1932

Abstract

Quadrant analysis is a simple, but quite useful, turbulence data-processing technique that has been widely used, principally in the investigation of turbulent shear flows. This article traces the origins of the technique and reviews how it has been applied during the more than 40 years since it was conceived. Applications are highlighted that have expanded the technique beyond its original formulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-122414-034550
2016-01-03
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/fluid/48/1/annurev-fluid-122414-034550.html?itemId=/content/journals/10.1146/annurev-fluid-122414-034550&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian RJ, Moin P. 1988. Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190:531–59 [Google Scholar]
  2. Alfonsi G, Primavera L. 2009. Temporal evolution of vortical structures in the wall region of a turbulent channel flow. Flow Turbul. Combust. 83:61–79 [Google Scholar]
  3. Amir M, Castro IP. 2011. Turbulence in rough-wall boundary layers: universality issues. Exp. Fluids. 51:313–26 [Google Scholar]
  4. Antonia RA, Browne LWB. 1987. Quadrant analysis in the turbulent far wake of a cylinder. Fluid. Dyn. Res. 2:3–14 [Google Scholar]
  5. Aubertine CD, Eaton JK. 2005. Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J. Fluid Mech. 532:345–64 [Google Scholar]
  6. Banyassady R, Piomelli U. 2014. Turbulent plane wall jets over smooth and rough surfaces. J. Turbul. 15:3186–207 [Google Scholar]
  7. Bech KH, Anderson HI. 1997. Turbulent plane Couette flow subject to strong system rotation. J. Fluid Mech. 347:289–314 [Google Scholar]
  8. Bernard PS, Handler RA. 1990. Reynolds stress and the physics of turbulent momentum transport. J. Fluid Mech. 220:99–124 [Google Scholar]
  9. Bernard PS, Thomas JM, Handler RA. 1993. Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253:385–419 [Google Scholar]
  10. Bernard PS, Wallace JM. 2002. Turbulent Flow: Analysis, Measurement, and Prediction New York: Wiley497
  11. Bodart J, Cazalbou J-B, Joly L. 2010. Direct numerical simulation of unsheared turbulence diffusing towards a free-slip or no-slip surface. J. Turbul. 11:N48 [Google Scholar]
  12. Bogard DG, Tiederman WG. 1986. Burst detection with single-point velocity measurements. J. Fluid Mech. 162:389–413 [Google Scholar]
  13. Brodkey RS, Wallace JM, Eckelmann H. 1974. Some properties of truncated turbulence signals in bounded shear flows. J. Fluid Mech. 63:209–24 [Google Scholar]
  14. Cai W-H, Li F-C, Zhang H-N, Li H-B, Yu B. et al. 2009. Study on the characteristics of drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis. Phys. Fluids 21:115103 [Google Scholar]
  15. Caraman N, Borée J, Simonin O. 2003. Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: experimental and theoretical analysis. Phys. Fluids 15:3602–12 [Google Scholar]
  16. Cardwell ND, Vlachos PP, Thole KA. 2011. Developing and fully developed turbulent flow in ribbed channels. Exp. Fluids 50:1357–71 [Google Scholar]
  17. Chacin JM, Cantwell BJ. 2000. Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404:87–115 [Google Scholar]
  18. Chang YS, Scotti A. 2003. Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 4:N19 [Google Scholar]
  19. Cheng RK, Ng TT. 1985. Conditional Reynolds stress in a strongly heated turbulent boundary layer with premixed combustion. Phys. Fluids 28:473–88 [Google Scholar]
  20. Choi H, Moin P, Kim J. 1993. Direct simulation of turbulent flow over riblets. J. Fluid Mech. 255:503–39 [Google Scholar]
  21. Choi H, Moin P, Kim J. 1994. Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262:75–110 [Google Scholar]
  22. Chu Y-B, Zhuang Y-Q, Lu X-Y. 2013. Effect of wall temperature on hypersonic boundary layer. J. Turbul. 14:1237–57 [Google Scholar]
  23. Coceal O, Dobre A, Thomas TG, Belcher SE. 2007. Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589:375–409 [Google Scholar]
  24. Corino ER, Brodkey RS. 1969. A visualization of the wall region in turbulent flow. J. Fluid Mech. 37:1–30 [Google Scholar]
  25. Crawford CH, Karniadakis GE. 1997. Reynolds stress analysis of EMHD-controlled wall turbulence. Part I: streamwise forcing. Phys. Fluids 9:788–806 [Google Scholar]
  26. del Álamo JC, Jiménez J, Zandonade P, Moser RD. 2006. Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561:329–58 [Google Scholar]
