1932

Abstract

Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δ is a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δ values measured by mass spectrometry (Δ, Δ) or laser spectroscopy (Δ) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δ values that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals.

  • ▪  Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments.
  • ▪  Mature analytical methods enable carbonate clumped Δ, Δ, and Δ measurements to address diverse questions in geological and biological sciences.
  • ▪  These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031621-085949
2023-05-31
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031621-085949.html?itemId=/content/journals/10.1146/annurev-earth-031621-085949&mimeType=html&fmt=ahah

Literature Cited

  1. Affek HP. 2012. Clumped isotope paleothermometry: principles, applications, and challenges. Paleontol. Soc. Pap. 18:101–14
    [Google Scholar]
  2. Affek HP, Bar-Matthews M, Ayalon A, Matthews A, Eiler JM. 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry. Geochim. Cosmochim. Acta 72:225351–60
    [Google Scholar]
  3. Affek HP, Eiler JM. 2006. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochim. Cosmochim. Acta 70:11–12
    [Google Scholar]
  4. Agterhuis T, Ziegler M, de Winter NJ, Lourens LJ. 2022. Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry. Commun. Earth Environ. 3:139
    [Google Scholar]
  5. Anderson NT, Kelson JR, Kele S, Daëron M, Bonifacie M et al. 2021. A unified clumped isotope thermometer calibration (0.5–1,100 C) using carbonate-based standardization. Geophys. Res. Lett. 48:7e2020GL092069
    [Google Scholar]
  6. Bajnai D, Guo W, Spötl C, Coplen TB, Methner K et al. 2020. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nat. Commun. 11:14005
    [Google Scholar]
  7. Bemis BE, Spero HJ, Bijma J, Lea DW. 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13:2150–60
    [Google Scholar]
  8. Bergmann KD, Finnegan S, Creel R, Eiler JM, Hughes NC et al. 2018. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition. Geochim. Cosmochim. Acta 224:18–41
    [Google Scholar]
  9. Bernasconi SM, Daëron M, Bergmann KD, Bonifacie M, Meckler AN et al. 2021. InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosyst. 22:5e2020GC009588
    [Google Scholar]
  10. Bernasconi SM, Müller IA, Bergmann KD, Breitenbach SF, Fernandez A et al. 2018. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 19:92895–914
    [Google Scholar]
  11. Beverly EJ, Levin NE, Passey BH, Aron PG, Yarian DA et al. 2021. Triple oxygen and clumped isotopes in modern soil carbonate along an aridity gradient in the Serengeti, Tanzania. Earth Planet. Sci. Lett. 567:116952
    [Google Scholar]
  12. Brenner DC, Passey BH, Holder RM, Viete DR. 2021. Clumped-isotope geothermometry and carbonate U–Pb geochronology of the Alta stock metamorphic aureole, Utah, USA: insights on the kinetics of metamorphism in carbonates. Geochem. Geophys. Geosyst. 22:4e2020GC009238
    [Google Scholar]
  13. Brenner DC, Passey BH, Stolper DA. 2018. Influence of water on clumped-isotope bond reordering kinetics in calcite. Geochim. Cosmochim. Acta 224:42–63
    [Google Scholar]
  14. Bristow TF, Bonifacie M, Derkowski A, Eiler JM, Grotzinger JP. 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474:734968–71
    [Google Scholar]
  15. Brogi A, Liotta D, Capezzuoli E, Matera PF, Kele S et al. 2020. Travertine deposits constraining transfer zone neotectonics in geothermal areas: an example from the inner Northern Apennines (Bagno Vignoni-Val d'Orcia area, Italy). Geothermics 85:101763
    [Google Scholar]
  16. Budd DA, Frost EL, Huntington KW, Allwardt PF. 2013. Syndepositional deformation features in high-relief carbonate platforms: long-lived conduits for diagenetic fluids. J. Sediment. Res. 83:112–36
    [Google Scholar]
  17. Burgener L, Huntington KW, Hoke GD, Schauer A, Ringham MC et al. 2016. Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry. Earth Planet. Sci. Lett. 441:188–99
    [Google Scholar]
  18. Burgener L, Hyland E, Huntington KW, Kelson JR, Sewall JO. 2019. Revisiting the equable climate problem during the Late Cretaceous greenhouse using paleosol carbonate clumped isotope temperatures from the Campanian of the Western Interior Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 516:244–67
    [Google Scholar]
  19. Burgener LK, Huntington KW, Sletten R, Watkins JM, Quade J, Hallet B. 2018. Clumped isotope constraints on equilibrium carbonate formation and kinetic isotope effects in freezing soils. Geochim. Cosmochim. Acta 235:402–30
