1932

Abstract

The diverse ecology of parasitoids is shaped by extrinsic competition, i.e., exploitative or interference competition among adult females and males for hosts and mates. Adult females use an array of morphological, chemical, and behavioral mechanisms to engage in competition that may be either intra- or interspecific. Weaker competitors are often excluded or, if they persist, use alternate host habitats, host developmental stages, or host species. Competition among adult males for mates is almost exclusively intraspecific and involves visual displays, chemical signals, and even physical combat. Extrinsic competition influences community structure through its role in competitive displacement and apparent competition. Finally, anthropogenic changes such as habitat loss and fragmentation, invasive species, pollutants, and climate change result in phenological mismatches and range expansions within host–parasitoid communities with consequent changes to the strength of competitive interactions. Such changes have important ramifications not only for the success of managed agroecosystems, but also for natural ecosystem functioning.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-071421-073524
2022-01-07
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-071421-073524.html?itemId=/content/journals/10.1146/annurev-ento-071421-073524&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aartsma Y, Bianchi FJJA, van der Werf W, Poelman EH, Dicke M. 2017. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. New Phytol 216:1054–63
    [Google Scholar]
  2. 2. 
    Aartsma Y, Hao Y, Dicke M, van der Werf, Poelman EH, Bianchi FJJA. 2020. Variation in parasitoid attraction to herbivore-infested plants and alternative host plant cover mediate tritrophic interactions at the landscape scale. Landscape Ecol 35:907–19
    [Google Scholar]
  3. 3. 
    Abe J, Kamimura Y, Kondo N, Shimada M 2003. Extremely female-biased sex ratio and lethal male-male combat in a parasitoid wasp, Melittobia australica (Eulophidae). Behav. Ecol. 14:34–39
    [Google Scholar]
  4. 4. 
    Abe J, Kamimura Y, Shimada M. 2005. Individual sex ratios and offspring emergence patterns in a parasitoid wasp, Melittobia australica (Eulophidae), with superparasitism and lethal combat among sons. Behav. Ecol. Sociobiol. 57:366–73
    [Google Scholar]
  5. 5. 
    Allen GR, Kazmer DJ, Luck RF. 1994. Post-copulatory male behaviour, sperm precedence and multiple mating in a solitary parasitoid wasp. Anim. Behav. 48:635–44
    [Google Scholar]
  6. 6. 
    Aluja M, Ovruski SM, Sivinski J, Córdova-García G, Schliserman P et al. 2013. Inter-specific competition and competition-free space in the tephritid parasitoids Utetes anastrephae and Doryctobracon areolatus (Hymenoptera: Braconidae: Opiinae). Ecol. Entomol. 38:485–96
    [Google Scholar]
  7. 7. 
    Amarasekare P. 2000. Coexistence of competing parasitoids on a patchily distributed host: local versus spatial mechanisms. Ecology 81:1286–96
    [Google Scholar]
  8. 8. 
    Amarasekare P. 2003. Diversity-stability relationships in multitrophic systems: an empirical exploration. J. Anim. Ecol. 72:713–24
    [Google Scholar]
  9. 9. 
    Amarasekare P. 2007. Trade-offs, temporal variation, and species coexistence in communities with intraguild predation. Ecology 88:2720–28
    [Google Scholar]
  10. 10. 
    Andrade TO, Krespi L, Bonnardot V, van Baaren J, Outreman Y. 2016. Impact of change in winter strategy of one parasitoid species on the diversity and function of a guild of parasitoids. Oecologia 180:877–88
    [Google Scholar]
  11. 11. 
    Askew RR, Shaw MR. 1986. Parasitoid communities: their size structure and development. Insect Parasitoids J Waage, D Greathead 225–64 London: Academic
    [Google Scholar]
  12. 12. 
    Barzman MS, Daane KM. 2001. Host-handling behaviours in parasitoids of the black scale: a case for ant-mediated evolution. J. Anim. Ecol. 70:237–47
    [Google Scholar]
  13. 13. 
    Batchelor TP, Hardy ICW, Barrera JF, Pérez-Lachaud G. 2005. Insect gladiators II: competitive interactions within and between bethylid parasitoid species of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biol. Control 33:194–202
    [Google Scholar]
  14. 14. 
    Belovsky GE. 1997. Optimal foraging and community structure: the allometry of herbivore food selection and competition. Evol. Ecol. 11:641–72
    [Google Scholar]
  15. 15. 
    Berryman AA, Hawkins BA. 2006. The refuge as an integrating concept in ecology and evolution. Oikos 115:192–96
    [Google Scholar]
  16. 16. 
    Bezemer TM, Harvey JA, Cronin JT. 2014. Responses of native insect communities to invasive plants. Annu. Rev. Entomol. 59:119–41
    [Google Scholar]
  17. 17. 
    Bográn CE, Heinz KM, Ciomperlik MA. 2002. Interspecific competition among insect parasitoids: field experiments with whiteflies as hosts in cotton. Ecology 83:653–68
    [Google Scholar]
  18. 18. 
    Bonsall MB, Hassell MP. 1997. Apparent competition structures ecological assemblages. Nature 388:371–73
    [Google Scholar]
  19. 19. 
    Bonsall MB, Hassell MP. 1998. Population dynamics of apparent competition in a host–parasitoid assemblage. J. Anim. Ecol. 67:918–29
    [Google Scholar]
  20. 20. 
    Bonsall MB, Hassell MP. 1999. Parasitoid-mediated effects: apparent competition and the persistence of host-parasitoid assemblages. Res. Popul. Ecol. 41:59–68
    [Google Scholar]
  21. 21. 