  27. Deleuze J, Audiffren N, Elena M. 1994. Quadrant analysis in a heated-wall supersonic boundary layer. Phys. Fluids 6:4031–41 [Google Scholar]
  28. Duarte D, Ferrão P, Heitor MV. 1999. Turbulence statistics and scalar transport in highly sheared premixed flames. Flow Turbul. Combust. 60:361–76 [Google Scholar]
  29. Eckelmann H, Nychas SG, Brodkey RS, Wallace JM. 1977. Vorticity and turbulence production in pattern recognized flow structures. Phys. Fluids 20:S225–31 [Google Scholar]
  30. Elkins CJ, Eaton JK. 2000. Turbulent heat and momentum transport on a rotating disk. J. Fluid Mech. 402:225–53 [Google Scholar]
  31. Essel EE, Tachie MF. 2015. Roughness effects on turbulent flow downstream of a backward facing step. Flow Turbul. Combust. 94:125–53 [Google Scholar]
  32. Flack KA, Schultz MP, Shapiro TA. 2005. Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17:035102 [Google Scholar]
  33. Folz A, Wallace JM. 2010. Near-surface turbulence in the atmospheric boundary layer. Physica D 239:1305–17 [Google Scholar]
  34. Fulgosi M, Lakehal D, Banerjee S, de Angelis V. 2003. Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J. Fluid Mech. 482:319–45 [Google Scholar]
  35. Ganapathisubramani B, Longmire EK, Marusic I. 2006. Experimental investigation of vortex properties in a turbulent boundary layer. Phys. Fluids 18:055105 [Google Scholar]
  36. Grigoriadis DGE, Balaras E, Dimas AA. 2013. Coherent structures in oscillating turbulent boundary layers over a fixed rippled bed. Flow Turbul. Combust. 91:565–85 [Google Scholar]
  37. Hahn S, Je J, Choi H. 2002. Direct simulation of turbulent channel flow with permeable walls. J. Fluid Mech. 450:259–85 [Google Scholar]
  38. Hamelin J, Alving AE. 1996. A low-shear turbulent boundary layer. Phys. Fluids 8:789–804 [Google Scholar]
  39. Jelly TO, Jung SY, Zaki TA. 2014. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26:095102 [Google Scholar]
  40. Jeong J, Hussain F. 1995. On the identification of a vortex. J. Fluid Mech. 285:69–94 [Google Scholar]
  41. Jeong J, Hussain F, Shoppa W, Kim J. 1997. Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332:185–214 [Google Scholar]
  42. Jung SY, Sung HJ. 2006. Characterization of the three-dimensional turbulent boundary layer in a concentric annulus with a rotating inner cylinder. Phys. Fluids 18:115102 [Google Scholar]
  43. Kang HS, Choi H, Yoo JY. 1998. On the modification of the near-wall coherent structure in a three-dimensional turbulent boundary layer on a free rotating disk. Phys. Fluids 10:2315–22 [Google Scholar]
  44. Katsouvas GD, Helmis CG, Wang Q. 2007. Quadrant analysis of the scalar and momentum fluxes in the stable marine atmospheric surface layer. Bound. Layer Meteorol. 124:335–60 [Google Scholar]
  45. Kiger KT, Pan C. 2002. Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow. J. Turbul. 3:N19 [Google Scholar]
  46. Kim HT, Kline SJ, Reynolds WC. 1971. The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50:133–60 [Google Scholar]
  47. Kim J, Choi JI, Sung HJ. 2002. Relationship between wall pressure and streamwise vortices in a turbulent boundary layer. Phys. Fluids 14:898–901 [Google Scholar]
  48. Kim J, Moin P. 1986. The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble averaged fields. J. Fluid Mech. 162:339–63 [Google Scholar]
  49. Kim J, Moin P, Moser R. 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177:133–66 [Google Scholar]
  50. Kitagawa A, Kitada K, Hagiwara Y. 2010. Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection. Exp. Fluids 49:613–22 [Google Scholar]
  51. Kline SJ, Reynolds WC, Schraub FA, Runstadler PW. 1967. The structure of turbulent boundary layers. J. Fluid Mech. 30:741–73 [Google Scholar]
  52. Klumpp S, Meinke M, Schröder W. 2011. Friction drag variation via spanwise transversal surface waves. Flow Turbul. Combust. 87:33–53 [Google Scholar]
  53. Kong H, Choi H, Lee JS. 2000. Direct simulation of turbulent thermal boundary layers. Phys. Fluids 12:2555–68 [Google Scholar]
  54. Koyama S, Takashima K, Yoshimichi H. 2007. Turbulence modification in flow around a periodically deforming film. J. Turbul. 8:N19 [Google Scholar]
  55. Krogstad P-Å, Andersson HI, Bakken OM, Ashrafian A. 2005. An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530:327–52 [Google Scholar]
