai Q, Kohlstedt DL. 1992. High-temperature creep of olivine single crystals, 2. Dislocation structures. Tectonophysics 206:1–21–29
    [Google Scholar]
  7. Bai Q, Mackwell SJ, Kohlstedt DL. 1991. High-temperature creep of olivine single crystals, 1. Mechanical results for buffered samples. J. Geophys. Res. 96:B22441–63
    [Google Scholar]
  8. Baud P, Wong T-F, Zhu W. 2014. Effects of porosity and crack density on the compressive strength of rocks. Int. J. Rock Mech. Min. Sci. 67:202–11
    [Google Scholar]
  9. Behn MD, Boettcher MS, Hirth G. 2007. Thermal structure of oceanic transform faults. Geology 35:4307–10
    [Google Scholar]
  10. Behn MD, Hirth G, Elsenbeck JR II. 2009. Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth Planet. Sci. Lett. 282:1–4178–89
    [Google Scholar]
  11. Behr WM, Hirth G. 2014. Rheological properties of the mantle lid beneath the Mojave region in southern California. Earth Planet. Sci. Lett. 393:60–72
    [Google Scholar]
  12. Bellas A, Zhong S, Watts A. 2020. Constraints on the rheology of the lithosphere from flexure of the Pacific plate at the Hawaiian islands. Geochem. Geophys. Geosyst. 21:2e2019GC008819
    [Google Scholar]
  13. Bellas A, Zhong S, Watts AB. 2022. Reconciling lithospheric rheology between laboratory experiments, field observations and different tectonic settings. Geophys. J. Int. 228:2857–75
    [Google Scholar]
  14. Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F. 2003. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. 108:B22105
    [Google Scholar]
  15. Billen MI. 2008. Modeling the dynamics of subducting slabs. Annu. Rev. Earth Planet. Sci. 36:325–56
    [Google Scholar]
  16. Boettcher MS, Hirth G, Evans B. 2007. Olivine friction at the base of oceanic seismogenic zones. J. Geophys. Res. 112:B1B01205
    [Google Scholar]
  17. Bollinger C, Marquardt K, Ferreira F. 2019. Intragranular plasticity versus grain boundary sliding (GBS) in forsterite: microstructural evidence at high pressures (3.5–5.0 GPa). Am. Mineral. 104:2220–31
    [Google Scholar]
  18. Boneh Y, Wallis D, Hansen LN, Krawczynski MJ, Skemer P. 2017. Oriented grain growth and modification of “frozen anisotropy” in the lithospheric mantle. Earth Planet. Sci. Lett. 474:368–74
    [Google Scholar]
  19. Brace WF, Byerlee JD. 1966. Recent experimental studies of brittle fracture of rocks Paper presented at the 8th US Symposium on Rock Mechanics Minneapolis, MN:
  20. Brantut N, Heap MJ, Meredith PG, Baud P. 2013. Time-dependent cracking and brittle creep in crustal rocks: a review. J. Struct. Geol. 52:17–43
    [Google Scholar]
  21. Breithaupt T, Katz RF, Hansen LN, Kumamoto KM. 2023. Dislocation theory of steady and transient creep of crystalline solids: predictions for olivine. PNAS 120:8e2203448120
    [Google Scholar]
  22. Brey GP, Köhler TP. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31:61353–78
    [Google Scholar]
  23. Bruijn RHC, Skemer P. 2014. Grain-size sensitive rheology of orthopyroxene. Geophys. Res. Lett. 41:14894–903
    [Google Scholar]
  24. Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36:531–67
    [Google Scholar]
  25. Burov EB. 2011. Rheology and strength of the lithosphere. Mar. Petrol. Geol. 28:81402–43
    [Google Scholar]
  26. Byerlee J 1978. Friction of rocks. Rock Friction and Earthquake Prediction JD Byerlee, M Wyss 615–26. Basel, Switz: Birkhäuser Basel
    [Google Scholar]
  27. Bystricky M, Lawlis J, Mackwell SJ, Heidelbach F, Raterron P. 2016. High-temperature deformation of enstatite aggregates. J. Geophys. Res. Solid Earth 121:96384–400
    [Google Scholar]
  28. Bystricky M, Mackwell SJ. 2001. Creep of dry clinopyroxene aggregates. J. Geophys. Res. 106:B713443–54
    [Google Scholar]
  29. Cantwell PR, Frolov T, Rupert TJ, Krause AR, Marvel CJ et al. 2020. Grain boundary complexion transitions. Annu. Rev. Mater. Res. 50:465–92
    [Google Scholar]
  30. Carter NL. 1976. Steady state flow of rocks. Rev. Geophys. Space Phys. 14:3301–60