    Borer ET, Murdoch WW, Swarbrick SL 2004. Parasitoid coexistence: linking spatial field patterns with mechanisms. Ecology 85:667–78
    [Google Scholar]
  22. 22. 
    Boulton RA, Collins LA, Shuker DM. 2015. Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biol. Rev. 90:599–627
    [Google Scholar]
  23. 23. 
    Briggs CJ. 1993. Competition among parasitoid species on a stage-structured host and its effect on host suppression. Am. Nat. 141:372–97
    [Google Scholar]
  24. 24. 
    Carrasco D, Desurmont GA, Laplanche D, Proffit M, Gols R et al. 2018. With or without you: effects of concurrent range expansion of an herbivore and its natural enemy on native species interactions. Glob. Change Biol. 24:631–43
    [Google Scholar]
  25. 25. 
    Carter SK, Rudolf VHW. 2019. Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology 100:e02826
    [Google Scholar]
  26. 26. 
    Cebolla R, Bru P, Urbaneja A, Tena A 2017. Does host quality dictate the outcome of interference competition between sympatric parasitoids? Effects on their coexistence. Anim. Behav. 127:75–81
    [Google Scholar]
  27. 27. 
    Cebolla R, Bru P, Urbaneja A, Tena A 2018. Effect of host instar on host discrimination of heterospecific-parasitized hosts by sympatric parasitoids. Ecol. Entomol. 43:137–45
    [Google Scholar]
  28. 28. 
    Charnov EL. 1982. The Theory of Sex Allocation Princeton, NJ: Princeton Univ. Press
  29. 29. 
    Chen C, Donner SH, Biere A, Gols R, Harvey JA 2019. Simulated heatwave conditions associated with global warming affect development and competition between hyperparasitoids. Oikos 128:1783–92
    [Google Scholar]
  30. 30. 
    Chen W-B, Vasseur L, Zhang S-Q, Zhang H-F, Mao J et al. 2020. Mechanism and consequences for avoidance of superparasitism in the solitary parasitoid Cotesia vestalis. Sci. Rep. 10:11463
    [Google Scholar]
  31. 31. 
    Cheng L-L, Howard RW, Campbell JF, Charton RE, Nechols JR, Ramaswamy S. 2003. Behavioral interaction between males of Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae) competing for females. J. Insect Behav. 16:625–45
    [Google Scholar]
  32. 32. 
    Chesson P. 2000. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58:211–37
    [Google Scholar]
  33. 33. 
    Chua TH, Gonzalez D, Bellows T. 1990. Searching efficiency and multiparasitism in Aphidius smithi and A. ervi (Hym., Aphidiidae), parasites of pea aphid, Acyrthosiphon pisum (Hom., Aphididae). J. Appl. Entomol. 110:101–6
    [Google Scholar]
  34. 34. 
    Colazza S, Salerno G, Wajnberg E. 1999. Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biol. Control 16:310–17
    [Google Scholar]
  35. 35. 
    Collier TR, Hunter MS. 2001. Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia sophia. Oecologia 129:147–54
    [Google Scholar]
  36. 36. 
    Cook RM, Hubbard SF. 1977. Adaptive searching strategies in insect parasites. J. Anim. Ecol. 46:115–25
    [Google Scholar]
  37. 37. 
    Culshaw-Maurer M, Sih A, Rosenheim JA 2020. Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol. Lett. 23:1693–714
    [Google Scholar]
  38. 38. 
    Cusumano A, Peri E, Vinson SB, Colazza S 2011. Intraguild interactions between two egg parasitoids exploring host patches. BioControl 56:173–84
    [Google Scholar]
  39. 39. 
    Cusumano A, Peri E, Vinson SB, Colazza S 2012. Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids. BioControl 57:719–34
    [Google Scholar]
  40. 40. 
    Danyk TP, Mackauer M. 1996. An extraserosal envelope in eggs of Praon pequodorum (Hymenoptera: Aphidiidae), a parasitoid of pea aphid. Biol. Control 7:67–70
    [Google Scholar]
  41. 41. 
    Darling DC, Werren JH. 1990. Biosystematics of Nasonia (Hymenoptera: Pteromalidae): two new species reared from birds’ nests in North America. Ann. Entomol. Soc. Am. 83:352–70
    [Google Scholar]
  42. 42. 
    De Moraes CM, Cortesero AM, Stapel JO, Lewis WJ. 1999. Intrinsic and extrinsic competitive interactions between two larval parasitoids of Heliothis virescens. Ecol. Entomol. 24:402–10
    [Google Scholar]
  43. 43. 
    de Rijk M, Dicke M, Poelman EH 2013. Foraging behaviour by parasitoids in multiherbivore communities. Anim. Behav. 85:1517–28
    [Google Scholar]
  44. 44. 
    DeBach P. 1966. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 11:183–212
    [Google Scholar]
  45. 45. 
    DeBach P, Sisojević P. 1960. Some effects of temperature and competition on the distribution and relative abundance of Aphytis lingnanensis and A. chrysomphali (Hymenoptera: Aphelinidae). Ecology 41:153–60
    [Google Scholar]
  46. 46. 
    DeBach P, Sundby RA. 1963. Competitive displacement between ecological homologues. Hilgardia 34:105–66
    [Google Scholar]
  47. 47. 
    Denno RF, McClure MS, Ott JS. 1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu. Rev. Entomol. 40:297–331
    [Google Scholar]
  48. 48. 
    Dirzo R, Raven PH. 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28:137–67
    [Google Scholar]
  49. 49. 
