1932

Abstract

Our understanding of Earth's rock-hosted subsurface biosphere has advanced over the past two decades through the collection and analysis of fluids and rocks from aquifers within the continental and oceanic crust. Improvements in cell extraction, cell sorting, DNA sequencing, and techniques for detecting cell distributions and activity have revealed how the combination of lithology, permeability, and fluid mixing processes controls the diversity and heterogeneous distribution of microbial communities in fractured rock systems. However, the functions of most organisms, and the rates of their activity and growth, remain largely unknown. To mechanistically understand what physiochemical and hydrological factors control the rock-hosted biosphere, future studies are needed to characterize the physiology of microorganisms adapted to mineral-associated growth under energy- and nutrient-limited conditions. Experiments should be designed to detect synergistic interactions between microorganisms, and between microorganisms and minerals, at highly variable turnover rates.

  • ▪  The heterogeneous distribution of the rock-hosted biosphere is controlled by variations in porosity, permeability, and chemical disequilibrium.
  • ▪  Several imaging and chemical techniques can sensitively detect microbial activity within the rock-hosted biosphere.
  • ▪  The physiology and turnover rates of the subsurface rock-hosted biosphere remain poorly known.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-031920-081957
2023-05-31
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/51/1/annurev-earth-031920-081957.html?itemId=/content/journals/10.1146/annurev-earth-031920-081957&mimeType=html&fmt=ahah

Literature Cited

  1. Bach W. 2016. Some compositional and kinetic controls on the bioenergetic landscapes in oceanic basement. Front. Microbiol. 7:107
    [Google Scholar]
  2. Bach W, Edwards KJ. 2003. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67:203871–87
    [Google Scholar]
  3. Bell E, Lamminmäki T, Alneberg J, Qian C, Xiong W et al. 2022. Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. ISME J 16:61583–93
    [Google Scholar]
  4. Berry D, Mader E, Lee TK, Woebken D, Wang Y et al. 2015. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. PNAS 112:2E194–203
    [Google Scholar]
  5. Bhartia R, Salas EC, Hug WF, Reid RD, Lane AL et al. 2010. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence. Appl. Environ. Microbiol. 76:217231–37
    [Google Scholar]
  6. Blumberger J. 2015. Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115:2011191–238
    [Google Scholar]
  7. Bochet O, Bethencourt L, Dufresne A, Farasin J, Pédrot M et al. 2020. Iron-oxidizer hotspots formed by intermittent oxic-anoxic fluid mixing in fractured rocks. Nat. Geosci. 13:2149–55
    [Google Scholar]
  8. Bomberg M, Lamminmäki T, Itävaara M. 2016. Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock at Olkiluoto, Finland. Biogeosciences 13:216031–47
    [Google Scholar]
  9. Bomberg M, Miettinen H, Kietäväinen R, Purkamo L, Ahonen L, Vikman M 2021. Microbial metabolic potential in deep crystalline bedrock. The Microbiology of Nuclear Waste Disposal JR Lloyd, A Cherkouk 41–70. Amsterdam: Elsevier
    [Google Scholar]
  10. Boston PJ, Ivanov MV, McKay CP. 1992. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:2300–8
    [Google Scholar]
  11. Bradley JA, Amend JP, LaRowe DE. 2018. Necromass as a limited source of energy for microorganisms in marine sediments. J. Geophys. Res. Biogeosci. 123:2577–90
    [Google Scholar]
  12. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. 2013. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl. Environ. Microbiol. 79:133906–16
    [Google Scholar]
  13. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Methane- and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem. Appl. Environ. Microbiol. 72:96257–70
    [Google Scholar]
  14. Caro TA, McFarlin J, Jech S, Fierer N, Kopf S. 2022. Hydrogen stable isotope probing of lipids demonstrates slow rates of microbial growth in soil. bioRxiv 2022.07.11.499392. https://doi.org/10.1101/2022.07.11.499392