    [Google Scholar]
  20. Caldarescu DE, Sadatzki H, Andersson C, Schäfer P, Fortunato H, Meckler AN. 2021. Clumped isotope thermometry in bivalve shells: a tool for reconstructing seasonal upwelling. Geochim. Cosmochim. Acta 294:174–91
    [Google Scholar]
  21. Came RE, Brand U, Affek HP. 2014. Clumped isotope signatures in modern brachiopod carbonate. Chem. Geol. 377:20–30
    [Google Scholar]
  22. Chang B, Li C, Liu D, Foster I, Tripati A et al. 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: constraints on the “dolomite problem. .” PNAS 117:2514005–14
    [Google Scholar]
  23. Chen S, Ryb U, Piasecki AM, Lloyd MK, Baker MB, Eiler JM. 2019. Mechanism of solid-state clumped isotope reordering in carbonate minerals from aragonite heating experiments. Geochim. Cosmochim. Acta 258:156–73
    [Google Scholar]
  24. Cummins RC, Finnegan S, Fike DA, Eiler JM, Fischer WW. 2014. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O. Geochim. Cosmochim. Acta 140:241–58
    [Google Scholar]
  25. Curley AN, Petersen SV, Stewart ME, Guo W. 2023. Biologically driven isotopic fractionations in bivalves: from paleoenvironmental problem to paleophysiology proxy. Biol. Rev https://doi.org/10.1111/brv.12940
    [Crossref] [Google Scholar]
  26. Daëron M. 2021. Full propagation of analytical uncertainties in Δ47 measurements. Geochem. Geophys. Geosyst. 22:5e2020GC009592
    [Google Scholar]
  27. Daëron M, Blamart D, Peral M, Affek HP. 2016. Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chem. Geol. 442:83–96
    [Google Scholar]
  28. Daëron M, Guo W, Eiler J, Genty D, Blamart D et al. 2011. 13C18O clumping in speleothems: observations from natural caves and precipitation experiments. Geochim. Cosmochim. Acta 75:123303–17
    [Google Scholar]
  29. Dale A, John CM, Mozley PS, Smalley PC, Muggeridge AH. 2014. Time-capsule concretions: unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth Planet. Sci. Lett. 394:30–37
    [Google Scholar]
  30. de Winter NJ, Müller IA, Kocken IJ, Thibault N, Ullmann CV et al. 2021. Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate. Commun. Earth Environ. 2:1121
    [Google Scholar]
  31. Defliese WF, Hren MT, Lohmann KC. 2015a. Compositional and temperature effects of phosphoric acid fractionation on Δ47 analysis and implications for discrepant calibrations. Chem. Geol. 396:51–60
    [Google Scholar]
  32. Defliese WF, Lohmann KC. 2015b. Non-linear mixing effects on mass-47 CO2 clumped isotope thermometry: patterns and implications. Rapid Commun. Mass Spectrom. 29:9901–9
    [Google Scholar]
  33. del Real PG, Maher K, Kluge T, Bird DK, Brown GE Jr., John CM. 2016. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks. Geochim. Cosmochim. Acta 193:222–50
    [Google Scholar]
  34. Dennis KJ, Affek HP, Passey BH, Schrag DP, Eiler JM. 2011. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim. Cosmochim. Acta 75:227117–31
    [Google Scholar]
  35. Dennis KJ, Cochran JK, Landman NH, Schrag DP. 2013. The climate of the Late Cretaceous: new insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil. Earth Planet. Sci. Lett. 362:51–65
    [Google Scholar]
  36. Dennis KJ, Schrag DP. 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim. Cosmochim. Acta 74:144110–22
    [Google Scholar]
  37. Dennis PF, Myhill DJ, Marca A, Kirk R. 2019. Clumped isotope evidence for episodic, rapid flow of fluids in a mineralized fault system in the Peak District, UK. J. Geol. Soc. Lond. 176:3447–61
    [Google Scholar]
  38. DePaolo DJ. 2011. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75:41039–56
    [Google Scholar]
  39. Doran AL. 2022. Tracking ore fluid evolution using clumped C–O isotopes. Nat. Rev. Earth Environ. 3:4223
    [Google Scholar]
  40. Eagle RA, Eiler JM, Tripati AK, Ries JB, Freitas PS et al. 2013a. The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences 10:74591–606
    [Google Scholar]
  41. Eagle RA, Risi C, Mitchell JL, Eiler JM, Seibt U et al. 2013b. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. PNAS 110:228813–18
    [Google Scholar]
  42. Eiler JM. 2007.. “ Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262:3–4309–27
    [Google Scholar]
  43. Eiler JM. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat. Sci. Rev. 30:25–263575–88
    [Google Scholar]
  44. Eiler JM. 2013. The isotopic anatomies of molecules and minerals. Annu. Rev. Earth Planet. Sci. 41:411–41