    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B 2014. Defaunation in the Anthropocene. Science 345:401–6
    [Google Scholar]
  50. 50. 
    Drapeau MD, Werren JH. 1999. Differences in mating behaviour and sex ratio between three sibling species of Nasonia. Evol. Ecol. Res. 1:223–34
    [Google Scholar]
  51. 51. 
    Dunne JA, Williams RJ, Martinez ND 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5:558–67
    [Google Scholar]
  52. 52. 
    Eggleton P. 1990. Male reproductive beahviour of the parasitoid wasp Lytarmes maculipennis (Hymenoptera: Ichneumonidae). Ecol. Entomol. 15:357–60
    [Google Scholar]
  53. 53. 
    Eggleton P. 1991. Patterns in male mating strategies of the Rhyssini: a holophyletic group of parasitoid wasps (Hymenoptera: Ichneumonidae). Anim. Behav. 41:829–38
    [Google Scholar]
  54. 54. 
    Eller FJ, Bartelt RJ, Jones RL, Kulman HM. 1984. Ethyl (Z)-9-hexadecenoate a sex pheromone of Syndipnus rubiginosus, a sawfly parasitoid. J. Chem. Ecol. 10:291–300
    [Google Scholar]
  55. 55. 
    Emlen DJ. 2014. Reproductive contests and the evolution of extreme weaponry. The Evolution of Insect Mating Systems DM Shuker, LW Simmons 92–105 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  56. 56. 
    Emlen ST, Oring LW. 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197:215–23
    [Google Scholar]
  57. 57. 
    Farahani HK, Moghadassi Y, Alford L, van Baaren J 2019. Effect of interference and exploitative competition on associative learning by a parasitoid wasp: a mechanism for ideal free distribution?. Anim. Behav. 151:157–63
    [Google Scholar]
  58. 58. 
    Fatouros NE, van Loon JJA, Hordijk KA, Smid HM, Dicke M. 2005. Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J. Chem. Ecol. 31:2033–47
    [Google Scholar]
  59. 59. 
    Fernández-Arhex V, Corley JC. 2010. The effects of patch richness on con-specific interference in the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae). Insect Sci 17:379–85
    [Google Scholar]
  60. 60. 
    Field SA, Calbert G. 1998. Patch defence in the parasitoid wasp Trissolcus basalis: when to begin fighting?. Behaviour 135:629–42
    [Google Scholar]
  61. 61. 
    Field SA, Keller MA. 1993. Alternative mating tactics and female mimicry as post-copulatory mate-guarding behaviour in the parasitic wasp Cotesia rubecula. Anim. Behav. 46:1183–89
    [Google Scholar]
  62. 62. 
    Frago E. 2016. Interactions between parasitoids and higher order natural enemies: intraguild predation and hyperparasitoids. Curr. Opin. Insect Sci. 14:81–86
    [Google Scholar]
  63. 63. 
    García-Medel D, Sivinski J, Díaz-Fleischer F, Ramirez-Romero R, Aluja M. 2007. Foraging behavior by six fruit fly parasitoids (Hymenoptera: Braconidae) released as single- or multiple-species cohorts in field cages: influence of fruit location and host density. Biol. Control 43:12–22
    [Google Scholar]
  64. 64. 
    Gauld I, Bolton B. 1988. The Hymenoptera Oxford, UK: Oxford Univ. Press
  65. 65. 
    Geervliet JBF, Verdel MSW, Snellen H, Schaub J, Dicke M, Vet LEM 2000. Coexistence and niche segregation by field populations of the parasitoids Cotesia glomerata and C. rubecula in the Netherlands: predicting field performance from laboratory data. Oecologia 124:55–63
    [Google Scholar]
  66. 66. 
    Gibbons JRH. 1979. A model for sympatric speciation in Megarhyssa (Hymenoptera: Ichneumonidae): competitive speciation. Am. Nat. 114:719–41
    [Google Scholar]
  67. 67. 
    Godfray HCJ. 1994. Parasitoids: Behavioral and Evolutionary Ecology Princeton, NJ: Princeton Univ. Press
  68. 68. 
    Gols R, Bukovinszky T, Hemerik L, Harvey JA, van Lenteren JC, Vet LEM. 2005. Reduced foraging efficiency of a parasitoid under habitat complexity: implications for population stability and species coexistence. J. Anim. Ecol. 74:1059–68
    [Google Scholar]
  69. 69. 
    Goubault M, Outreman Y, Poinsot D, Cortesero AM 2005. Patch exploitation strategies of parasitic wasps under intraspecific competition. Behav. Ecol. 16:693–701
    [Google Scholar]
  70. 70. 
    Goubault M, Scott D, Hardy ICW 2007. The importance of offspring value: maternal defence in parasitoid outcomes. Anim. Behav. 74:437–46
    [Google Scholar]
  71. 71. 
    Greeney HF, Dyer LA, Smilanich AM. 2012. Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr. Surviv. J. 9:7–34
    [Google Scholar]
  72. 72. 
    Gross P. 1993. Insect behavioral and morphological defenses against parasitoids. Annu. Rev. Entomol. 38:251–73
    [Google Scholar]
  73. 73. 
    Guerra-Grenier E, Abram PK, Brodeur J 2020. Asymmetries affecting aggressive contests between solitary parasitoids: the effect of host species. Behav. Ecol. 31:1391–400
    [Google Scholar]
  74. 74. 