  15. Casar CP, Kruger BR, Flynn TM, Masterson AL, Momper LM, Osburn MR 2020. Mineral-hosted biofilm communities in the continental deep subsurface, Deep Mine Microbial Observatory, SD, USA. Geobiology 18:4508–22
    [Google Scholar]
  16. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS et al. 2008. Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:5899275–78
    [Google Scholar]
  17. Colman DR, Kraus EA, Thieringer PH, Rempfert K, Templeton AS et al. 2022. Deep-branching acetogens in serpentinized subsurface fluids of Oman. PNAS 119:42e2206845119
    [Google Scholar]
  18. Colman DR, Poudel S, Stamps BW, Boyd ES, Spear JR. 2017. The deep, hot biosphere: twenty-five years of retrospection. PNAS 114:276895–903
    [Google Scholar]
  19. Coskun ÖK, Özen V, Wankel SD, Orsi WD. 2019. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J 13:61546–59
    [Google Scholar]
  20. Coskun ÖK, Vuillemin A, Schubotz F, Klein F, Sichel SE et al. 2022. Quantifying the effects of hydrogen on carbon assimilation in a seafloor microbial community associated with ultramafic rocks. ISME J 16:1257–71
    [Google Scholar]
  21. Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D et al. 2003. Fluids from aging ocean crust that support microbial life. Science 299:5603120–23
    [Google Scholar]
  22. Crespo-Medina M, Twing KI, Kubo MDY, Hoehler TM, Cardace D et al. 2014. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach. Front. Microbiol. 5:604
    [Google Scholar]
  23. Cui D, Kong L, Wang Y, Zhu Y, Zhang C. 2022. In situ identification of environmental microorganisms with Raman spectroscopy. Environ. Sci. Ecotechnol. 11:100187
    [Google Scholar]
  24. Daval D. 2018. Carbon dioxide sequestration through silicate degradation and carbon mineralisation: promises and uncertainties. npj Mater. Degrad. 2:111
    [Google Scholar]
  25. D'Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N et al. 2015. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat. Geosci. 8:4299–304
    [Google Scholar]
  26. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. PNAS 112:11E1326–32
    [Google Scholar]
  27. Drake H, Ivarsson M. 2018. The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biol. Rev. 32:120–25
    [Google Scholar]
  28. Dutta A, Dutta Gupta S, Gupta A, Sarkar J, Roy S et al. 2018. Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India. Sci. Rep. 8:117459
    [Google Scholar]
  29. Dutta A, Sar P, Sarkar J, Dutta Gupta S, Gupta A et al. 2019. Archaeal communities in deep terrestrial subsurface underneath the Deccan traps, India. Front. Microbiol. 10:1362
    [Google Scholar]
  30. Dzaugis ME, Spivack AJ, Dunlea AG, Murray RW, D'Hondt S 2016. Radiolytic hydrogen production in the subseafloor basaltic aquifer. Front. Microbiol. 7:76
    [Google Scholar]
  31. Edwards KJ, Bach W, Klaus A, Expedition 336 Scientists 2012. Mid-Atlantic Ridge Microbiology: Initiation of Long-Term Coupled Microbiological, Geochemical, and Hydrological Experimentation Within the Seafloor at North Pond, Western Flank of the Mid-Atlantic Ridge Tokyo: IODP
  32. Edwards KJ, McCollom TM, Konishi H, Buseck PR. 2003. Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim. Cosmochim. Acta 67:152843–56
    [Google Scholar]
  33. Escudero C, Oggerin M, Amils R. 2018. The deep continental subsurface: the dark biosphere. Int. Microbiol. 21:13–14
    [Google Scholar]
  34. Etiope G, Ionescu A. 2015. Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromitite-rich serpentinized rocks. Geofluids 15:3438–52
    [Google Scholar]
  35. Etiope G, Whiticar MJ. 2019. Abiotic methane in continental ultramafic rock systems: towards a genetic model. Appl. Geochem. 102:139–52
    [Google Scholar]
  36. Eydal HSC, Pedersen K. 2007. Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3–1000 m. J. Microbiol. Methods 70:2363–73
    [Google Scholar]
  37. Farley KA, Stack KM, Shuster DL, Horgan BHN, Hurowitz JA et al. 2022. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars. Science 377:eabo2196
