1932

Abstract

Quantifying submillimeter flows using optical diagnostic techniques is often limited by a lack of spatial resolution and optical access. This review discusses two super-resolution imaging techniques, structured illumination microscopy and total internal reflection fluorescence or microscopy, which can visualize bulk and interfacial flows, respectively, at spatial resolutions below the classic diffraction limits. First, we discuss the theory and applications of structured illumination for optical sectioning, i.e., imaging a thin slice of a flow illuminated over its entire volume. Structured illumination can be used to visualize the interior of multiphase flows such as sprays by greatly reducing secondary scattering. Second, the theory underlying evanescent waves is introduced, followed by a review of how total internal reflection microscopy has been used to visualize interfacial flows over the last 15 years. Both techniques, which are starting to be used in fluid mechanics, could significantly improve quantitative imaging of microscale and macroscale flows.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060059
2020-01-05
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060059.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060059&mimeType=html&fmt=ahah

Literature Cited

  1. Abbe E. 1883. The relation of aperture and power in the microscope (continued). J. R. Microsc. Soc. 3:790–812
    [Google Scholar]
  2. Abramowitz M, Spring KR, Keller HE, Davidson MW 2002. Basic principles of microscope objectives. BioTechniques 33:4772–81
    [Google Scholar]
  3. Adrian RJ, Westerweel J. 2011. Particle Image Velocimetry Cambridge, UK: Cambridge Univ. Press
  4. Axelrod D. 2007. Total internal reflection fluorescence microscopy. Optical Imaging and Microscopy ed. P Török, FJ Kao 195–236 Berlin: Springer
    [Google Scholar]
  5. Axelrod D. 2008. Total internal reflection fluorescence microscopy. Methods Cell Biol 89:169–221
    [Google Scholar]
  6. Axelrod D. 2013. Evanescent excitation and emission in fluorescence microscopy. Biophys. J. 104:71401–9
    [Google Scholar]
  7. Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008. Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt. Express 16:2217870–81
    [Google Scholar]
  8. Bevan MA, Eichmann SL. 2011. Optical microscopy measurements of kT-scale colloidal interactions. Curr. Opin. Colloid Interface Sci. 16:2149–57
    [Google Scholar]
  9. Bevan MA, Prieve DC. 2000. Hindered diffusion of colloidal particles very near to a wall: revisited. J. Chem. Phys. 113:31228–36
    [Google Scholar]
  10. Bike SG. 2000. Measuring colloidal forces using evanescent wave scattering. Curr. Opin. Colloid Interface Sci. 5:1–2144–50
    [Google Scholar]
  11. Born M, Wolf E. 1980. Principles of Optics Oxford: Pergamon, 6th ed..
  12. Bracewell R. 2012. Fourier Analysis and Imaging New York: Springer Sci. Bus. Media
  13. Brenner H. 1961. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16:3–4242–51
    [Google Scholar]
  14. Brunstein M, Teremetz M, Hérault K, Tourain C, Oheim M 2014. Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light. Biophys. J. 106:51020–32
    [Google Scholar]
  15. Chan CU, Ohl CD. 2012. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett. 109:17174501
    [Google Scholar]
  16. Chen D, Du W, Ismagilov RF 2009. Using TIRF microscopy to quantify and confirm efficient mass transfer at the substrate surface of the chemistrode. New J. Phys. 11:7075017
    [Google Scholar]
  17. Choi CK, Margraves CH, Kihm KD 2007. Examination of near-wall hindered Brownian diffusion of nanoparticles: experimental comparison to theories by Brenner (1961) and Goldman et al. (1967). Phys. Fluids 19:10103305
    [Google Scholar]
  18. Chung E, Kim D, Cui Y, Kim YH, So PT 2007. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. Biophys. J. 93:51747–57
    [Google Scholar]
  19. Chung E, Kim D, So PT 2006. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy. Opt. Lett. 31:7945–47
    [Google Scholar]
  20. Crimaldi JP. 2008. Planar laser induced fluorescence in aqueous flows. Exp. Fluids 44:6851–63
    [Google Scholar]
  21. Dan D, Lei M, Yao B, Wang W, Winterhalder M et al. 2013. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep. 3:1116
    [Google Scholar]
  22. Dan D, Yao B, Lei M 2014. Structured illumination microscopy. Optical Nanoscopy and Novel Microscopy Techniques ed. P Xi 23–59 Boca Raton, FL: CRC
    [Google Scholar]
  23. Ellefsen KL, Dynes JL, Parker I 2015. Spinning-spot shadowless TIRF microscopy. PLOS ONE 10:8e0136055
    [Google Scholar]
  24. Faxén VH. 1922. Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist [The resistance against the movement of a rigid sphere in a viscous liquid which is embedded between two parallel flat walls]. Ann. Phys. Berlin 373:1089–119
    [Google Scholar]
  25. Fiolka R, Belyaev Y, Ewers H, Stemmer A 2008. Even illumination in total internal reflection fluorescence microscopy using laser light. Microsc. Res. Tech. 71:145–50
    [Google Scholar]
  26. Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG 2012. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. PNAS 109:145311–15
    [Google Scholar]
  27. Franken MJZ, Poelma C, Westerweel J 2013. Nanoscale contact line visualization based on total internal reflection fluorescence microscopy. Opt. Express 21:2226093–102
    [Google Scholar]
  28. Frohn JT, Knapp HF, Stemmer A 2000. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. PNAS 97:137232–36
    [Google Scholar]
  29. Frohn JT, Knapp HF, Stemmer A 2001. Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Opt. Lett. 26:11828–30
    [Google Scholar]
  30. Gliko O, Reddy GD, Anvari B, Brownell WE, Saggau P 2006. Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells. J. Biomed. Opt. 11:6064013
    [Google Scholar]