  56. Krogstad P-Å, Kourakine A. 2000. Some effects of localized injection on the turbulence structure in a boundary layer. Phys. Fluids 12:2990–99 [Google Scholar]
  57. Krogstad P-Å, Scåre PE. 1995. Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer. Phys. Fluids 7:2014–24 [Google Scholar]
  58. Lee JH, Lee J, Sung HJ. 2011. Spatial features of the wall-normal structures in a turbulent boundary layer. J. Turbul. 12N46
  59. Li D, Bou-Zeid E. 2011. Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Bound. Layer Meteorol. 140:243–62 [Google Scholar]
  60. Li F-C, Kawaguchi Y, Hishida K. 2005. Structural analysis of turbulent transport in a heated drag-reducing channel flow with surfactant additives. Int. J. Heat Mass Transf. 48:965–73 [Google Scholar]
  61. Li J, Wang H, Liu Z, Chen S, Zheng C. 2012. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53:1385–403 [Google Scholar]
  62. Li N, Balaras E, Wallace JM. 2010. Passive scalar transport in a turbulent mixing layer. Flow Turbul. Combust. 85:1–24 [Google Scholar]
  63. Liepmann HW, Laufer J. 1947. Investigations of free turbulent mixing Tech. Note 1257, Natl. Advis. Comm. Aeronaut., Washington, DC
  64. Lin C-L, McWilliams JC, Moeng C-H, Sullivan PP. 1996. Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow. Phys. Fluids 8:2626–39 [Google Scholar]
  65. Lin C-L, Moeng C-H, Sullivan PP, McWilliams JC. 1997. The effect of surface roughness on flow structures in a neutrally stratified planetary boundary layer flow. Phys. Fluids 9:3235–49 [Google Scholar]
  66. Littell HS, Eaton JK. 1994. Turbulence characteristics of the boundary layer on a rotating disk. J. Fluid Mech. 266:175–207 [Google Scholar]
  67. Lo SH, Voke PR, Rockliff NJ. 2000. Eddy structures in a simulated low Reynolds number turbulent boundary layer. Flow Turbul. Combust. 64:1–28 [Google Scholar]
  68. Longo S, Losada MA. 2012. Turbulent structure of air flow over wind-induced gravity waves. Exp. Fluids 53:369–90 [Google Scholar]
  69. Loucks RB, Wallace JM. 2012. Velocity and velocity gradient based properties of a turbulent plane mixing layer. J. Fluid Mech. 699:280–319 [Google Scholar]
  70. Lozano-Durán A, Flores O, Jiménez J. 2012. The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694:100–30 [Google Scholar]
  71. Lozano-Durán A, Jiménez J. 2014. Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759:432–71 [Google Scholar]
  72. Lu SS, Willmarth WW. 1973. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60:481–511 [Google Scholar]
  73. Lygren M, Andersson HI. 2001. Turbulent flow between a rotating and a stationary disk. J. Fluid Mech. 426:297–396 [Google Scholar]
  74. MacCready PB. 1953a. Atmospheric turbulence measurements and analysis. J. Meteorol. 10:325–37 [Google Scholar]
  75. MacCready PB. 1953b. Structure of atmospheric turbulence. J. Meteorol. 10:434–49 [Google Scholar]
  76. Marchioli C, Soldati A. 2002. Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468:283–315 [Google Scholar]
  77. Mejia-Alvarez R, Christensen KT. 2010. Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22:015106 [Google Scholar]
  78. Mignot E, Hurther D, Barthelemey E. 2009. On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J. Fluid Mech. 638:423–52 [Google Scholar]
  79. Moriwaki R, Kanda M. 2006. Local and global similarity in turbulent transfer of heat, water vapor and CO2 in the dynamic convective sublayer over a suburban area. Bound. Layer Meteorol. 120:163–79 [Google Scholar]
  80. Moser RD, Kim J, Monsour NN. 1999. DNS of turbulent channel flow up to Rτ = 590. Phys. Fluids 11:943–45 [Google Scholar]
  81. Nagano Y, Tagawa M. 1988. Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196:157–85 [Google Scholar]
  82. Nagano Y, Tagawa M. 1990. A structural turbulence model for triple products of velocity and scalar. J. Fluid Mech. 215:639–57 [Google Scholar]
  83. Nagano Y, Tagawa M. 1995. Coherent motions and heat transfer in a wall turbulent shear flow. J. Fluid Mech. 305:127–57 [Google Scholar]
  84. Nagata M, Kasagi N. 2004. Spatio-temporal evolution of coherent vortices in wall turbulence with streamwise curvature. J. Turbul. 5:N17 [Google Scholar]
  85. Nakabayashi K, Kitoh O. 2005. Turbulence characteristics of two-dimensional channel flow with system rotation. J. Fluid Mech. 528:355–77 [Google Scholar]