    [Google Scholar]
  38. Fisher AT, Wheat CG. 2010. Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23:174–87
    [Google Scholar]
  39. Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S et al. 2019. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 13:71750–62
    [Google Scholar]
  40. Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS et al. 2021. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J 15:41121–35
    [Google Scholar]
  41. Fones EM, Templeton AS, Mogk DW, Boyd ES. 2022. Transformation of low-molecular-weight organic acids by microbial endoliths in subsurface mafic and ultramafic igneous rock. Environ. Microbiol. 24:94137–52
    [Google Scholar]
  42. Früh-Green GL, Orcutt BN, Rouméjon S, Lilley MD, Morono Y et al. 2018. Magmatism, serpentinization and life: insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos 323:137–55
    [Google Scholar]
  43. Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC et al. 2006. The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol. J. 23:6415–30
    [Google Scholar]
  44. Glombitza C, Putman LI, Rempfert KR, Kubo MD, Schrenk MO et al. 2021. Active microbial sulfate reduction in fluids of serpentinizing peridotites of the continental subsurface. Commun. Earth Environ. 2:184
    [Google Scholar]
  45. Gold T. 1992. The deep, hot biosphere. PNAS 89:136045–49
    [Google Scholar]
  46. Goordial J, D'Angelo T, Labonté JM, Poulton NJ, Brown JM et al. 2021. Microbial diversity and function in shallow subsurface sediment and oceanic lithosphere of the Atlantis Massif. mBio 12:4e00490–21
    [Google Scholar]
  47. Hallbeck L, Pedersen K. 2008. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl. Geochem. 23:71796–819
    [Google Scholar]
  48. Hoehler TM. 2004. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:4205–15
    [Google Scholar]
  49. Hoehler TM, Jørgensen BB. 2013. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11:283–94
    [Google Scholar]
  50. Holmes DE, Giloteaux L, Chaurasia AK, Williams KH, Luef B et al. 2015. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. ISME J 9:2333–46
    [Google Scholar]
  51. Holmfeldt K, Nilsson E, Simone D, Lopez-Fernandez M, Wu X et al. 2021. The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles. Commun. Biol. 4:1307
    [Google Scholar]
  52. Howells AEG, Leong JAM, Ely T, Santana M, Robinson K et al. 2022. Energetically informed niche models of hydrogenotrophs detected in sediments of serpentinized fluids of the Samail Ophiolite of Oman. J. Geophys. Res. Biogeosci. 127:3e2021JG006317
    [Google Scholar]
  53. Huber JA, Johnson HP, Butterfield DA, Baross JA. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8:188–99
    [Google Scholar]
  54. Inagaki F, Hinrichs K-U, Kubo Y, Bowles MW, Heuer VB et al. 2015. Exploring deep microbial life in coal-bearing sediment down to ∼2.5 km below the ocean floor. Science 349:6246420–24
    [Google Scholar]
  55. Ino K, Konno U, Kouduka M, Hirota A, Togo YS et al. 2016. Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes. Environ. Microbiol. Rep. 8:2285–94
    [Google Scholar]
  56. Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I. 2011. Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol. Ecol. 77:2295–309
    [Google Scholar]
  57. Ivarsson M, Bengtson S, Drake H, Francis W 2018. Fungi in deep subsurface environments. Adv. Appl. Microbiol. 102:83–116
    [Google Scholar]
  58. Jägevall S, Rabe L, Pedersen K. 2011. Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory, Sweden. Microb. Ecol. 61:2410–22
    [Google Scholar]
  59. Jangir Y, Karbelkar AA, Beedle NM, Zinke LA, Wanger G et al. 2019. In situ electrochemical studies of the terrestrial deep subsurface biosphere at the Sanford Underground Research Facility, South Dakota, USA. Front. Energy Res. 7:121
    [Google Scholar]
  60. Jørgensen SL, Zhao R. 2016. Microbial inventory of deeply buried oceanic crust from a young ridge flank. Front Microbiol. 7:820
    [Google Scholar]