    [Google Scholar]
  45. Eiler JM, Schauble E. 2004. 18O13C16O in Earth's atmosphere. Geochim. Cosmochim. Acta 68:234767–77
    [Google Scholar]
  46. EL-Shenawy MI, Kim ST. 2019. Disordering of 13C18O bonds in CO2 gas over a heated quartz surface at 50–1100°C: insights into the abundance of mass 47 (Δ47) in CO2 gas at thermodynamic equilibrium. Chem. Geol. 524:213–27
    [Google Scholar]
  47. Epstein S, Buchsbaum R, Lowenstam H, Urey HC. 1951. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 62:4417–26
    [Google Scholar]
  48. Falk ES, Guo W, Paukert AN, Matter JM, Mervine EM, Kelemen PB. 2016. Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: insights from clumped isotope measurements. Geochim. Cosmochim. Acta 192:1–28
    [Google Scholar]
  49. Fernandez A, Müller IA, Rodríguez-Sanz L, van Dijk J, Looser N, Bernasconi SM. 2017. A reassessment of the precision of carbonate clumped isotope measurements: implications for calibrations and paleoclimate reconstructions. Geochem. Geophys. Geosyst. 18:124375–86
    [Google Scholar]
  50. Ferry JM, Passey BH, Vasconcelos C, Eiler JM. 2011. Formation of dolomite at 40–80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology 39:6571–74
    [Google Scholar]
  51. Fiebig J, Bajnai D, Löffler N, Methner K, Krsnik E et al. 2019. Combined high-precision Δ48 and Δ47 analysis of carbonates. Chem. Geol. 522:186–91
    [Google Scholar]
  52. Fiebig J, Daëron M, Bernecker M, Guo W, Schneider G et al. 2021. Calibration of the dual clumped isotope thermometer for carbonates. Geochim. Cosmochim. Acta 312:235–56
    [Google Scholar]
  53. Finnegan S, Bergmann K, Eiler JM, Jones DS, Fike DA et al. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331:6019903–6
    [Google Scholar]
  54. Gallagher TM, Hren M, Sheldon ND. 2019. The effect of soil temperature seasonality on climate reconstructions from paleosols. Am. J. Sci. 319:7549–81
    [Google Scholar]
  55. Gallagher TM, Sheldon ND. 2016. Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation. Chem. Geol. 435:79–91
    [Google Scholar]
  56. Garzione CN, Auerbach DJ, Smith JJS, Rosario JJ, Passey BH et al. 2014. Clumped isotope evidence for diachronous surface cooling of the Altiplano and pulsed surface uplift of the Central Andes. Earth Planet. Sci. Lett. 393:173–81
    [Google Scholar]
  57. Ghosh P, Adkins J, Affek H, Balta B, Guo W et al. 2006a. 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70:61439–56
    [Google Scholar]
  58. Ghosh P, Garzione CN, Eiler JM. 2006b. Rapid uplift of the altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311:511–15
    [Google Scholar]
  59. Grauel AL, Schmid TW, Hu B, Bergami C, Capotondi L et al. 2013. Calibration and application of the ‘clumped isotope’ thermometer to foraminifera for high-resolution climate reconstructions. Geochim. Cosmochim. Acta 108:125–40
    [Google Scholar]
  60. Grossman EL, Ku TL. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. Isotope Geosci. Sect. 59:59–74
    [Google Scholar]
  61. Guo W. 2020. Kinetic clumped isotope fractionation in the DIC-H2O-CO2 system: patterns, controls, and implications. Geochim. Cosmochim. Acta 268:230–57
    [Google Scholar]
  62. Guo W, Mosenfelder JL, Goddard WA III, Eiler JM 2009. Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: insights from first-principles theoretical modeling and clumped isotope measurements. Geochim. Cosmochim. Acta 73:247203–25
    [Google Scholar]
  63. Guo W, Zhou C. 2019. Patterns and controls of disequilibrium isotope effects in speleothems: insights from an isotope-enabled diffusion-reaction model and implications for quantitative thermometry. Geochim. Cosmochim. Acta 267:196–226
    [Google Scholar]
  64. He B, Olack GA, Colman AS. 2012. Pressure baseline correction and high-precision CO2 clumped-isotope (Δ47) measurements in bellows and micro-volume modes. Rapid Commun. Mass Spectrom. 26:242837–53
    [Google Scholar]
  65. Hemingway JD, Henkes GA. 2021. A disordered kinetic model for clumped isotope bond reordering in carbonates. Earth Planet. Sci. Lett. 566:116962
    [Google Scholar]
  66. Henkes GA, Passey BH, Grossman EL, Shenton BJ, Pérez-Huerta A, Yancey TE. 2014. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochim. Cosmochim. Acta 139:362–82
    [Google Scholar]
  67. Henkes GA, Passey BH, Grossman EL, Shenton BJ, Yancey TE, Pérez-Huerta A. 2018. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry. Earth Planet. Sci. Lett. 490:40–50
    [Google Scholar]