  31. Goodman JW. 2005. Introduction to Fourier Optics Greenwood Village, CO: Roberts Co, 3rd ed..
  32. Guasto JS, Breuer KS. 2009. High-speed quantum dot tracking and velocimetry using evanescent wave illumination. Exp. Fluids 47:61059–66
    [Google Scholar]
  33. Guasto JS, Huang P, Breuer KS 2006. Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Exp. Fluids 41:6869–80
    [Google Scholar]
  34. Gustafsson MG. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198:282–87
    [Google Scholar]
  35. Gustafsson MG. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102:3713081–86
    [Google Scholar]
  36. Gustafsson MG, Shao L, Carlton PM, Wang CR, Golubovskaya IN et al. 2008. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94:124957–70
    [Google Scholar]
  37. Hanasaki I, Kazoe Y, Kitamori T 2018. Time resolution effect on the apparent particle dynamics confined in a nanochannel evaluated by the single particle tracking subject to Brownian motion. Microfluid. Nanofluid. 22:556
    [Google Scholar]
  38. Hecht E. 2016. Optics London: Pearson, 5th ed..
  39. Helden L, Eremina E, Riefler N, Hertlein C, Bechinger C et al. 2006. Single-particle evanescent light scattering simulations for total internal reflection microscopy. Appl. Opt. 45:287299–308
    [Google Scholar]
  40. Hellen EH, Axelrod D. 1987. Fluorescence emission at dielectric and metal-film interfaces. J. Opt. Soc. Am. B 4:3337–50
    [Google Scholar]
  41. Helmholtz FH. 1876. On the limits of the optical capacity of the microscope. Mon. Microsc. J. 16:15–39
    [Google Scholar]
  42. Hervet H, Léger L. 2003. Flow with slip at the wall: from simple to complex fluids. C.R. Phys. 4:2241–49
    [Google Scholar]
  43. Huang P, Breuer KS. 2007. Direct measurement of anisotropic near-wall hindered diffusion using total internal reflection velocimetry. Phys. Rev. E 76:4046307
    [Google Scholar]
  44. Huang P, Guasto JS, Breuer KS 2006. Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. J. Fluid Mech. 566:447–64
    [Google Scholar]
  45. Huang P, Guasto JS, Breuer KS 2009. The effects of hindered mobility and depletion of particles in near-wall shear flows and the implications for nanovelocimetry. J. Fluid Mech. 637:241–65
    [Google Scholar]