    [Google Scholar]
  31. Chen S, Hiraga T, Kohlstedt DL. 2006. Water weakening of clinopyroxene in the dislocation creep regime. J. Geophys. Res. 111:B8B08203
    [Google Scholar]
  32. Chin EJ, Chilson-Parks B, Boneh Y, Hirth G, Saal AE et al. 2021. The peridotite deformation cycle in cratons and the deep impact of subduction. Tectonophysics 817:229029
    [Google Scholar]
  33. Coble RL. 1963. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34:61679–82
    [Google Scholar]
  34. Cottrell E, Birner SK, Brounce M, Davis FA, Waters LE, Kelley KA. 2021. Oxygen fugacity across tectonic settings. Magma Redox Geochemistry R Moretti, DR Neuville 33–61. Hoboken, NJ: Wiley
    [Google Scholar]
  35. Craig TJ, Copley A, Jackson JA. 2014. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophys. J. Int. 197:163–89
    [Google Scholar]
  36. De Hoog JCM, Gall L, Cornell DH. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 270:1–4196–215
    [Google Scholar]
  37. Demouchy S. 2021. Defects in olivine. Eur. J. Mineral. 33:3249–82
    [Google Scholar]
  38. Demouchy S, Bolfan-Casanova N. 2016. Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240:402–25
    [Google Scholar]
  39. Dieterich JH. 2007. Applications of rate- and state-dependent friction to models of fault-slip and earthquake occurrence. Treatise Geophys. 4:107–29
    [Google Scholar]
  40. Dixon NA, Durham WB. 2018. Measurement of activation volume for creep of dry olivine at upper-mantle conditions. J. Geophys. Res. Solid Earth 123:108459–73
    [Google Scholar]
  41. Dorn JE. 1955. Some fundamental experiments on high temperature creep. J. Mech. Phys. Solids 3:285–116
    [Google Scholar]
  42. Druiventak A, Matysiak A, Renner J, Trepmann CA. 2011. Kick-and-cook experiments on peridotite: simulating coseismic deformation and post-seismic creep. Terra Nova 24:162–69
    [Google Scholar]
  43. Durham WB, Goetze C, Blake B. 1977. Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures. J. Geophys. Res. 82:365755–70
    [Google Scholar]
  44. Dygert NJ, Liang Y. 2015. Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth Planet. Sci. Lett. 420:151–61
    [Google Scholar]
  45. England P, Molnar P. 2015. Rheology of the lithosphere beneath the central and western Tien Shan. J. Geophys. Res. Solid Earth 120:52014JB011733
    [Google Scholar]
  46. Farla RJM, Karato S-I, Cai Z. 2013. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization. PNAS 110:4116355–60
    [Google Scholar]
  47. Faul UH, Fitz Gerald JD, Farla RJM, Ahlefeldt R, Jackson I 2011. Dislocation creep of fine-grained olivine. J. Geophys. Res. 116:B1B01203
    [Google Scholar]
  48. Faul UH, Jackson I 2007. Diffusion creep of dry, melt-free olivine. J. Geophys. Res. 112:B4B04204
    [Google Scholar]
  49. Faul UH, Jackson I 2015. Transient creep and strain energy dissipation: an experimental perspective. Annu. Rev. Earth Planet. Sci. 43:541–69
    [Google Scholar]
  50. Fei H, Hegoda C, Yamazaki D, Wiedenbeck M, Yurimoto H et al. 2012. High silicon self-diffusion coefficient in dry forsterite. Earth Planet. Sci. Lett. 345:95–103
    [Google Scholar]
  51. Fei H, Koizumi S, Sakamoto N, Hashiguchi M, Yurimoto H et al. 2016. New constraints on upper mantle creep mechanism inferred from silicon grain-boundary diffusion rates. Earth Planet. Sci. Lett. 433:350–59
    [Google Scholar]
  52. Fei H, Wiedenbeck M, Yamazaki D, Katsura T. 2013. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498:7453213–15
    [Google Scholar]
  53. Ferreira F, Hansen LN, Marquardt K. 2021. The effect of grain boundaries on plastic deformation of olivine. J. Geophys. Res. Solid Earth 126:7e2020JB020273
    [Google Scholar]
  54. Fischer KM, Rychert CA, Dalton CA, Miller MS, Beghein C, Schutt DL. 2020. A comparison of oceanic and continental mantle lithosphere. Phys. Earth Planet. Inter. 309:106600
    [Google Scholar]
  55. Fossen H, Cavalcante GCG. 2017. Shear zones—a review. Earth-Sci. Rev. 171:434–55
    [Google Scholar]