  68. Henkes GA, Passey BH, Wanamaker AD Jr., Grossman EL, Ambrose WG Jr., Carroll ML. 2013. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim. Cosmochim. Acta 106:307–25
    [Google Scholar]
  69. Hill PS, Tripati AK, Schauble EA. 2014. Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. Geochim. Cosmochim. Acta 125:610–52
    [Google Scholar]
  70. Hoareau G, Crognier N, Lacroix B, Aubourg C, Roberts NM et al. 2021. Combination of Δ47 and U-Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth Planet. Sci. Lett. 553:116636
    [Google Scholar]
  71. Honlet R, Gasparrini M, Muchez P, Swennen R, John CM. 2018. A new approach to geobarometry by combining fluid inclusion and clumped isotope thermometry in hydrothermal carbonates. Terra Nova 30:3199–206
    [Google Scholar]
  72. Hough BG, Fan M, Passey BH 2014. Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: implications for paleoelevation and paleoclimate reconstruction. Earth Planet. Sci. Lett. 391:110–20
    [Google Scholar]
  73. Hren MT, Sheldon ND, Grimes ST, Collinson ME, Hooker JJ et al. 2013. Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition. PNAS 110:197562–67
    [Google Scholar]
  74. Hu X, Müller IA, Zhao A, Ziegler M, Chen Q et al. 2022. Clumped isotope thermometry reveals diagenetic origin of the dolomite layer within late Ordovician black shale of the Guanyinqiao Bed (SW China). Chem. Geol. 588:120641
    [Google Scholar]
  75. Hudson AM, Quade J, Ali G, Boyle D, Bassett S et al. 2017. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: implications for paleoenvironmental reconstructions using carbonates. Geochim. Cosmochim. Acta 212:274–302
    [Google Scholar]
  76. Huntington KW, Budd DA, Wernicke BP, Eiler JM. 2011. Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. J. Sediment. Res. 81:9656–69
    [Google Scholar]
  77. Huntington KW, Eiler JM, Affek HP, Guo W, Bonifacie M et al. 2009. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J. Mass Spectrom. 44:91318–29
    [Google Scholar]
  78. Huntington KW, Lechler AR. 2015. Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics 647–48:1–20
    [Google Scholar]
  79. Huntington KW, Saylor J, Quade J, Hudson AM. 2015. High late Miocene–Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. Bulletin 127:1–2181–99
    [Google Scholar]
  80. Huntington KW, Wernicke BP, Eiler JM. 2010. Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics 29:3TC3005
    [Google Scholar]
  81. Huth TE, Cerling TE, Marchetti DW, Bowling DR, Ellwein AL et al. 2020. Laminated soil carbonate rinds as a paleoclimate archive of the Colorado Plateau. Geochim. Cosmochim. Acta 282:227–44
    [Google Scholar]
  82. Huth TE, Cerling TE, Marchetti DW, Bowling DR, Ellwein AL, Passey BH. 2019. Seasonal bias in soil carbonate formation and its implications for interpreting high-resolution paleoarchives: evidence from southern Utah. J. Geophys. Res. Biogeosci. 124:3616–32
    [Google Scholar]
  83. Huyghe D, Daëron M, de Rafelis M, Blamart D, Sébilo M et al. 2022. Clumped isotopes in modern marine bivalves. Geochim. Cosmochim. Acta 316:41–58
    [Google Scholar]
  84. Ingalls M, Frantz CM, Snell KE, Trower EJ. 2020. Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT. Geobiology 18:5566–93
    [Google Scholar]
  85. Ingalls M, Snell KE. 2021. Tools for comprehensive assessment of fluid-mediated and solid-state alteration of carbonates used to reconstruct ancient elevation and environments. Front. Earth Sci. 9:623982
    [Google Scholar]
  86. Ji S, Nie J, Lechler A, Huntington KW, Heitmann EO, Breecker DO. 2018. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene. Earth Planet. Sci. Lett. 499:134–44
    [Google Scholar]
  87. John CM, Bowen D. 2016. Community software for challenging isotope analysis: first applications of ‘Easotope’ to clumped isotopes. Rapid Commun. Mass Spectrom. 30:212285–300
    [Google Scholar]
  88. Jones MM, Petersen SV, Curley AN. 2022. A tropically hot mid-Cretaceous North American Western Interior Seaway. Geology 50:8954–58
    [Google Scholar]
  89. Kato H, Amekawa S, Kano A, Mori T, Kuwahara Y, Quade J. 2019. Seasonal temperature changes obtained from carbonate clumped isotopes of annually laminated tufas from Japan: discrepancy between natural and synthetic calcites. Geochim. Cosmochim. Acta 244:548–64
    [Google Scholar]
  90. Katz A, Bonifacie M, Hermoso M, Cartigny P, Calmels D. 2017. Laboratory-grown coccoliths exhibit no vital effect in clumped isotope (Δ47) composition on a range of geologically relevant temperatures. Geochim. Cosmochim. Acta 208:335–53