  46. Israelachvili JN. 2011. Intermolecular and Surface Forces London: Academic, 2nd ed..
  47. Karadaglić D, Wilson T. 2008. Image formation in structured illumination wide-field fluorescence microscopy. Micron 39:7808–18
    [Google Scholar]
  48. Kazoe Y, Iseki K, Mawatari K, Kitamori T 2013. Evanescent wave-based particle tracking velocimetry for nanochannel flows. Anal. Chem. 85:2210780–86
    [Google Scholar]
  49. Kazoe Y, Mawatari K, Kitamori T 2015. Behavior of nanoparticles in extended nanospace measured by evanescent wave-based particle velocimetry. Anal. Chem. 87:84087–91
    [Google Scholar]
  50. Kazoe Y, Yoda M. 2011. Measurements of the near-wall hindered diffusion of colloidal particles in the presence of an electric field. Appl. Phys. Lett. 99:12124104
    [Google Scholar]
  51. Kihm KD, Banerjee A, Choi CK, Takagi T 2004. Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Exp. Fluids 37:811–24
    [Google Scholar]
  52. Kim M, Yoda M. 2012. Extending fluorescence thermometry to measuring wall surface temperatures using evanescent-wave illumination. J. Heat Transf. 134:1011601
    [Google Scholar]
  53. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG 2009. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6:5339–42
    [Google Scholar]
  54. Koochesfahani MM, Nocera DG. 2007. Molecular tagging velocimetry (MTV). Springer Handbook of Experimental Fluid Dynamics ed. C Tropea, AL Yarin, JF Foss 362–82 Berlin: Springer
    [Google Scholar]
  55. Kowalewski TA, Ligrani P, Dreizler A, Schulz C, Fey U, Egami Y 2007. Thermochromic liquid crystals. Springer Handbook of Experimental Fluid Dynamics ed. C Tropea, AL Yarin, JF Foss 488–99 Berlin: Springer
    [Google Scholar]
  56. Kristensson E, Berrocal E, Aldén M 2014. Two-pulse structured illumination imaging. Opt. Lett. 39:92584–87
    [Google Scholar]
  57. Lanni F, Bailey B, Farkas DL, Taylor DL 1993. Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes. Bioimaging 1:4187–96
    [Google Scholar]
  58. Lemoine F, Castanet G. 2013. Temperature and chemical composition of droplets by optical measurement techniques: a state-of-the-art review. Exp. Fluids 54:71572
    [Google Scholar]
  59. Li HF, Yoda M. 2008. Multilayer nano-particle image velocimetry (MnPIV) in microscale Poiseuille flows. Meas. Sci. Technol. 19:7075402
    [Google Scholar]
  60. Li HF, Yoda M. 2009. An experimental study of slip considering the effects of non-uniform colloidal tracer distributions. J. Fluid Mech. 662:269–87
    [Google Scholar]
  61. Li Z, D'eramo L, Lee C, Monti F, Yonger M et al. 2015. Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking. J. Fluid Mech. 766:147–71
    [Google Scholar]
  62. Lim D, Chu KK, Mertz J 2008. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett. 33:161819–21
    [Google Scholar]
  63. Lim D, Ford TN, Chu KK, Metz J 2011. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy. J. Biomed. Opt. 16:1016014
    [Google Scholar]
  64. Lu CH, Pégard NC, Fleischer JW 2013. Flow-based structured illumination. Appl. Phys. Lett. 102:16161115
    [Google Scholar]
  65. Mattheyses AL, Axelrod D. 2006. Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence. J. Biomed. Opt. 11:1014006
    [Google Scholar]
  66. Mattheyses AL, Shaw K, Axelrod D 2006. Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle. Microsc. Res. Tech. 69:8642–47
    [Google Scholar]
  67. Mertz J. 2000. Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description. J. Opt. Soc. Am. B 17:111906–13
    [Google Scholar]
  68. Mertz J. 2010. Introduction to Optical Microscopy Greenwood Village, CO: Roberts Co.
  69. Mertz J. 2011. Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8:10811–19
    [Google Scholar]
  70. Michaelson J, Choi H, So P, Huang H 2012. Depth-resolved cellular microrheology using HiLo microscopy. Biomed. Opt. Express 3:61241–55
    [Google Scholar]
  71. Needham JA, Sharp JS. 2016. Watch your step! A frustrated total internal reflection approach to forensic footwear imaging. Sci. Rep. 6:21290
    [Google Scholar]
  72. Neil MAA, Juškaitis R, Wilson T 1997. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22:241905–7
    [Google Scholar]
  73. Neil MAA, Squire A, Juškaitis R, Bastiaens PIH, Wilson T 2000. Wide-field optically sectioning fluorescence microscopy with laser illumination. J. Microsc. 197:11–4
    [Google Scholar]
  74. Parikesit GO, Guasto JS, Girardo S, Mele E, Stabile R et al. 2009. Nanoparticle image velocimetry at topologically structured surfaces. Biomicrofluidics 3:4044111
    [Google Scholar]
  75. Pawley J 2010. Handbook of Biological Confocal Microscopy New York: Springer Sci. Bus. Media
  76. Pit R, Hervet H, Léger L 1999. Friction and slip of a simple liquid at a solid surface. Tribol. Lett. 7:2–3147–52
    [Google Scholar]
  77. Pit R, Hervet H, Léger L 2000. Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85:5980–83
    [Google Scholar]