  56. Freed AM, Hirth G, Behn MD. 2012. Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle. J. Geophys. Res. 117:B1B01409
    [Google Scholar]
  57. Frey FA, Prinz M. 1978. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 38:129–76
    [Google Scholar]
  58. Frost HJ, Ashby MF. 1982. Deformation Mechanism Maps: Plasticity and Creep of Metals and Ceramics Oxford, UK: Pergamon
  59. Gardner RL, Piazolo S, Daczko NR, Evans L. 2019. Ductile deformation without localization: insights from numerical modeling. Geochem. Geophys. Geosyst. 20:125710–26
    [Google Scholar]
  60. Goddard RM, Hansen LN, Wallis D, Stipp M, Holyoke CW et al. 2020. A subgrain-size piezometer calibrated for EBSD. Geophys. Res. Lett. 47:23e2020GL090056
    [Google Scholar]
  61. Goldsby DL, Kohlstedt DL. 2001. Superplastic deformation of ice: experimental observations. J. Geophys. Res. 106:B611017–30
    [Google Scholar]
  62. Gouriet K, Cordier P, Garel F, Thoraval C, Demouchy S et al. 2019. Dislocation dynamics modelling of the power-law breakdown in olivine single crystals: toward a unified creep law for the upper mantle. Earth Planet. Sci. Lett. 506:282–91
    [Google Scholar]
  63. Griggs DT. 1936. Deformation of rocks under high confining pressures: I. Experiments at room temperature. J. Geol. 44:5541–77
    [Google Scholar]
  64. Hahn H, Averback RS. 1991. Low-temperature creep of nanocrystalline titanium(IV) oxide. J. Am. Ceram. Soc. 74:112918–21
    [Google Scholar]
  65. Hansen LN, Kumamoto KM, Thom CA, Wallis D, Durham WB et al. 2019. Low-temperature plasticity in olivine: grain size, strain hardening, and the strength of the lithosphere. J. Geophys. Res. Solid Earth 124:65427–49
    [Google Scholar]
  66. Hansen LN, Wallis D, Breithaupt T, Thom CA, Kempton I. 2021. Dislocation creep of olivine: Backstress evolution controls transient creep at high temperatures. J. Geophys. Res. Solid Earth 126:5e2020JB021325
    [Google Scholar]
  67. Hansen LN, Warren JM. 2015. Quantifying the effect of pyroxene on deformation of peridotite in a natural shear zone. J. Geophys. Res. Solid Earth 120:42717–38
    [Google Scholar]
  68. Hansen LN, Zimmerman ME, Kohlstedt DL. 2011. Grain boundary sliding in San Carlos olivine: flow law parameters and crystallographic-preferred orientation. J. Geophys. Res. 116:B8B08201
    [Google Scholar]
  69. Hier-Majumder S, Mei S, Kohlstedt DL 2005. Water weakening of clinopyroxenite in diffusion creep. J. Geophys. Res. 110:B7B07406
    [Google Scholar]
  70. Hiraga T, Miyazaki T, Tasaka M, Yoshida H. 2010. Mantle superplasticity and its self-made demise. Nature 468:73271091–94
    [Google Scholar]
  71. Hirschmann MM. 2006. Water, melting, and the deep earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34:627–53
    [Google Scholar]
  72. Hirth G, Kohlstedt DL. 1995a. Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime. J. Geophys. Res. 100:B21981–2001
    [Google Scholar]
  73. Hirth G, Kohlstedt DL. 1995b. Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime. J. Geophys. Res. 100:B815441–49
    [Google Scholar]
  74. Hirth G, Kohlstedt DL. 1996. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144:1–293–108
    [Google Scholar]
  75. Hirth G, Kohlstedt DL. 2003. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. Ser. 138:83–105
    [Google Scholar]
  76. Hirth G, Kohlstedt DL. 2015. The stress dependence of olivine creep rate: implications for extrapolation of lab data and interpretation of recrystallized grain size. Earth Planet. Sci. Lett. 418:20–26
    [Google Scholar]
  77. Hirth G, Teyssier CP, Dunlap WJ. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. Int. J. Earth Sci. 90:177–87
    [Google Scholar]
  78. Hoek E, Martin CD. 2014. Fracture initiation and propagation in intact rock—a review. J. Rock Mech. Geotech. Eng. 6:4287–300
    [Google Scholar]
  79. Horii H, Nemat-Nasser S. 1986. Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans R. Soc. A 319:1549337–74
    [Google Scholar]