    [Google Scholar]
  91. Kele S, Breitenbach SF, Capezzuoli E, Meckler AN, Ziegler M et al. 2015. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95°C temperature range. Geochim. Cosmochim. Acta 168:172–92
    [Google Scholar]
  92. Kelson JR, Huntington KW, Breecker DO, Burgener LK, Gallagher T et al. 2020. A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quat. Sci. Rev. 234:106259
    [Google Scholar]
  93. Kelson JR, Huntington KW, Schauer AJ, Saenger C, Lechler AR. 2017. Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship. Geochim. Cosmochim. Acta 197:104–31
    [Google Scholar]
  94. Kim ST, O'Neil JR 1997. Temperature dependence of 18O. Geochim. Cosmochim. Acta 61:34613475
    [Google Scholar]
  95. Kim ST, O'Neil JR, Hillaire-Marcel C, Mucci A 2007. Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 71:194704–15
    [Google Scholar]
  96. Kluge T, Affek HP. 2012. Quantifying kinetic fractionation in Bunker Cave speleothems using Δ47. Quat. Sci. Rev. 49:82–94
    [Google Scholar]
  97. Kluge T, Affek HP, Zhang YG, Dublyansky Y, Spötl C et al. 2014. Clumped isotope thermometry of cryogenic cave carbonates. Geochim. Cosmochim. Acta 126:541–54
    [Google Scholar]
  98. Kocken IJ, Müller IA, Ziegler M. 2019. Optimizing the use of carbonate standards to minimize uncertainties in clumped isotope data. Geochem. Geophys. Geosyst. 20:115565–77
    [Google Scholar]
  99. Kukla T, Rugenstein JKC, Ibarra DE, Winnick MJ, Strömberg CA, Chamberlain CP. 2022. Drier winters drove Cenozoic open habitat expansion in North America. AGU Adv 3:2e2021AV000566
    [Google Scholar]
  100. Lacroix B, Niemi NA. 2019. Investigating the effect of burial histories on the clumped isotope thermometer: an example from the Green River and Washakie basins, Wyoming. Geochim. Cosmochim. Acta 247:40–58
    [Google Scholar]
  101. Lechler AR, Niemi NA, Hren MT, Lohmann KC. 2013. Paleoelevation estimates for the northern and central proto–Basin and Range from carbonate clumped isotope thermometry. Tectonics 32:3295–316
    [Google Scholar]
  102. Leutert TJ, Auderset A, Martínez-García A, Modestou S, Meckler AN. 2020. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. Nat. Geosci. 13:9634–39
    [Google Scholar]
  103. Li H, Liu X, Arnold A, Elliott B, Flores R et al. 2021. Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in Western China and other regions and implications for paleotemperature and paleoelevation reconstructions. Earth Planet. Sci. Lett. 562:116840
    [Google Scholar]
  104. Li L, Fan M, Davila N, Jesmok G, Mitsunaga B et al. 2019. Carbonate stable and clumped isotopic evidence for late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications. Geol. Soc. Am. Bull. 131:5–6831–44
    [Google Scholar]
  105. Lloyd MK, Eiler JM, Nabelek PI. 2017. Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment. Geochim. Cosmochim. Acta 197:323–44
    [Google Scholar]
  106. Lloyd MK, Ryb U, Eiler JM. 2018. Experimental calibration of clumped isotope reordering in dolomite. Geochim. Cosmochim. Acta 242:1–20
    [Google Scholar]
  107. Looser N, Madritsch H, Guillong M, Laurent O, Wohlwend S, Bernasconi SM. 2021. Absolute age and temperature constraints on deformation along the basal Décollement of the Jura fold-and-thrust belt from carbonate U-Pb dating and clumped isotopes. Tectonics 40:e2020TC006439
    [Google Scholar]
  108. Lu YC, Song SR, Taguchi S, Wang PL, Yeh EC et al. 2018. Evolution of hot fluids in the Chingshui geothermal field inferred from crystal morphology and geochemical vein data. Geothermics 74:305–18
    [Google Scholar]
  109. Ma Q, Sheng W, Yongchun T. 2008. Formation and abundance of doubly-substituted methane isotopologues (13CH3D) in natural gas systems. Geochim. Cosmochim. Acta 72:225446–56
    [Google Scholar]
  110. MacDonald JM, Faithfull JW, Roberts NMW, Davies AJ, Holdsworth CM et al. 2019. Clumped-isotope palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal calcite veins. Contrib. Mineral. Petrol. 174:763
    [Google Scholar]
  111. Mangenot X, Gasparrini M, Gerdes A, Bonifacie M, Rouchon V. 2018. An emerging thermochronometer for carbonate-bearing rocks:Δ47/(U-Pb). Geology 46:121067–70
    [Google Scholar]
  112. McCrea JM. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18:6849–57
    [Google Scholar]
  113. Meckler AN, Affolter S, Dublyansky YV, Krüger Y, Vogel N et al. 2015. Glacial–interglacial temperature change in the tropical West Pacific: a comparison of stalagmite-based paleo-thermometers. Quat. Sci. Rev. 127:90–116