    Gutierrez AP, Neuenschwander P, van Alphen JJM. 1993. Factor affecting biological control of cassava mealybug by exotic parasitoids: a ratio-dependent supply-demand driven model. J. Appl. Ecol. 30:706–21
    [Google Scholar]
  75. 75. 
    Hackett-Jones E, Cobbold C, White A 2009. Coexistence of multiple parasitoids on a single host due to differences in parasitoid phenology. Theor. Ecol. 2:19–31
    [Google Scholar]
  76. 76. 
    Hamilton WD. 1967. Extraordinary sex ratios. Science 156:477–88
    [Google Scholar]
  77. 77. 
    Hamilton WD 1979. Wingless and fighting males in fig wasps and other insects. Sexual Selection and Reproductive Competition in Insects MS Blum, NA Blum 167–220 London: Academic
    [Google Scholar]
  78. 78. 
    Harcourt DG. 1990. Displacement of Bathyplectes curculionis (Thoms.) (Hymenoptera: Ichneumonidae) by B. anurus (Thoms.) in eastern Ontario populations of the alfalfa weevil, Hypera postica (Gyll.) (Coleoptera: Curculionidae). Can. Entomol. 122:641–45
    [Google Scholar]
  79. 79. 
    Hardy ICW, Blackburn TM. 1991. Brood guarding in a bethylid wasp. Ecol. Entomol. 16:55–62
    [Google Scholar]
  80. 80. 
    Harvey JA. 2005. Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117:1–13
    [Google Scholar]
  81. 81. 
    Harvey JA, Poelman EH, Tanaka T. 2013. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58:333–51
    [Google Scholar]
  82. 82. 
    Heatwole H, Davis DM. 1965. Ecology of three sympatric species of parasitic insects of the genus Megarhyssa (Hymenoptera: Ichneumonidae). Ecology 46:140–50
    [Google Scholar]
  83. 83. 
    Henri DC, Seager D, Weller T, van Veen FJF. 2012. Potential for climate effects on the size-structure of host-parasitoid indirect interaction networks. Philos. Trans. R. Soc. B 367:3018–24
    [Google Scholar]
  84. 84. 
    Herlihy MV, van Driesche RG, Abney MR, Brodeur J, Casagrande RA et al. 2012. Distribution of Cotesia rubecula (Hymenoptera: Braconidae) and its displacement of Cotesia glomerata in eastern North America. Fla. Entomol. 95:461–67
    [Google Scholar]
  85. 85. 
    Hoffmeister TS, Roitberg BD. 1997. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11:145–68
    [Google Scholar]
  86. 86. 
    Holt RD. 1977. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12:197–229
    [Google Scholar]
  87. 87. 
    Holt RD, Bonsall MB. 2017. Apparent competition. Annu. Rev. Ecol. Evol. Syst. 48:447–71
    [Google Scholar]
  88. 88. 
    Holt RD, Lawton JH. 1993. Apparent competition and enemy-free space in insect host-parasitoid communities. Am. Nat. 142:623–45
    [Google Scholar]
  89. 89. 
    Humphries EL, Hebblethwaite AJ, Batchelor TP, Hardy ICW. 2006. The importance of valuing resources: host weight and contender age as determinants of parasitoid wasp contest outcomes. Anim. Behav. 72:891–98
    [Google Scholar]
  90. 90. 
    Hunter MS, Collier TR, Kelly SE. 2002. Does an autoparasitoid disrupt host suppression provided by a primary parasitoid?. Ecology 83:1459–69
    [Google Scholar]
  91. 91. 
    Iranipour S, BenaMoleai P, Asgari S, Michaud JP 2020. Foraging egg parasitoids, Trissolcus vassilievi (Hymenoptera: Platygastridae), respond to host density and conspecific competitors in a patch laboratory environment. Environ. Entomol. 113:760–69
    [Google Scholar]
  92. 92. 
    Irvin NA, Hoddle MS. 2005. The competitive ability of three mymarid egg parasitoids (Gonatocerus spp.) for glassy-winged sharpshooter (Homalodisca coagulate) eggs. Biol. Control 34:204–14
    [Google Scholar]
  93. 93. 
    Ito E, Yamada YY. 2014. Self-/conspecific discrimination and superparasitism strategy in the ovicidal parasitoid Echthrodelphax fairchildii (Hymenoptera: Dryinidae). Insect Sci 21:741–49
    [Google Scholar]
  94. 94. 
    Jarrige A, Kassis A, Schmoll T, Goubault M. 2016. Recently mated males of a lek-mating insect intensify precopulatory mate guarding under male competition. Anim. Behav. 117:21–34
    [Google Scholar]
  95. 95. 
    Jervis MA, Ellers J, Harvey JA 2008. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53:361–85
    [Google Scholar]
  96. 96. 
    Jervis MA, Heimpel GE, Ferns PN, Harvey JA, Kidd NAC. 2001. Life-history strategies in parasitoid wasps: a comparative analysis of “ovigeny. .” J. Anim. Ecol. 70:442–58
    [Google Scholar]
  97. 97. 
    Jervis MA, Kidd NAC 1986. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev. 61:395–434
    [Google Scholar]
  98. 98. 
    Kaplan I, Denno RF. 2007. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol. Lett. 10:977–94
    [Google Scholar]
  99. 99. 
    Kaser JM, Ode PJ. 2016. Hidden risks and benefits of natural enemy-mediated indirect effects. Curr. Opin. Insect Sci. 14:105–11
    [Google Scholar]
  100. 100. 
    King BH, Fischer CR. 2005. Males mate guard in absentia through extended effects of postcopulatory courtship in the parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae). J. Insect Physiol. 51:1340–45
    [Google Scholar]
  101. 101. 