  80. Huet B, Yamato P, Grasemann B. 2014. The Minimized Power Geometric model: an analytical mixing model for calculating polyphase rock viscosities consistent with experimental data. J. Geophys. Res. Solid Earth 119:43897–924
    [Google Scholar]
  81. Hunter J, Watts AB. 2016. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophys. J. Int. 207:1288–316
    [Google Scholar]
  82. Idrissi H, Bollinger C, Boioli F, Schryvers D, Cordier P. 2016. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing. Sci. Adv. 2:3e1501671
    [Google Scholar]
  83. Jain C, Korenaga J, Karato S-I. 2019. Global analysis of experimental data on the rheology of olivine aggregates. J. Geophys. Res. Solid Earth 124:1310–34
    [Google Scholar]
  84. Jaroslow GE, Hirth G, Dick HJB. 1996. Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics 256:17–37
    [Google Scholar]
  85. Ji S, Wang Z-C, Wirth R. 2001. Bulk flow strength of forsterite–enstatite composites as a function of forsterite content. Tectonophysics 341:1–469–93
    [Google Scholar]
  86. Ji S, Zhao P, Xia B. 2003. Flow laws of multiphase materials and rocks from end-member flow laws. Tectonophysics 370:1129–45
    [Google Scholar]
  87. Karato S-I. 2021. A theory of inter-granular transient dislocation creep: implications for the geophysical studies on mantle rheology. J. Geophys. Res. Solid Earth 126:10e2021JB022763
    [Google Scholar]
  88. Karato S-I, Jung H 2003. Effects of pressure on high-temperature dislocation creep in olivine. Philos. Mag. 83:3401–14
    [Google Scholar]
  89. Karato S-I, Jung H, Katayama I, Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36:59–95
    [Google Scholar]
  90. Karato S-I, Paterson MS, Fitz Gerald JD. 1986. Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91:B88151–76
    [Google Scholar]
  91. Karato S-I, Toriumi M, Fujii T. 1980. Dynamic recrystallization of olivine single crystals during high-temperature creep. Geophys. Res. Lett. 7:9649–52
    [Google Scholar]
  92. Karato S-I, Wu P. 1993. Rheology of the upper mantle: a synthesis. Science 260:771–78
    [Google Scholar]
  93. Kassner ME. 2015. Fundamentals of Creep in Metals and Alloys Amsterdam: Butterworth-Heinemann
  94. Katayama I, Karato S-I. 2008. Low-temperature, high-stress deformation of olivine under water-saturated conditions. Phys. Earth Planet. Inter. 168:3–4125–33
    [Google Scholar]
  95. Katz RF, Jones DWR, Rudge JF, Keller T. 2022. Physics of melt extraction from the mantle: speed and style. Annu. Rev. Earth Planet. Sci. 50:507–40
    [Google Scholar]
  96. Keefner JW, Mackwell SJ, Kohlstedt DL, Heidelbach F. 2011. Dependence of dislocation creep of dunite on oxygen fugacity: implications for viscosity variations in Earth's mantle. J. Geophys. Res. 116:B5B05201
    [Google Scholar]
  97. Kocks UF, Argon AS, Ashby MF. 1975. Thermodynamics and kinetics of slip. Prog. Mater Sci. 19:308
    [Google Scholar]
  98. Kohli A, Wolfson-Schwehr M, Prigent C, Warren JM. 2021. Oceanic transform fault seismicity and slip mode influenced by seawater infiltration. Nat. Geosci. 14:8606–11
    [Google Scholar]
  99. Kohli AH, Warren JM. 2020. Evidence for a deep hydrologic cycle on oceanic transform faults. J. Geophys. Res. Solid Earth 125:2e2019JB017751
    [Google Scholar]
  100. Kohlstedt DL, Evans B, Mackwell SJ. 1995. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100:B917587–602
    [Google Scholar]
  101. Kohlstedt DL, Hansen LN. 2015. Constitutive equations, rheological behavior, and viscosity of rocks. Treatise on Geophysics, Vol. 2: G Schubert 441–72. Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  102. Kohlstedt DL, Keppler H, Rubie DC 1996. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol. 123:4345–57
    [Google Scholar]
  103. Kumamoto KM, Hansen LN, Wallis D, Li B-S, Armstrong DEJ et al. 2021. Water does not influence the plasticity of olivine at low temperatures. AGU Fall Meet. Abstr. 2021:MR44A–04
    [Google Scholar]