    [Google Scholar]
  114. Meckler AN, Sexton PF, Piasecki AM, Leutert TJ, Marquardt J et al. 2022. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science 377:660186–90
    [Google Scholar]
  115. Meckler AN, Ziegler M, Millán MI, Breitenbach SF, Bernasconi SM. 2014. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28:151705–15
    [Google Scholar]
  116. Meinicke N, Ho SL, Hannisdal B, Nürnberg D, Tripati A et al. 2020. A robust calibration of the clumped isotopes to temperature relationship for foraminifers. Geochim. Cosmochim. Acta 270:160–83
    [Google Scholar]
  117. Mering JA, Barker SL, Huntington KW, Simmons S, Dipple G et al. 2018. Taking the temperature of hydrothermal ore deposits using clumped isotope thermometry. Econ. Geol. 113:81671–78
    [Google Scholar]
  118. Meyer KW, Petersen SV, Lohmann KC, Winkelstern IZ. 2018. Climate of the Late Cretaceous North American Gulf and Atlantic Coasts. Cretaceous Res 89:160–73
    [Google Scholar]
  119. Modestou SE, Leutert TJ, Fernandez A, Lear CH, Meckler AN. 2020. Warm middle Miocene Indian Ocean bottom water temperatures: comparison of clumped isotope and Mg/Ca-based estimates. Paleoceanogr. Paleoclimatol. 35:11e2020PA003927
    [Google Scholar]
  120. Müller IA, Fernandez A, Radke J, van Dijk J, Bowen D et al. 2017. Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) workflow: scratching at the lower sample weight boundaries. Rapid Commun. Mass Spectrom. 31:121057–66
    [Google Scholar]
  121. Murray ST, Swart PK. 2017. Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim. Cosmochim. Acta 206:73–93
    [Google Scholar]
  122. Nooitgedacht CW, van der Lubbe HJL, De Graaf S, Ziegler M, Staudigel PT, Reijmer JJG. 2021. Restricted internal oxygen isotope exchange in calcite veins: constraints from fluid inclusion and clumped isotope-derived temperatures. Geochim. Cosmochim. Acta 297:24–39
    [Google Scholar]
  123. O'Hora HE, Petersen SV, Vellekoop J, Jones MM, Scholz SR. 2022. Clumped-isotope-derived climate trends leading up to the end-Cretaceous mass extinction in northwest Europe. Clim. Past 18:1963–82
    [Google Scholar]
  124. Page M, Licht A, Dupont-Nivet G, Meijer N, Barbolini N et al. 2019. Synchronous cooling and decline in monsoonal rainfall in northeastern Tibet during the fall into the Oligocene icehouse. Geology 47:3203–6
    [Google Scholar]
  125. Pagel M, Bonifacie M, Schneider DA, Gautheron C, Brigaud B et al. 2018. Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18Owater and U-Pb age. Chem. Geol. 481:1–17
    [Google Scholar]
  126. Parrish JT, Hyland EG, Chan MA, Hasiotis ST. 2019. Stable and clumped isotopes in desert carbonate spring and lake deposits reveal palaeohydrology: a case study of the Lower Jurassic Navajo Sandstone, south-western USA. Sedimentology 66:132–52
    [Google Scholar]
  127. Passey BH, Henkes GA. 2012. Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett. 351:223–36
    [Google Scholar]
  128. Passey BH, Levin NE, Cerling TE, Brown FH, Eiler JM. 2010. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. PNAS 107:2511245–49
    [Google Scholar]
  129. Peral M, Daëron M, Blamart D, Bassinot F, Dewilde F et al. 2018. Updated calibration of the clumped isotope thermometer in planktonic and benthic foraminifera. Geochim. Cosmochim. Acta 239:1–16
    [Google Scholar]
  130. Peters NA, Huntington KW, Hoke GD. 2013. Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry. Earth Planet. Sci. Lett. 361:208–18
    [Google Scholar]
  131. Petersen SV, Defliese WF, Saenger C, Daëron M, Huntington KW et al. 2019. Effects of improved 17O correction on interlaboratory agreement in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence of acid digestion fractionation. Geochem. Geophys. Geosyst. 20:73495–519
    [Google Scholar]
  132. Petryshyn VA, Lim D, Laval BL, Brady A, Slater G, Tripati AK. 2015. Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry. Geobiology 13:153–67
    [Google Scholar]
  133. Piasecki A, Bernasconi SM, Grauel AL, Hannisdal B, Ho SL et al. 2019. Application of clumped isotope thermometry to benthic foraminifera. Geochem. Geophys. Geosyst. 20:42082–90
    [Google Scholar]
  134. Piasecki A, Sessions A, Peterson B, Eiler J. 2016. Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory. Geochim. Cosmochim. Acta 190:1–12
    [Google Scholar]