    Kurosu U. 1985. Male altruism and wing polymorphism in a parasitic wasp. J. Ethol. 3:11–19
    [Google Scholar]
  102. 102. 
    Lane SM, Briffa M. 2018. How does the environment affect fighting? The interaction between extrinsic fighting ability and resource value during contests. J. Exp. Biol. 221:jeb187740
    [Google Scholar]
  103. 103. 
    Lawton JH, Strong DR. 1981. Community patterns and competition in folivorous insects. Am. Nat. 118:317–38
    [Google Scholar]
  104. 104. 
    Leonard JE, Boake CRB. 2006. Site-dependent aggression and mating behaviour in three species of Nasonia (Hymenoptera: Pteromalidae). Anim. Behav. 71:641–47
    [Google Scholar]
  105. 105. 
    Leonard JE, Boake CRB. 2008. Associations between male courtship and female polyandry in three species of wasp, Nasonia (Hymenoptera: Pteromalidae). Anim. Behav. 76:637–47
    [Google Scholar]
  106. 106. 
    Leveque L, Monge J-P, Rojas-Rousse D, van Alebeek F, Huignard J. 1993. Analysis of multiparasitism by Eupelmus vuilleti (Craw) (Eupelmidae) and Dinarmus basalis (Rond) (Pteromalidae) in the presence of one of their common hosts, Bruchidius atrolineatus (Pic) (Coleoptera Bruchidae). Oecologia 94:272–77
    [Google Scholar]
  107. 107. 
    Liang Q, Jia Y, Liu T. 2017. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110:430–37
    [Google Scholar]
  108. 108. 
    Loxdale HD, Lushai G, Harvey JA 2011. The evolutionary improbability of “generalism” in nature, with special reference to insects. Biol. J. Linn. Soc. 103:1–18
    [Google Scholar]
  109. 109. 
    Luck RF, Podoler H. 1985. Competitive exclusion of Aphytis lingnanensis by A. melinus: potential role of host size. Ecology 66:904–13
    [Google Scholar]
  110. 110. 
    Ma C-S, Ma G, Pincebourde S 2021. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66:163–84
    [Google Scholar]
  111. 111. 
    Macedo MV, Monteiro RF, Silveira MP, Mayhew PJ. 2013. Male-male contests for mates, sexual size dimorphism, and sex ratio in a natural population of a solitary parasitoid. Behav. Processes 100:1–8
    [Google Scholar]
  112. 112. 
    Mair MM, Ruther J. 2018. Territoriality and behavioural strategies at the natal host patch differ in two microsympatric Nasonia species. Anim. Behav. 143:113–29
    [Google Scholar]
  113. 113. 
    Mangel M, Clark CW. 1988. Dynamic Modeling in Behavioral Ecology Princeton, NJ: Princeton Univ. Press
  114. 114. 
    Marrao R, Frago E, Pereira JA, Tena A. 2020. An autoparasitoid wasp, inferior at resource exploitation, outcompetes primary parasitoids by using competitor females to produce males. Ecol. Entomol. 45:727–40
    [Google Scholar]
  115. 115. 
    Maunsell SC, Kitching RL, Burwell CJ, Morris RJ. 2015. Changes in host-parasitoid food web structure with elevation. J. Anim. Ecol. 84:353–63
    [Google Scholar]
  116. 116. 
    Menéndez R, González-Megías A, Lewis OT, Shaw MR, Thomas CD 2008. Escape from natural enemies during climate-driven range expansion: a case study. Ecol. Entomol. 33:413–21
    [Google Scholar]
  117. 117. 
    Mertins JW. 1980. Life history and behavior of Laelius pedatus, a gregarious bethylid ectoparasitoid of Anthrenus verbasci. Ann. Entomol. Soc. Am. 73:686–93
    [Google Scholar]
  118. 118. 
    Messing RH, Wang X-G. 2009. Competitor-free space mediates non-target impact of an introduced biological control agent. Ecol. Entomol. 34:107–13
    [Google Scholar]
  119. 119. 
    Mills NJ, Heimpel GE. 2018. Could increased understanding of foraging behavior help to predict the success of biological control?. Curr. Opin. Insect Sci. 27:26–31
    [Google Scholar]
  120. 120. 
    Mohamad R, Wajnberg E, Monge J-P, Goubault M. 2015. The effect of direct interspecific competition on patch exploitation strategies in parasitoid wasps. Oecologia 177:305–15
    [Google Scholar]
  121. 121. 
    Moody AL, Houston AI. 1995. Interference and the ideal free distribution. Anim. Behav. 49:1065–72
    [Google Scholar]
  122. 122. 
    Morris RJ, Lewis OT, Godfray HCJ 2004. Experimental evidence for apparent competition in a tropical forest food web. Nature 428:310–13
    [Google Scholar]
  123. 123. 
    Morris RJ, Müller CB, Godfray HCJ. 2001. Field experiments testing for apparent competition between primary parasitoids mediated by secondary parasitoids. J. Anim. Ecol. 70:301–9
    [Google Scholar]
  124. 124. 
    Murdoch WW. 1994. Population regulation in theory and practice. Ecology 75:271–87
    [Google Scholar]
  125. 125. 
    Murdoch WW, Briggs CJ, Nisbet RM. 1996. Competitive displacement and biological control in parasitoids: a model. Am. Nat. 148:807–26
    [Google Scholar]
  126. 126. 
    Murdoch WW, Briggs CJ, Nisbet RM, Kendall BE, McCauley E. 2003. Natural enemy specialization and cycles: reply. Ecol. Lett. 6:384–87
    [Google Scholar]
  127. 127. 