  104. Kumamoto KM, Thom CA, Wallis D, Hansen LN, Armstrong DEJ et al. 2017. Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Sci. Adv. 3:9e1701338
    [Google Scholar]
  105. Kumamoto KM, Warren JM, Hansen LN. 2019. Evolution of the Josephine peridotite shear zones: 2. Influences on olivine CPO evolution. J. Geophys. Res. Solid Earth 124:1212763–81
    [Google Scholar]
  106. Langdon TG. 2006. Grain boundary sliding revisited: developments in sliding over four decades. J. Mater. Sci. 41:3597–609
    [Google Scholar]
  107. Langdon TG. 2009. Seventy-five years of superplasticity: historic developments and new opportunities. J. Mater. Sci. 44:225998–6010
    [Google Scholar]
  108. Langdon TG, Vastava RB. 1982. An evaluation of deformation models for grain boundary sliding. Mechanical Testing for Deformation Model Development, Vol. 765 RW Rhode, JC Swearengen 435–51. Philadelphia: ASTM Int.
    [Google Scholar]
  109. Lawlis JD. 1998. High temperature creep of synthetic olivine-enstatite aggregates PhD Diss. Penn. State Univ. State College, PA:
  110. Linckens J, Herwegh M, Müntener O, Mercolli I. 2011. Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation. J. Geophys. Res. 116:B6B06210
    [Google Scholar]
  111. Mainprice D, Silver PG. 1993. Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys. Earth Planet. Inter. 78:3–4257–80
    [Google Scholar]
  112. Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26:643–96
    [Google Scholar]
  113. Martinod J, Molnar P. 1995. Lithospheric folding in the Indian Ocean and the rheology of the oceanic plate. Bull. Soc. Geol. Fr. 166:6813–21
    [Google Scholar]
  114. Maruyama G, Hiraga T. 2017. Grain- to multiple-grain-scale deformation processes during diffusion creep of forsterite plus diopside aggregate: 1. Direct observations. J. Geophys. Res. Solid Earth 122:85890–915
    [Google Scholar]
  115. Matysiak AK, Trepmann CA. 2012. Crystal-plastic deformation and recrystallization of peridotite controlled by the seismic cycle. Tectonophysics 530–531:111–27
    [Google Scholar]
  116. McDonnell RD, Peach CJ, van Roermund HLM, Spiers CJ. 2000. Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peridotite under wet conditions. J. Geophys. Res. 105:B613535–53
    [Google Scholar]
  117. Mecking H, Kocks UF. 1981. Kinetics of flow and strain-hardening. Acta Metall 29:111865–75
    [Google Scholar]
  118. Mei S, Kohlstedt DL. 2000. Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. J. Geophys. Res. 105:B921471–81
    [Google Scholar]
  119. Mercier JC, Nicolas A 1975. Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J. Petrol. 16:2454–87
    [Google Scholar]
  120. Meyer GG, Brantut N, Mitchell TM, Meredith PG. 2019. Fault reactivation and strain partitioning across the brittle-ductile transition. Geology 47:121127–30
    [Google Scholar]
  121. Miyazaki T, Sueyoshi K, Hiraga T. 2013. Olivine crystals align during diffusion creep of Earth's upper mantle. Nature 502:7471321–26
    [Google Scholar]
  122. Nabarro FRN. 1967. Steady-state diffusional creep. Philos. Mag. 16:140231–37
    [Google Scholar]
  123. Ohuchi T, Kawazoe T, Higo Y, Funakoshi K, Suzuki A et al. 2015. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle. Sci. Adv. 1:9e1500360
    [Google Scholar]
  124. Parsons B, Richter FM. 1980. A relation between the driving force and geoid anomaly associated with mid-ocean ridges. Earth Planet. Sci. Lett. 51:2445–50
    [Google Scholar]
  125. Paterson MS. 1970. A high-pressure, high-temperature apparatus for rock deformation. Int. J. Rock Mech. Mining Sci. Geomech. Abstr. 7:5517–26
    [Google Scholar]
  126. Peslier AH. 2010. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J. Volcanol. Geotherm. Res. 197:1–4239–58
    [Google Scholar]
  127. Piazolo S, Bons PD, Griera A, Llorens M-G, Gomez-Rivas E et al. 2019. A review of numerical modelling of the dynamics of microstructural development in rocks and ice: past, present and future. J. Struct. Geol. 125:111–23
    [Google Scholar]