  135. Prokhorov I, Kluge T, Janssen C. 2019. Laser absorption spectroscopy of rare and doubly substituted carbon dioxide isotopologues. Anal. Chem. 91:2415491–99
    [Google Scholar]
  136. Quade J, Eiler J, Daëron M, Achyuthan H. 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochim. Cosmochim. Acta 105:92–107
    [Google Scholar]
  137. Rugenstein JKC, Methner K, Kukla T, Mulch A, Lüdecke T et al. 2022. Clumped isotope constraints on warming and precipitation seasonality in Mongolia following Altai uplift. Am. J. Sci. 322:128–54
    [Google Scholar]
  138. Ryb U, Eiler JM. 2018. Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem. PNAS 115:266602–7
    [Google Scholar]
  139. Saenger C, Affek HP, Felis T, Thiagarajan N, Lough JM, Holcomb M. 2012. Carbonate clumped isotope variability in shallow water corals: temperature dependence and growth-related vital effects. Geochim. Cosmochim. Acta 99:224–42
    [Google Scholar]
  140. Saenger CP, Schauer AJ, Heitmann EO, Huntington KW, Steig EJ. 2021. How 17O excess in clumped isotope reference-frame materials and ETH standards affects reconstructed temperature. Chem. Geol. 563:120059
    [Google Scholar]
  141. Sarkar DP, Ando JI, Kano A, Kato H, Ghosh G, Das K. 2021. Carbonate clumped isotope thermometry of fault rocks and its possibilities: tectonic implications from calcites within Himalayan Frontal Fold-Thrust Belt. Prog. Earth Planet. Sci. 8:142
    [Google Scholar]
  142. Schauble EA, Ghosh P, Eiler JM. 2006. Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim. Cosmochim. Acta 70:102510–29
    [Google Scholar]
  143. Schauer AJ, Kelson J, Saenger C, Huntington KW. 2016. Choice of 17O correction affects clumped isotope (Δ47) values of CO2 measured with mass spectrometry. Rapid Commun. Mass Spectrom. 30:242607–16
    [Google Scholar]
  144. Schmid TW, Bernasconi SM. 2010. An automated method for ‘clumped-isotope’ measurements on small carbonate samples. Rapid Commun. Mass Spectrom. 24:141955–63
    [Google Scholar]
  145. Sharp Z. 2017. Principles of Stable Isotope Geochemistry Upper Saddle River, NJ: Prentice Hall. , 2nd ed..
  146. Shenton BJ, Grossman EL, Passey BH, Henkes GA, Becker TP et al. 2015. Clumped isotope thermometry in deeply buried sedimentary carbonates: the effects of bond reordering and re-crystallization. Geol. Soc. Am. Bull. 127:1036–51
    [Google Scholar]
  147. Smith ME, Swart PK. 2022. The influence of diagenesis on carbon and oxygen isotope values in shallow water carbonates from the Atlantic and Pacific: implications for the interpretation of the global carbon cycle. Sediment. Geol. 434:106147
    [Google Scholar]
  148. Snell KE, Thrasher BL, Eiler JM, Koch PL, Sloan LC, Tabor NJ. 2013. Hot summers in the Bighorn Basin during the early Paleogene. Geology 41:155–58
    [Google Scholar]
  149. Song B, Zhang K, Farnsworth A, Ji J, Algeo TJ et al. 2022. Application of ostracod-based carbonate clumped-isotope thermometry to paleo-elevation reconstruction in a hydrologically complex setting: a case study from the northern Tibetan Plateau. Gondwana Res 107:73–83
    [Google Scholar]
  150. Spencer C, Kim ST. 2015. Carbonate clumped isotope paleothermometry: a review of recent advances in CO2 gas evolution, purification, measurement and standardization techniques. Geosci. J. 19:2357–74
    [Google Scholar]
  151. Spooner PT, Guo W, Robinson LF, Thiagarajan N, Hendry KR et al. 2016. Clumped isotope composition of cold-water corals: a role for vital effects?. Geochim. Cosmochim. Acta 179:123–41
    [Google Scholar]
  152. Stolper DA, Eiler JM. 2015. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. Am. J. Sci. 315:5363–411
    [Google Scholar]
  153. Stolper DA, Eiler JM, Higgins JA. 2018. Modeling the effects of diagenesis on carbonate clumped-isotope values in deep- and shallow-water settings. Geochim. Cosmochim. Acta 227:264–91
    [Google Scholar]
  154. Stolper DA, Sessions AL, Ferreira AA, Neto ES, Schimmelmann A et al. 2014. Combined 13C–D and D–D clumping in methane: methods and preliminary results. Geochim. Cosmochim. Acta 126:169–91
    [Google Scholar]
  155. Suarez MB, Passey BH, Kaakinen A. 2011. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene. Geology 39:121151–54
    [Google Scholar]
  156. Swanson EM, Wernicke BP, Eiler JM, Losh S. 2012. Temperatures and fluids on faults based on carbonate clumped–isotope thermometry. Am. J. Sci. 312:11–21
    [Google Scholar]
  157. Swart PK, Burns SJ, Leder JJ. 1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. Isotope Geosci. Sect. 86:289–96