  61. Jungbluth SP, Bowers RM, Lin H-T, Cowen JP, Rappé MS. 2016. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME J 10:82033–47
    [Google Scholar]
  62. Kato S, Igarashi K 2019. Enhancement of methanogenesis by electric syntrophy with biogenic iron-sulfide minerals. MicrobiologyOpen 8:3e00647
    [Google Scholar]
  63. Kieft TL. 2016. Microbiology of the deep continental biosphere. Their World: A Diversity of Microbial Environments CJ Hurst 225–49. Cham, Switz.: Springer
    [Google Scholar]
  64. Kita I, Matsuo S, Wakita H. 1982. H2 generation by reaction between H2O and crushed rock: an experimental study on H2 degassing from the active fault zone. J. Geophys. Res. 87:B1310789–95
    [Google Scholar]
  65. Klein F, Humphris SE, Guo W, Schubotz F, Schwarzenbach EM, Orsi WD. 2015. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin. PNAS 112:3912036–41
    [Google Scholar]
  66. Kotelnikova S, Pedersen K. 1997. Evidence for methanogenic Archaea and homoacetogenic Bacteria in deep granitic rock aquifers. FEMS Microbiol. Rev. 20:3–4339–49
    [Google Scholar]
  67. Kraus EA, Nothaft D, Stamps BW, Rempfert KR, Ellison ET et al. 2021. Molecular evidence for an active microbial methane cycle in subsurface serpentinite-hosted groundwaters in the Samail Ophiolite, Oman. Appl. Environ. Microbiol. 87:2e02068–2
    [Google Scholar]
  68. Lau MCY, Kieft TL, Kuloyo O, Linage-Alvarez B, van Heerden E et al. 2016. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. PNAS 113:49E7927–36
    [Google Scholar]
  69. Lever MA, Alperin M, Engelen B, Inagaki F, Nakagawa S et al. 2006. Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol. J. 23:7517–30
    [Google Scholar]
  70. Lever MA, Rouxel O, Alt JC, Shimizu N, Ono S et al. 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science 339:61251305–8
    [Google Scholar]
  71. Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G et al. 2020. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579:7798250–55
    [Google Scholar]
  72. Li L, Wing BA, Bui TH, McDermott JM, Slater GF et al. 2016. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks. Nat. Commun. 7:113252
    [Google Scholar]
  73. Lin L-H, Hall J, Lippmann-Pipke J, Ward JA, Sherwood Lollar B et al. 2005. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 6:7Q07003
    [Google Scholar]
  74. Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E et al. 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:5798479–82
    [Google Scholar]
  75. Lollar GS, Warr O, Telling J, Osburn MR, Lollar BS. 2019.. ‘ Follow the water’: hydrogeochemical constraints on microbial investigations 2.4 km below surface at the Kidd Creek Deep Fluid and Deep Life Observatory. Geomicrobiol. J. 36:10859–72
    [Google Scholar]
  76. Lomstein BA, Langerhuus AT, D'Hondt S, Jørgensen BB, Spivack AJ 2012. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484:7392101–4
    [Google Scholar]
  77. Lopez-Fernandez M, Simone D, Wu X, Soler L, Nilsson E et al. 2018. Metatranscriptomes reveal that all three domains of life are active but are dominated by bacteria in the Fennoscandian crystalline granitic continental deep biosphere. mBio 9:6e01792–18
    [Google Scholar]
  78. Luef B, Frischkorn KR, Wrighton KC, Holman H-YN, Birarda G et al. 2015. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6:16372
    [Google Scholar]
  79. Magnabosco C, Lin L-H, Dong H, Bomberg M, Ghiorse W et al. 2018. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11:10707–17
    [Google Scholar]
  80. Magnabosco C, Ryan K, Lau MCY, Kuloyo O, Sherwood Lollar B et al. 2016. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J 10:3730–41
    [Google Scholar]
  81. Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ. 2009. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:2231–42
    [Google Scholar]
  82. Matter JM, Stute M, Snæbjörnsdottir , Oelkers EH, Gislason SR et al. 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:62911312–14
    [Google Scholar]
  83. McCollom TM, Bach W. 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73:3856–75