  128. Pickering FB. 1976. The Basis of Quantitative Metallography London: Metals Metall. Trust Inst. Metall. Tech.
  129. Platt JP, Behr WM. 2011. Grainsize evolution in ductile shear zones: implications for strain localization and the strength of the lithosphere. J. Struct. Geol. 33:4537–50
    [Google Scholar]
  130. Precigout J, Prigent C, Palasse L, Pochon A. 2017. Water pumping in mantle shear zones. Nat. Commun. 8:15736
    [Google Scholar]
  131. Prigent C, Warren JM, Kohli AH, Teyssier CP. 2020. Fracture-mediated deep seawater flow and mantle hydration on oceanic transform faults. Earth Planet. Sci. Lett. 532:115988
    [Google Scholar]
  132. Raj R, Ashby MF 1971. On grain boundary sliding and diffusional creep. Metall. Trans. 2:1113–27
    [Google Scholar]
  133. Richards F, Hoggard M, Crosby A, Ghelichkhan S, White N. 2020. Structure and dynamics of the oceanic lithosphere-asthenosphere system. Phys. Earth Planet. Inter. 309:106559
    [Google Scholar]
  134. Ricoult DL, Kohlstedt DL. 1985. Creep of Fe2SiO4 and Co2SiO4 single crystals in controlled thermodynamic environments. Philos. Mag. A 51:179–93
    [Google Scholar]
  135. Royden LH. 1993. The tectonic expression slab pull at continental convergent boundaries. Tectonics 12:2303–25
    [Google Scholar]
  136. Rudge JF. 2018. The viscosities of partially molten materials undergoing diffusion creep. J. Geophys. Res. Solid Earth 123:1210534–62
    [Google Scholar]
  137. Silber RE, Girard J, Karato S-I. 2022. Effects of pressure on diffusion creep in wet olivine aggregates. Phys. Earth Planet. Inter. 324:106840
    [Google Scholar]
  138. Skemer P, Hansen LN. 2016. Inferring upper-mantle flow from seismic anisotropy: an experimental perspective. Tectonophysics 668:1–14
    [Google Scholar]
  139. Speciale PA, Behr WM, Hirth G, Tokle L. 2020. Rates of olivine grain growth during dynamic recrystallization and postdeformation annealing. J. Geophys. Res. Solid Earth 125:11e2020JB020415
    [Google Scholar]
  140. Sundberg M, Cooper RF. 2008. Crystallographic preferred orientation produced by diffusional creep of harzburgite: effects of chemical interactions among phases during plastic flow. J. Geophys. Res. 113:B12208
    [Google Scholar]
  141. Takei Y, Holtzman BK. 2009. Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J. Geophys. Res. 114:B6B06205
    [Google Scholar]
  142. Tasaka M, Hiraga T. 2013. Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 1. Grain size and grain growth laws. J. Geophys. Res. Solid Earth 118:83970–90
    [Google Scholar]
  143. Tasaka M, Hiraga T, Zimmerman ME. 2013. Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 2. Deformation experiments. J. Geophys. Res. Solid Earth 118:83991–4012
    [Google Scholar]
  144. Tasaka M, Zimmerman ME, Kohlstedt DL. 2015. Creep behavior of Fe-bearing olivine under hydrous conditions. J. Geophys. Res. Solid Earth 120:6039–57
    [Google Scholar]
  145. Tasaka M, Zimmerman ME, Kohlstedt DL. 2017. Rheological weakening of olivine plus orthopyroxene aggregates due to phase mixing: 1. Mechanical behavior. J. Geophys. Res. Solid Earth 122:107584–96
    [Google Scholar]
  146. Tasaka M, Zimmerman ME, Kohlstedt DL. 2020. Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing: effects of orthopyroxene volume fraction. J. Geophys. Res. Solid Earth 125:9e2020JB019888
    [Google Scholar]
  147. Thom CA, Hansen LN, Breithaupt T, Goldsby DL, Kumamoto KM. 2022. Backstresses in geologic materials quantified by nanoindentation load-drop experiments. Philos. Mag. 102:191974–88