    [Google Scholar]
  158. Swart PK, Lu C, Moore EW, Smith ME, Murray ST, Staudigel PT. 2021. A calibration equation between Δ48 values of carbonate and temperature. Rapid Commun. Mass Spectrom. 35:17e9147
    [Google Scholar]
  159. Tang J, Dietzel M, Fernandez A, Tripati AK, Rosenheim BE. 2014. Evaluation of kinetic effects on clumped isotope fractionation (Δ47) during inorganic calcite precipitation. Geochim. Cosmochim. Acta 134:120–36
    [Google Scholar]
  160. Thiagarajan N, Adkins J, Eiler J. 2011. Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim. Cosmochim. Acta 75:164416–25
    [Google Scholar]
  161. Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R et al. 2020. Past climates inform our future. Science 370:6517eaay3701
    [Google Scholar]
  162. Tobin TS, Wilson GP, Eiler JM, Hartman JH. 2014. Environmental change across a terrestrial Cretaceous-Paleogene boundary section in eastern Montana, USA, constrained by carbonate clumped isotope paleothermometry. Geology 42:4351–54
    [Google Scholar]
  163. Tripati AK, Eagle RA, Thiagarajan N, Gagnon AC, Bauch H et al. 2010. 13C–18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths. Geochim. Cosmochim. Acta 74:205697–717
    [Google Scholar]
  164. Tripati AK, Hill PS, Eagle RA, Mosenfelder JL, Tang J et al. 2015. Beyond temperature: clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition. Geochim. Cosmochim. Acta 166:344–71
    [Google Scholar]
  165. Uchikawa J, Zeebe RE. 2012. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2–H2O system: implications for δ18O vital effects in biogenic carbonates. Geochim. Cosmochim. Acta 95:15–34
    [Google Scholar]
  166. Vickers ML, Bernasconi SM, Ullmann CV, Lode S, Looser N et al. 2021. Marine temperatures underestimated for past greenhouse climate. Sci. Rep. 11:119109
    [Google Scholar]
  167. Wainer K, Genty D, Blamart D, Daëron M, Bar-Matthews M et al. 2011. Speleothem record of the last 180 ka in Villars cave (SW France): investigation of a large δ18O shift between MIS6 and MIS5. Quat. Sci. Rev. 30:1–2130–46
    [Google Scholar]
  168. Wang DT, Gruen DS, Lollar BS, Hinrichs KU, Stewart LC et al. 2015. Nonequilibrium clumped isotope signals in microbial methane. Science 348:6233428–31
    [Google Scholar]
  169. Wang Y, Passey B, Roy R, Deng T, Jiang S et al. 2021. Clumped isotope thermometry of modern and fossil snail shells from the Himalayan-Tibetan Plateau: implications for paleoclimate and paleoelevation reconstructions. Geol. Soc. Am. Bull. 133:7–81370–80
    [Google Scholar]
  170. Wang Z, Nelson DD, Dettman DL, McManus JB, Quade J et al. 2020. Rapid and precise analysis of carbon dioxide clumped isotopic composition by tunable infrared laser differential spectroscopy. Anal. Chem. 92:22034–42
    [Google Scholar]
  171. Wang Z, Schauble EA, Eiler JM. 2004. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim. Cosmochim. Acta 68:234779–97
    [Google Scholar]
  172. Watkins JM, Devriendt LS. 2022. A combined model for kinetic clumped isotope effects in the CaCO3-DIC-H2O system. Geochem. Geophys. Geosyst. 23:8e2021GC010200
    [Google Scholar]
  173. Watkins JM, Hunt JD. 2015. A process-based model for non-equilibrium clumped isotope effects in carbonates. Earth Planet. Sci. Lett. 432:152–65
    [Google Scholar]
  174. Winkelstern IZ, Lohmann KC. 2016. Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. Geology 44:6467–70
    [Google Scholar]
  175. Yanay N, Wang Z, Dettman DL, Quade J, Huntington KW et al. 2022. Rapid and precise measurement of carbonate clumped isotopes using laser spectroscopy. Sci. Adv. 8:43eabq0611
    [Google Scholar]
  176. Yeung LY, Young ED, Schauble EA. 2012. Measurements of 18O18O and 17O18O in the atmosphere and the role of isotope-exchange reactions. J. Geophys. Res. 117:D18D18306
    [Google Scholar]
  177. Young ED, Kohl IE, Lollar BS, Etiope G, Rumble D III et al. 2017. The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta 203:235–64
    [Google Scholar]
  178. Zachos J, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:5517686–93
    [Google Scholar]
  179. Zeebe RE, Wolf-Gladrow D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Amsterdam: Elsevier
  180. Zhang L, Wang C, Wignall PB, Kluge T, Wan X et al. 2018. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology 46:3271–74
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031621-085949
Loading
/content/journals/10.1146/annurev-earth-031621-085949
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error