    [Google Scholar]
  84. McCollom TM, Seewald JS. 2001. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65:213769–78
    [Google Scholar]
  85. McMahon S, Parnell J. 2014. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87:1113–20
    [Google Scholar]
  86. McMahon S, Parnell J, Blamey NJF. 2016. Evidence for seismogenic hydrogen gas, a potential microbial energy source on Earth and Mars. Astrobiology 16:9690–702
    [Google Scholar]
  87. Ménez B, Pisapia C, Andreani M, Jamme F, Vanbellingen QP et al. 2018. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564:773459–63
    [Google Scholar]
  88. Meyer JL, Jaekel U, Tully BJ, Glazer BT, Wheat CG et al. 2016. A distinct and active bacterial community in cold oxygenated fluids circulating beneath the western flank of the Mid-Atlantic ridge. Sci. Rep. 6:122541
    [Google Scholar]
  89. Michalski JR, Cuadros J, Niles PB, Parnell J, Rogers AD, Wright SP. 2013. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6:2133–38
    [Google Scholar]
  90. Momper L, Jungbluth SP, Lee MD, Amend JP. 2017. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J 11:102319–33
    [Google Scholar]
  91. Morono Y, Terada T, Kallmeyer J, Inagaki F. 2013. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ. Microbiol. 15:102841–49
    [Google Scholar]
  92. Morrill PL, Kuenen JG, Johnson OJ, Suzuki S, Rietze A et al. 2013. Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars. Geochim. Cosmochim. Acta 109:222–40
    [Google Scholar]
  93. Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL et al. 2005. Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl. Environ. Microbiol. 71:128773–83
    [Google Scholar]
  94. Motamedi S, Orcutt BN, Früh-Green GL, Twing KI, Pendleton HL, Brazelton WJ. 2020. Microbial residents of the Atlantis Massif's shallow serpentinite subsurface. Appl. Environ. Microbiol. 86:11e00356–20
    [Google Scholar]
  95. Müller V, Hess V. 2017. The minimum biological energy quantum. Front. Microbiol. 8:2019
    [Google Scholar]
  96. Mullin SW, Wanger G, Kruger BR, Sackett JD, Hamilton-Brehm SD et al. 2020. Patterns of in situ mineral colonization by microorganisms in a ∼60°C deep continental subsurface aquifer. Front. Microbiol. 11:2573
    [Google Scholar]
  97. Nealson KH, Inagaki F, Takai K. 2005. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): Do they exist and why should we care?. Trends Microbiol. 13:9405–10
    [Google Scholar]
  98. Nothaft DB, Templeton AS, Boyd ES, Matter JM, Stute M et al. 2021a. Aqueous geochemical and microbial variation across discrete depth intervals in a peridotite aquifer assessed using a packer system in the Samail Ophiolite, Oman. J. Geophys. Res. Biogeosci. 126:9e2021JG006319
    [Google Scholar]
  99. Nothaft DB, Templeton AS, Rhim JH, Wang DT, Labidi J et al. 2021b. Geochemical, biological, and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman. J. Geophys. Res. Biogeosci. 126:10e2020JG006025
    [Google Scholar]
  100. Onstott TC, Ehlmann BL, Sapers H, Coleman M, Ivarsson M et al. 2019. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19:101230–62
    [Google Scholar]
  101. Onstott TC, Magnabosco C, Aubrey AD, Burton AS, Dworkin JP et al. 2014. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?. Geobiology 12:11–19
    [Google Scholar]
  102. Onstott TC, McGown DJ, Bakermans C, Ruskeeniemi T, Ahonen L et al. 2009. Microbial communities in subpermafrost saline fracture water at the Lupin Au Mine, Nunavut, Canada. Microb. Ecol. 58:4786–807
    [Google Scholar]
  103. Orcutt B, Wheat CG, Edwards KJ. 2010. Subseafloor ocean crust microbial observatories: development of FLOCS (FLow-through Osmo Colonization System) and evaluation of borehole construction materials. Geomicrobiol. J. 27:2143–57
    [Google Scholar]
  104. Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M et al. 2011. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:4692–703
    [Google Scholar]
  105. Orcutt BN, D'Angelo T, Wheat CG, Trembath-Reichert E 2021. Microbe-mineral biogeography from multi-year incubations in oceanic crust at North Pond, Mid-Atlantic Ridge. Environ. Microbiol. 23:73923–36