    [Google Scholar]
  148. Toriumi M, Karato S-I. 1978. Experimental studies on the recovery process of deformed olivines and the mechanical state of the upper mantle. Tectonophysics 49:179–95
    [Google Scholar]
  149. Underwood EE. 1970. Quantitative Stereology Reading, MA: Addison-Wesley
  150. Van der Wal D, Chopra P, Drury MR, Fitz Gerald JD. 1993. Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys. Res. Lett. 20:1479–82
    [Google Scholar]
  151. Vauchez A, Tommasi A, Mainprice D. 2012. Faults (shear zones) in the Earth's mantle. Tectonophysics 558–559:1–27
    [Google Scholar]
  152. Wallis D, Hansen LN, Kumamoto KM, Thom CA, Plumper O et al. 2020. Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength. Earth Planet. Sci. Lett. 543:116349
    [Google Scholar]
  153. Wang Z, Zhao Y, Kohlstedt DL. 2010. Dislocation creep accommodated by grain boundary sliding in dunite. J. Earth Sci. 21:5541–54
    [Google Scholar]
  154. Warren JM, Hirth G. 2006. Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet. Sci. Lett. 248:1–2438–50
    [Google Scholar]
  155. Warren JM, Hirth G, Kelemen PB. 2008. Evolution of olivine lattice preferred orientation during simple shear in the mantle. Earth Planet. Sci. Lett. 272:3–4501–12
    [Google Scholar]
  156. Watts AB, Zhong SJ, Hunter J. 2013. The behavior of the lithosphere on seismic to geologic timescales. Annu. Rev. Earth Planet. Sci. 41:443–68
    [Google Scholar]
  157. Weertman J, Weertman JR. 1975. High temperature creep of rock and mantle viscosity. Annu. Rev. Earth Planet. Sci. 3:293–315
    [Google Scholar]
  158. Whitehouse PL. 2018. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf. Dyn. 6:2401–29
    [Google Scholar]
  159. Wiesman HS, Zimmerman ME, Kohlstedt DL. 2018. Laboratory investigation of mechanisms for phase mixing in olivine + ferropericlase aggregates. Philos. Trans. R. Soc. A 376:213220170417
    [Google Scholar]
  160. Wood BJ, Virgo D. 1989. Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta 53:61277–91
    [Google Scholar]
  161. Yabe K, Sueyoshi K, Hiraga T. 2020. Grain-boundary diffusion creep of olivine: 1. Experiments at 1 atm. J. Geophys. Res. Solid Earth 125:8e2020JB019415
    [Google Scholar]
  162. Zhao N, Hirth G, Cooper RF, Kruckenberg SC, Cukjati J. 2019. Low viscosity of mantle rocks linked to phase boundary sliding. Earth Planet. Sci. Lett. 517:83–94
    [Google Scholar]
  163. Zhao Y-H, Ginsberg SB, Kohlstedt DL. 2004. Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib. Mineral. Petrol. 147:2155–61
    [Google Scholar]
  164. Zhao Y-H, Zimmerman ME, Kohlstedt DL. 2009. Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions. Earth Planet. Sci. Lett. 287:1229–40
    [Google Scholar]
  165. Zhao Y-H, Zimmerman ME, Kohlstedt DL. 2018. Effect of iron content on the creep behavior of olivine: 2. Hydrous conditions. Phys. Earth Planet. Inter. 278:26–33
    [Google Scholar]
  166. Zhong S, Watts AB. 2013. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology. J. Geophys. Res. Solid Earth 118:112013JB010408
    [Google Scholar]
  167. Zimmerman ME, Kohlstedt DL. 2004. Rheological properties of partially molten lherzolite. J. Petrol. 45:2275–98
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-063756
Loading
/content/journals/10.1146/annurev-earth-031621-063756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error