  78. Pouya S, Koochesfahani MM, Greytak AB, Bawendi MG, Nocera DG 2008. Experimental evidence of diffusion-induced bias in near-wall velocimetry using quantum dot measurements. Exp. Fluids 44:61035–38
    [Google Scholar]
  79. Pouya S, Koochesfahani MM, Snee P, Bawendi M, Nocera D 2005. Single quantum dot (QD) imaging of fluid flow near surfaces. Exp. Fluids 39:4784–86
    [Google Scholar]
  80. Pouya S, Liu D, Koochesfahani MM 2015. Effect of finite sampling time on estimation of Brownian fluctuation. J. Fluid Mech. 767:65–84
    [Google Scholar]
  81. Prieve DC. 1999. Measurement of colloidal forces with TIRM. Adv. Colloid Interface Sci. 82:1–393–125
    [Google Scholar]
  82. Prieve DC, Frej NA. 1990. Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces. Langmuir 6:2396–403
    [Google Scholar]
  83. Qian B, Park J, Breuer KS 2015. Large apparent slip at a moving contact line. Phys. Fluids 27:9091703
    [Google Scholar]
  84. Raffel M, Willert CE, Scarano F, Kähler CJ, Wereley ST, Kompenhans J 2018. Particle Image Velocimetry: A Practical Guide Berlin: Springer
  85. Ramachandran S, Cohen DA, Quist AP, Lal R 2013. High performance, LED powered, waveguide based total internal reflection microscopy. Sci. Rep. 3:2133
    [Google Scholar]
  86. Sadr R, Hohenegger C, Li H, Mucha PJ, Yoda M 2007. Diffusion-induced bias in near-wall velocimetry. J. Fluid Mech. 577:443–56
    [Google Scholar]
  87. Sadr R, Yoda M, Gnanaprakasam P, Conlisk AT 2006. Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl. Phys. Lett. 89:4044103
    [Google Scholar]
  88. Sadr R, Yoda M, Zheng Z, Conlisk AT 2004. An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506:357–67
    [Google Scholar]
  89. Schmatko T, Hervet H, Léger L 2005. Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys. Rev. Lett. 94:24244501
    [Google Scholar]
  90. Schmatko T, Hervet H, Léger L 2006. Effect of nanometric-scale roughness on slip at the wall of simple fluids. Langmuir 22:166843–50
    [Google Scholar]
  91. Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MG 2008. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J. 94:124971–83
    [Google Scholar]
  92. Shao L, Kner P, Rego EH, Gustafsson MG 2011. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8:121044–46
    [Google Scholar]
  93. Shirota M, van Limbeek MA, Sun C, Prosperetti A, Lohse D 2016. Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116:6064501
    [Google Scholar]
  94. Snyder AW, Love JD. 1976. Goos-Hänchen shift. Appl. Opt. 15:1236–38
    [Google Scholar]
  95. Stemmer A, Beck M, Fiolka R 2008. Widefield fluorescence microscopy with extended resolution. Histochem. Cell Biol. 130:5807–17
    [Google Scholar]
  96. Stokseth PA. 1969. Properties of a defocused optical system. J. Opt. Soc. Am. 59:101314–21
    [Google Scholar]
  97. Strutt JW. 1899. Investigations in optics, with special reference to the spectroscope. Scientific Papers by John William Strutt, Baron Rayleigh Vol. 1416–59 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  98. Tkaczyk TS. 2010. Field Guide to Microscopy Bellingham, WA: SPIE
  99. Unno N, Nakata S, Satake SI, Taniguchi J 2016. Three-dimensional particle tracking around microstructures in water via total internal reflection fluorescence microscopy and refractive-index-matching method. Exp. Fluids 57:7120
    [Google Scholar]
  100. van Limbeek MA, Shirota M, Sleutel P, Sun C, Prosperetti A, Lohse D 2016. Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature. Int. J. Heat Mass Transf. 97:101–9
    [Google Scholar]
  101. Veilleux J, Coulombe S. 2010. Mass diffusion coefficient measurements at the microscale: imaging a transient concentration profile using TIRF microscopy. Int. J. Heat Mass Transf. 53:23–245321–29
    [Google Scholar]
  102. Wereley ST, Meinhart CD. 2010. Recent advances in micro-particle image velocimetry. Annu. Rev. Fluid Mech. 42:557–76
    [Google Scholar]
  103. Wilson T, Juškaitis R, Neil MAA 1998. Real-time three-dimensional imaging of macroscopic structures. J. Microsc. 191:2116–18
    [Google Scholar]
  104. Xu D, Jiang T, Li A, Hu B, Feng Z et al. 2013. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device. J. Biomed. Opt. 18:6060503
    [Google Scholar]
  105. Yamada J. 1999. Evanescent wave Doppler velocimetry for a wall's near field. Appl. Phys. Lett. 75:121805–6
    [Google Scholar]
  106. Yoda M, Kazoe Y. 2011. Dynamics of suspended colloidal particles near a wall: implications for interfacial particle velocimetry. Phys. Fluids 23:11111301
    [Google Scholar]
  107. Zettner CM, Yoda M. 2003. Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluids 34:1115–21
    [Google Scholar]
  108. Zhou X, Lei M, Dan D, Yao B, Qian J et al. 2015. Double-exposure optical sectioning structured illumination microscopy based on Hilbert transform reconstruction. PLOS ONE 10:3e0120892
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060059
Loading
/content/journals/10.1146/annurev-fluid-010719-060059
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error