    [Google Scholar]
  106. Orcutt BN, LaRowe DE, Biddle JF, Colwell FS, Glazer BT et al. 2013. Microbial activity in the marine deep biosphere: progress and prospects. Front. Microbiol. 4:189
    [Google Scholar]
  107. Orcutt BN, Sylvan J, Rogers D, Delaney J, Lee R, Girguis P. 2015. Carbon fixation by basalt-hosted microbial communities. Front. Microbiol. 6:904
    [Google Scholar]
  108. Osburn MR, Kruger B, Masterson AL, Casar CP, Amend JP. 2019. Establishment of the Deep Mine Microbial Observatory (DeMMO), South Dakota, USA, a geochemically stable portal into the deep subsurface. Front. Earth Sci. 7:196
    [Google Scholar]
  109. Parkes RJ, Berlendis S, Roussel EG, Bahruji H, Webster G et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere. Environ. Microbiol. Rep. 11:2165–72
    [Google Scholar]
  110. Pedersen K. 1997. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20:3–4399–414
    [Google Scholar]
  111. Pedersen K. 2001. Diversity and activity of microorganisms in deep igneous rock aquifers of the Fennoscandian Shield. Subsurface Microbiology and Biogeochemistry JK Fredrickson, M Fletcher 7–139. New York: Wiley-Liss
    [Google Scholar]
  112. Pedersen K, Bengtsson A, Edlund J, Rabe L, Hazen T et al. 2014. Complete genome sequence of the subsurface, mesophilic sulfate-reducing bacterium Desulfovibrio aespoeensis Aspo-2. Genome Announc. 2:3e00509–14
    [Google Scholar]
  113. Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. 2018. Nitrate-dependent iron oxidation: a potential Mars metabolism. Front. Microbiol. 9:513
    [Google Scholar]
  114. Purkamo L, Kietäväinen R, Miettinen H, Sohlberg E, Kukkonen I et al. 2018. Diversity and functionality of archaeal, bacterial and fungal communities in deep Archaean bedrock groundwater. FEMS Microbiol. Ecol. 94:8fiy116
    [Google Scholar]
  115. Putman LI, Sabuda MC, Brazelton WJ, Kubo MD, Hoehler TM et al. 2021. Microbial communities in a serpentinizing aquifer are assembled through strong concurrent dispersal limitation and selection. mSystems 6:5e00300–21
    [Google Scholar]
  116. Rambo IM, Langwig MV, Leão P, De Anda V, Baker BJ. 2022. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat. Microbiol. 7:7953–61
    [Google Scholar]
  117. Ramírez GA, Garber AI, Lecoeuvre A, D'Angelo T, Wheat CG, Orcutt BN 2019. Ecology of subseafloor crustal biofilms. Front. Microbiol. 10:1983
    [Google Scholar]
  118. Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM et al. 2017. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front. Microbiol. 8:56
    [Google Scholar]
  119. Robador A, LaRowe DE, Jungbluth SP, Lin H-T, Rappé MS et al. 2016. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids. Front. Microbiol. 7:454
    [Google Scholar]
  120. Rowe AR, Abuyen K, Lam BR, Kruger B, Casar CP et al. 2021. Electrochemical evidence for in situ microbial activity at the Deep Mine Microbial Observatory (DeMMO), South Dakota, USA. Geobiology 19:2173–88
    [Google Scholar]
  121. Sabuda MC, Brazelton WJ, Putman LI, McCollom TM, Hoehler TM et al. 2020. A dynamic microbial sulfur cycle in a serpentinizing continental ophiolite. Environ. Microbiol. 22:62329–45
    [Google Scholar]
  122. Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS et al. 2008. Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl. Environ. Microbiol. 74:1143–52
    [Google Scholar]
  123. Salas EC, Bhartia R, Anderson L, Hug WF, Reid RD et al. 2015. In situ detection of microbial life in the deep biosphere in igneous ocean crust. Front. Microbiol. 6:1260
    [Google Scholar]
  124. Santelli CM, Edgcomb VP, Bach W, Edwards KJ. 2009. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environ. Microbiol. 11:186–98
    [Google Scholar]
  125. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL et al. 2008. Abundance and diversity of microbial life in ocean crust. Nature 453:7195653–56
    [Google Scholar]