    Nakamatsu Y, Harvey JA, Tanaka T. 2009. Intraspecific competition between adult females of the hyperparasitoid Trichomalopsis apanteloctena (Hymenoptera: Chelonidae), for domination of Cotesia kariyai (Hymenoptera: Braconidae) cocoons. Ann. Entomol. Soc. Am. 102:172–80
    [Google Scholar]
  128. 128. 
    Nufio CR, Papaj DR. 2001. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 99:273–93
    [Google Scholar]
  129. 129. 
    Pekas A, Aguilar A, Tena A, Garcia-Marí F 2010. Influence of host size on parasitism by Aphytis chrysomphali and A. melinus (Hymenoptera: Aphelinidae) in Mediterranean populations of California red scale Aonidiella aurantii (Hemiptera: Diaspididae). Biol. Control 55:132–40
    [Google Scholar]
  130. 130. 
    Pekas A, Tena A, Harvey JA, Garcia Marí F, Frago E 2016. Host size and spatiotemporal patterns mediate the coexistence of specialist parasitoids. Ecology 97:1345–56
    [Google Scholar]
  131. 131. 
    Pérez-Lachaud G, Batchelor TP, Hardy ICW. 2004. Wasp eat wasp: facultative hyperparasitism and intra-guild predation by bethylid wasps. Biol. Control 30:149–55
    [Google Scholar]
  132. 132. 
    Pérez-Lachaud G, Hardy ICW, Lachaud J-P. 2002. Insect gladiators: competitive interactions between three species of bethylid wasps attacking the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Biol. Control 25:231–38
    [Google Scholar]
  133. 133. 
    Pérez-Maluf R, Rafalimanana H, Campan E, Fleury F, Kaiser L. 2008. Differentiation of innate but not learnt responses to host-habitat odours contributes to rapid host finding in a parasitoid genotype. Physiol. Entomol. 33:226–32
    [Google Scholar]
  134. 134. 
    Perfecto I, Vet LEM. 2003. Effect of a nonhost plant on the location behavior of two parasitoids: the tritrophic system of Cotesia spp. (Hymenoptera: Braconidae), Pieris rapae (Lepidoptera: Pieridae), and Brassica oleraceae. Environ. Entomol 32:163–74
    [Google Scholar]
  135. 135. 
    Peri E, Cusumano A, Agrò A, Colazza S 2011. Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective. BioControl 56:163–71
    [Google Scholar]
  136. 136. 
    Peri E, Cusumano A, Amodeo V, Wajnberg E, Colazza S 2014. Intraguild interactions between two egg parasitoids of a true bug in semi-field and field conditions. PLOS ONE 9:e99876
    [Google Scholar]
  137. 137. 
    Pijls JWAM, Hofker KD, van Staalduinen MJ, van Alphen JJM. 1995. Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A.(E.) diversicornis, parasitoids of the cassava mealybug Phenacoccus manihoti. Ecol. Entomol. 20:326–32
    [Google Scholar]
  138. 138. 
    Pijls JWAM, van Alphen JJM. 1996. On the coexistence of the cassava mealybug parasitoids Apoanagyrus diversicornis and A. lopezi (Hymenoptera: Encyrtidae) in their native South America. Bull. Entomol. Res. 86:51–59
    [Google Scholar]
  139. 139. 
    Price PW. 1972. Parasitoids utilizing the same host: adaptive nature of differences in size and form. Ecology 53:190–95
    [Google Scholar]
  140. 140. 
    Price PW. 1973. Reproductive strategies in parasitoid wasps. Am. Nat. 107:684–93
    [Google Scholar]
  141. 141. 
    Pschorn-Walcher H. 1987. Interspecific competition between the principal larval parasitoids of the pine sawfly, Neodiprion sertifer (Geoff.) (Hym.: Diprionidae). Oecologia 73:621–25
    [Google Scholar]
  142. 142. 
    Pyke GH, Pulliam HR, Charnov EL. 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52:137–54
    [Google Scholar]
  143. 143. 
    Reitz SR, Trumble JT. 2002. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 47:435–65
    [Google Scholar]
  144. 144. 
    Roitberg BD, Mangel M. 1988. On the evolutionary ecology of marking pheromones. Evol. Ecol. 2:289–315
    [Google Scholar]
  145. 145. 
    Rosenheim JA, Rosen D. 1991. Foraging and oviposition decisions in the parasitoid Aphytis lingnanensis: distinguishing the influences of egg load and experience. J. Anim. Ecol. 60:873–93
    [Google Scholar]
  146. 146. 
    Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232:8–27
    [Google Scholar]
  147. 147. 
    Sánchez-Bayo F, Wyckhuys KAG. 2021. Further evidence for the global decline of the entomofauna. Austral Entomol 60:9–26
    [Google Scholar]
  148. 148. 
    Sanders D, van Veen FJF. 2010. The impact of an ant-aphid mutualism on the functional composition of the secondary parasitoid community. Ecol. Entomol. 35:704–10
    [Google Scholar]
  149. 149. 
    Schellhorn NA, Kuhman TR, Olson AC, Ives AR. 2002. Competition between native and introduced parasitoids of aphids: nontarget effects and biocontrol. Ecology 83:2745–57
    [Google Scholar]
  150. 150. 
    Schreiber SJ. 2021. The P* rule in the stochastic Holt-Lawton model of apparent competition. Discrete Contin. Dyn. Syst. Ser. B 26:633–44
    [Google Scholar]
  151. 151. 
    Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I. 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:2472–79
    [Google Scholar]
  152. 152. 
    Snart CJP, Kapranas A, Williams H, Barrett DA, Hardy ICW 2018. Sustenance and performance: nutritional reserves, longevity, and contest outcomes of fed and starved adult parasitoid wasps. Front. Ecol. Evol. 6:12
    [Google Scholar]
  153. 153. 
    Snyder RE, Borer ET, Chesson P. 2005. Examining the relative importance of spatial and nonspatial coexistence mechanisms. Am. Nat. 166:E75–94
    [Google Scholar]
  154. 154. 
    Snyder WE, Ives AR. 2001. Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–16
    [Google Scholar]
  155. 155. 
    Snyder WE, Ives AR 2008. Behavior influences whether intra-guild predation disrupts herbivore suppression by parasitoids. Behavioral Ecology of Insect Parasitoids É Wajnberg, C Bernstein, J van Alphen 71–91 Oxford, UK: Blackwell
    [Google Scholar]
  156. 156. 
    Sorribas J, Rodríguez R, Garcia-Mari F. 2010. Parasitoid competitive displacement and coexistence in citrus agroecosystems: linking species distribution with climate. Ecol. Appl. 20:1101–13
    [Google Scholar]
  157. 157. 
    Stam JM, Kroes A, Li Y, Gols R, van Loon JJA et al. 2014. Plant interactions with multiple insect herbivores: from community to genes. Annu. Rev. Plant Biol. 65:689–713
    [Google Scholar]
  158. 158. 
    Steiner S, Steidle JLM, Ruther J. 2005. Female sex pheromone in immature insect males: a case of pre-emergence chemical mimicry?. Behav. Ecol. Sociobiol. 58:111–20
    [Google Scholar]
  159. 159. 
    Strand MR, Godfray HCJ. 1989. Superparasitism and ovicide in parasitic Hymenoptera: theory and a case study of the ectoparasitoid Bracon hebetor. Behav. Ecol. Sociobiol. 24:421–32
    [Google Scholar]
  160. 160. 
    Sutherland WJ. 1983. Aggregation and the “ideal free” distribution. J. Anim. Ecol. 52:821–28
    [Google Scholar]
  161. 161. 
    Suzuki Y, Hiehata K. 1985. Mating systems and sex ratios in the egg parasitoids, Trichogramma dendrolimi and T. papilionis (Hymenoptera: Trichogrammatidae). Anim. Behav. 33:1223–27
    [Google Scholar]
  162. 162. 
    Tagawa J, Kitano H. 1981. Mating behaviour of the braconid wasp, Apanteles glomeratus L. (Hymenoptera: Braconidae) in the field. Appl. Entomol. Zool 16:345–50
    [Google Scholar]
  163. 163. 
    Takasu K, Ode PJ, Antolin MF, Strand MR. 1997. Environmental and genetic determinants of ovicide in the parasitic wasp Bracon hebetor. Behav. Ecol. 8:647–54
    [Google Scholar]
  164. 164. 
    Tamò C, Roelfstra L-L, Guillaume S, Turlings TCJ 2006. Odour-mediated long-range avoidance of interspecific competition by a solitary endoparasitoid: a time-saving foraging strategy. J. Anim. Ecol. 75:1091–99
    [Google Scholar]
  165. 165. 
    Tanaka S, Nishida T, Ohsaki N. 2007. Sequential rapid adaptation of indigenous parasitoid wasps to the invasive butterfly Pieris brassicae. Evolution 61:1791–802
    [Google Scholar]
  166. 166. 
    Tentelier C, Guillemaud T, Ferry S, Fauvergue X. 2008. Microsatellite-based parentage analysis reveals non-ideal free distribution in a parasitoid population. Mol. Ecol. 17:2300–9
    [Google Scholar]
  167. 167. 
    Thierry M, Hrček J, Lewis OT. 2019. Mechanisms structuring host-parasitoid networks in a global warming context: a review. Ecol. Entomol. 44:581–92
    [Google Scholar]
  168. 168. 
    Tilman D 1988. Plant Strategies and the Dynamics and Structure of Plant Communities Princeton, NJ: Princeton Univ. Press
  169. 169. 
    Tougeron K, Damien M, Le Lann C, Brodeur J, van Baaren J 2018. Rapid responses of winter aphid-parasitoid communities to climate warming. Front. Ecol. Evol. 6:173
    [Google Scholar]
  170. 170. 
    Tregenza T. 1995. Building on the ideal free distribution. Adv. Ecol. Res. 26:253–307
    [Google Scholar]
  171. 171. 
    Tregenza T, Parker GA, Thompson DJ. 1996. Interference and the ideal free distribution: models and tests. Behav. Ecol. 7:379–86
    [Google Scholar]
  172. 172. 
    Tregenza T, Thompson DJ, Parker GA. 1996. Interference and the ideal free distribution: oviposition in a parasitoid wasp. Behav. Ecol. 7:387–94
    [Google Scholar]
  173. 173. 
    Turlings TCJ, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433–52
    [Google Scholar]
  174. 174. 
    Tylianakis JM, Binzer A. 2014. Effects of global environmental changes on parasitoid-host food webs and biological control. Biol. Control 75:77–86
    [Google Scholar]
  175. 175. 
    Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A et al. 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29:299–307
    [Google Scholar]
  176. 176. 
    van Alphen JJM, Bernstein C, Dreissen G. 2003. Information acquisition and time allocation in insect parasitoids. Trends Ecol. Evol. 18:81–87
    [Google Scholar]
  177. 177. 
    van Baaren J, Héterier V, Hance T, Krespi L, Cortesero AM et al. 2004. Playing the hare or the tortoise in parasitoids: Could different oviposition strategies have an influence in host partitioning in two Aphidius species?. Ethol. Ecol. Evol. 16:231–42
    [Google Scholar]
  178. 178. 
    van Baaren J, Dufour CM-S, Pierre J-S, Martel V, Louâpre P. 2016. Evolution of life-history traits and mating strategy in males: a case study on two populations of a Drosophila parasitoid. Biol. J. Linn. Soc. 117:231–40
    [Google Scholar]
  179. 179. 
    van Baaren J, Le Lann C, Pichenot J, Pierre JS, Krespi L, Outreman Y 2009. How could host discrimination abilities influence the structure of a parasitoid community. Bull. Entomol. Res. 99:299–306
    [Google Scholar]
  180. 180. 
    van den Assem J. 1986. Mating behaviour in parasitic wasps. Insect Parasitoids J Waage, D Greathead 137–67 London: Academic
    [Google Scholar]
  181. 181. 
    van der Sluijs JP. 2020. Insect decline, an emerging global environmental risk. Curr. Opin. Environ. Sustain. 46:39–42
    [Google Scholar]
  182. 182. 
    van Nouhuys S, Hanski I. 2000. Apparent competition between parasitoids mediated by a shared hyperparasitoid. Ecol. Lett. 3:82–84
    [Google Scholar]
  183. 183. 
    van Veen FJF, Morris RJ, Godfray HCJ 2006. Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu. Rev. Entomol. 51:187–208
    [Google Scholar]
  184. 184. 
    Vinson SB. 1988. Physiological studies of parasitoids reveal new approaches to the biological control of insect pests. ISI Atlas Sci. Anim. Plant Sci. 1:25–32
    [Google Scholar]
  185. 185. 
    Vinson SB. 1998. The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol. Control 11:70–96
    [Google Scholar]
  186. 186. 
    Visser ME. 1994. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). J. Anim. Ecol. 63:963–78
    [Google Scholar]
  187. 187. 
    Vyas DK, Harvey JA, Paul RL, Heimpel GE, Ode PJ. 2019. Ecological dissociation and re-association with a superior competitor alters host selection behavior in a parasitoid wasp. Oecologia 191:261–70
    [Google Scholar]
  188. 188. 
    Vyas DK, Paul RL, Gates MW, Kubik T, Harvey JA et al. 2020. Shared enemies exert differential mortality on two competing parasitic wasps. Basic Appl. Ecol. 47:107–19
    [Google Scholar]
  189. 189. 
    Waage JK. 1982. Sib-mating and sex ratio strategies in scelionid wasps. Ecol. Entomol. 7:103–12
    [Google Scholar]
  190. 190. 
    Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65:457–80
    [Google Scholar]
  191. 191. 
    Wajnberg É. 2006. Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioral mechanisms. Behav. Ecol. Sociobiol. 60:589–611
    [Google Scholar]
  192. 192. 
    Wajnberg É, Bernhard P, Hamelin F, Boivin G 2006. Optimal patch time allocation for time-limited foragers. Behav. Ecol. Sociobiol. 60:1–10
    [Google Scholar]
  193. 193. 
    Wajnberg É, Curty C, Colazza S. 2004. Genetic variation in the mechanisms of direct mutual interference in a parasitic wasp: consequences in terms of patch-time allocation. J. Anim. Ecol. 73:1179–89
    [Google Scholar]
  194. 194. 
    Walde SJ, Luck RF, Yu DS, Murdoch WW 1989. A refuge for red scale: the role of size-selectivity by a parasitoid wasp. Ecology 70:1700–6
    [Google Scholar]
  195. 195. 
    Wang X-G, Kaçar G, Biondi A, Daane KM. 2016. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing Drosophila. Biol. Control 96:64–71
    [Google Scholar]
  196. 196. 
    Weisser WW, Völkl W, Hassell MP. 1997. The importance of adverse weather conditions for behaviour and population ecology of an aphid parasitoid. J. Anim. Ecol. 66:386–400
    [Google Scholar]
  197. 197. 
    West S. 2009. Sex Allocation Princeton, NJ: Princeton Univ. Press
  198. 198. 
    Williams AC, Flaherty SE, Flaxman SM. 2013. Quantitative tests of multitrophic ideal free distribution theory. Anim. Behav. 86:577–86
    [Google Scholar]
  199. 199. 
    Williams IS, Jones TH, Hartley SE. 2001. The role of resources and natural enemies in determining the distribution of an insect herbivore population. Ecol. Entomol. 26:204–11
    [Google Scholar]
  200. 200. 
    Xi X, Yang Y, Yang Y, Segoli M, Sun S. 2017. Plant-mediated resource partitioning by coexisting parasitoids. Ecology 98:1660–70
    [Google Scholar]
  201. 201. 
    Xu H-Y, Yang N-W, Wan F-H 2013. Competitive interactions between parasitoids provide new insight into host suppression. PLOS ONE 8:11e82003
    [Google Scholar]
  202. 202. 
    Zhu F, Weldegergis BT, Lhie B, Harvey JA, Dicke M, Poelman EH 2014. Body odors of parasitized caterpillars give away the presence of parasitoid larvae to their primary hyperparasitoid enemies. J. Chem. Ecol. 40:986–95
    [Google Scholar]
/content/journals/10.1146/annurev-ento-071421-073524
Loading
/content/journals/10.1146/annurev-ento-071421-073524
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error