  126. Sanz JL, Rodriguez N, Escudero C, Carrizo D, Amils R. 2021. Biological production of H2, CH4 and CO2 in the deep subsurface of the Iberian Pyrite Belt. Environ. Microbiol. 23:73913–22
    [Google Scholar]
  127. Sapers HM, Razzell Hollis J, Bhartia R, Beegle LW, Orphan VJ, Amend JP 2019. The cell and the sum of its parts: patterns of complexity in biosignatures as revealed by deep UV Raman spectroscopy. Front. Microbiol. 10:679
    [Google Scholar]
  128. Scheller EL, Hollis JR, Cardarelli EL, Steele A, Beegle LW et al. 2022. Aqueous alteration processes in Jezero crater, Mars—implications for organic geochemistry. Science 23:eabo5204
    [Google Scholar]
  129. Schrenk MO, Brazelton WJ, Lang SQ. 2013. Serpentinization, carbon, and deep life. Rev. Mineral. Geochem. 75:1575–606
    [Google Scholar]
  130. Seyler LM, Brazelton WJ, McLean C, Putman LI, Hyer A et al. 2020. Carbon assimilation strategies in ultrabasic groundwater: clues from the integrated study of a serpentinization-influenced aquifer. mSystems 5:2e00607–19
    [Google Scholar]
  131. Seyler LM, Trembath-Reichert E, Tully BJ, Huber JA. 2021. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. ISME J 15:41192–206
    [Google Scholar]
  132. Sforna MC, Brunelli D, Pisapia C, Pasini V, Malferrari D, Ménez B. 2018. Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust. Nat. Commun. 9:15049
    [Google Scholar]
  133. Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL et al. 2018. Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the census of deep life. Front. Microbiol. 9:840
    [Google Scholar]
  134. Sherwood Lollar B, Heuer VB, McDermott J, Tille S, Warr O et al. 2021. A window into the abiotic carbon cycle—acetate and formate in fracture waters in 2.7 billion year-old host rocks of the Canadian Shield. Geochim. Cosmochim. Acta 294:295–314
    [Google Scholar]
  135. Sherwood Lollar B, Lacrampe-Couloume G, Slater GF, Ward J, Moser DP et al. 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chem. Geol. 226:3328–39
    [Google Scholar]
  136. Shi L, Dong H, Reguera G, Beyenal H, Lu A et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14:10651–62
    [Google Scholar]
  137. Simkus DN, Slater GF, Lollar BS, Wilkie K, Kieft TL et al. 2016. Variations in microbial carbon sources and cycling in the deep continental subsurface. Geochim. Cosmochim. Acta 173:264–83
    [Google Scholar]
  138. Smith AR, Kieft B, Mueller R, Fisk MR, Mason OU et al. 2019. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J 13:71737–49
    [Google Scholar]
  139. Stevens TO, McKinley JP. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:5235450–55
    [Google Scholar]
  140. Suzuki S, Ishii S, Hoshino T, Rietze A, Tenney A et al. 2017. Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars. ISME J 11:112584–98
    [Google Scholar]
  141. Suzuki S, Ishii S, Wu A, Cheung A, Tenney A et al. 2013. Microbial diversity in The Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. PNAS 110:3815336–41
    [Google Scholar]
  142. Suzuki Y, Yamashita S, Kouduka M, Ao Y, Mukai H et al. 2020. Deep microbial proliferation at the basalt interface in 33.5–104 million-year-old oceanic crust. Commun. Biol. 3:1136
    [Google Scholar]
  143. Sylvan JB, Toner BM, Edwards KJ. 2012. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. mBio 3:1e00279–11
    [Google Scholar]
  144. Takai K 2019. Limits of terrestrial life and biosphere. Astrobiology: From the Origins of Life to the Search for Extraterrestrial Intelligence A Yamagishi, T Kakegawa, T Usui 323–44. Singapore: Springer
    [Google Scholar]
  145. Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenković V, Cannon KM et al. 2021. Earth-like habitable environments in the subsurface of Mars. Astrobiology 21:6741–56
    [Google Scholar]
  146. Telling J, Boyd ES, Bone N, Jones EL, Tranter Met al 2015. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci 8:851–55
    [Google Scholar]
  147. Templeton AS, Ellison ET, Glombitza C, Morono Y, Rempfert KR et al. 2021. Accessing the subsurface biosphere within rocks undergoing active low-temperature serpentinization in the Samail Ophiolite (Oman Drilling Project). J. Geophys Res. Biogeosci. 126:10e2021JG006315
    [Google Scholar]
  148. Toner BM, Lesniewski RA, Marlow JJ, Briscoe LJ, Santelli CM et al. 2013. Mineralogy drives bacterial biogeography of hydrothermally inactive seafloor sulfide deposits. Geomicrobiol. J. 30:4313–26
    [Google Scholar]
  149. Toner BM, Santelli CM, Marcus MA, Wirth R, Chan CS et al. 2009. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge. Geochim. Cosmochim. Acta 73:2388–403
    [Google Scholar]
  150. Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS et al. 2017. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. PNAS 114:44E9206–15
    [Google Scholar]
  151. Trembath-Reichert E, Shah Walter SR, Ortiz MAF, Carter PD, Girguis PR, Huber JA 2021. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Sci. Adv. 7:18eabg0153
    [Google Scholar]
  152. Trias R, Ménez B, le Campion P, Zivanovic Y, Lecourt L et al. 2017. High reactivity of deep biota under anthropogenic CO2 injection into basalt. Nat. Commun. 8:11063
    [Google Scholar]
  153. Trutschel LR, Chadwick GL, Kruger B, Blank JG, Brazelton WJ et al. 2022. Investigation of microbial metabolisms in an extremely high pH marine-like terrestrial serpentinizing system: Ney Springs. Sci. Total Environ. 836:155492
    [Google Scholar]
  154. Tully BJ, Wheat CG, Glazer BT, Huber JA. 2018. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J 12:11–16
    [Google Scholar]
  155. Twing KI, Brazelton WJ, Kubo MDY, Hyer AJ, Cardace D et al. 2017. Serpentinization-influenced groundwater harbors extremely low diversity microbial communities adapted to high pH. Front. Microbiol. 8:308
    [Google Scholar]
  156. Vandenborre J, Truche L, Costagliola A, Craff E, Blain G et al. 2021. Carboxylate anion generation in aqueous solution from carbonate radiolysis, a potential route for abiotic organic acid synthesis on Earth and beyond. Earth Planet. Sci. Lett. 564:116892
    [Google Scholar]
  157. Vieira-Silva S, Rocha EPC. 2010. The systemic imprint of growth and its uses in ecological (meta)genomics. PLOS Genet. 6:1e1000808
    [Google Scholar]
  158. Wanger G, Southam G, Onstott TC. 2006. Structural and chemical characterization of a natural fracture surface from 2.8 kilometers below land surface: biofilms in the deep subsurface. Geomicrobiol. J. 23:6443–52
    [Google Scholar]
  159. Wee SY, Edgcomb VP, Beaudoin D, Yvon-Lewis S, Sylvan JB. 2021. Microbial abundance and diversity in subsurface lower oceanic crust at Atlantis Bank, Southwest Indian Ridge. Appl. Environ. Microbiol. 87:22e01519–21
    [Google Scholar]
  160. Wegener G, Bausch M, Holler T, Thang NM, Mollar XP et al. 2012. Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environ. Microbiol. 14:61517–27
    [Google Scholar]
  161. Woycheese KM, Meyer-Dombard DR, Cardace D, Argayosa AM, Arcilla CA. 2015. Out of the dark: transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front. Microbiol. 6:44
    [Google Scholar]
  162. Wu X, Holmfeldt K, Hubalek V, Lundin D, Åström M et al. 2016. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J 10:51192–203
    [Google Scholar]
  163. Wu X, Pedersen K, Edlund J, Eriksson L, Åström M et al. 2017. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. Microbiome 5:137
    [Google Scholar]
  164. Xie S, Lipp JS, Wegener G, Ferdelman TG, Hinrichs K-U. 2013. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. PNAS 110:156010–14
    [Google Scholar]
  165. Zhang X, Feng X, Wang F. 2016. Diversity and metabolic potentials of subsurface crustal microorganisms from the western flank of the Mid-Atlantic Ridge. Front. Microbiol. 7:363
    [Google Scholar]
  166. Zhang Y, Horne RN, Hawkins AJ, Primo JC, Gorbatenko O, Dekas AE. 2022. Geological activity shapes the microbiome in deep-subsurface aquifers by advection. PNAS 119:25e2113985119
    [Google Scholar]
/content/journals/10.1146/annurev-earth-031920-081957
Loading
/content/journals/10.1146/annurev-earth-031920-081957
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error