  86. Nakabayashi K, Kitoh O, Katoh Y. 2004. Similarity laws of velocity profiles and turbulence characteristics of Couette-Poiseuille turbulent flows. J. Fluid Mech. 507:43–69 [Google Scholar]
  87. Nakagawa H, Nezu I. 1977. Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech. 80:99–128 [Google Scholar]
  88. Natrajan VK, Christensen KT. 2009. Structural characteristics of transition to turbulence in microscale capillaries. Phys. Fluids 21:034104 [Google Scholar]
  89. Nolan KP, Walsh EJ, McEligot DM. 2010. Quadrant analysis of a transitional boundary layer subject to free stream turbulence. J. Fluid Mech. 658:310–35 [Google Scholar]
  90. Nolan KP, Zaki TA. 2013. Conditional sampling of transitional boundary layers in pressure gradients. J. Fluid Mech. 728:306–39 [Google Scholar]
  91. Ohta T, Kajishima T, Mizobata K, Nakamura K. 2012. Influence of density fluctuation on DNS of turbulent channel flow in the presence of temperature stratification. Flow Turbul. Combust. 89:435–48 [Google Scholar]
  92. Omidyeganeh M, Piomelli U. 2011. Large-eddy simulation of two-dimensional dunes in a steady, unidirectional flow. J. Turbul. 12:N42 [Google Scholar]
  93. Ong L, Wallace JM. 1998. Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer. J. Fluid Mech. 367:291–328 [Google Scholar]
  94. Orlandi P. 2013. DNS of rotating and non-rotating turbulent flows with synthetic inlet conditions. J. Turbul. 14:510–34 [Google Scholar]
  95. Örlü R, Alfredsson PH. 2008. An experimental study of near-field mixing characteristics of a swirling jet. Flow Turbul. Combust. 80:323–50 [Google Scholar]
  96. Pan Y, Banerjee S. 1996. Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8:2733–55 [Google Scholar]
  97. Pan Y, Chamecki M, Isard SA. 2014a. Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer. J. Fluid Mech. 753:499–534 [Google Scholar]
  98. Pan Y, Follett E, Chamecki M, Nepf H. 2014b. Strong and weak, unsteady reconfiguration and its impact on turbulence structure within plant canopies. Phys. Fluids 26:105102 [Google Scholar]
  99. Park GI, Wallace JM, Wu X, Moin P. 2012. Boundary layer turbulence in transitional and developed states. Phys. Fluids 24:035105 [Google Scholar]
  100. Perry AE, Hoffmann PH. 1976. An experimental study of turbulent convective heat transfer from a flat plate. J. Fluid Mech. 77:355–68 [Google Scholar]
  101. Pokrajac D, Campbell LJ, Nikora V, Manes C, McEwan I. 2007. Quadrant analysis of persistent spatial velocity perturbations over square bar roughness. Exp. Fluids 42:413–23 [Google Scholar]
  102. Poncet S, Randriamampianina A. 2008. Three-dimensional turbulent boundary layer in a shrouded rotating system. Flow Turbul. Combust. 80:107–17 [Google Scholar]
  103. Priyadarshana PJA, Klewicki JC. 2004. Study of the motions contributing to the Reynolds stress in high and low Reynolds number turbulent boundary layers. Phys. Fluids 16:4586–600 [Google Scholar]
  104. Quadrio M, Sibilla S. 2000. Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424:217–41 [Google Scholar]
  105. Rahgozar S, Maciel Y. 2012. Statistical analysis of low- and high-speed large-scale structures in the outer region of an adverse pressure gradient turbulent boundary layer. J. Turbul. 13:N46 [Google Scholar]
  106. Rajagopalan S, Antonia RA. 1982. Use of a quadrant analysis technique to identify coherent structures in a turbulent boundary layer. Phys. Fluids 25:949–56 [Google Scholar]
  107. Randriamampianina A, Poncet S. 2006. Turbulence characteristics of the Bödewadt layer in a large enclosed rotor-stator system. Phys. Fluids 18:055104 [Google Scholar]
  108. Raupach MR. 1981. Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108:363–82 [Google Scholar]
  109. Reichardt H. 1945. Gesetzmässigkeiten in der freien Turbulenz. VDI Forschungsheft13
  110. Ren H, Wu Y. 2011. Turbulent boundary layers over smooth and rough forward-facing steps. Phys. Fluids 23:045102 [Google Scholar]
  111. Reynolds O. 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. A 186:123–64 [Google Scholar]
  112. Righetti M, Romano GP. 2004. Particle-fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505:93–121 [Google Scholar]
  113. Robinson SK. 1991. Kinematics of turbulent boundary layer structure NASA Tech. Memo. 103859, NASA Ames Res. Cent., Moffett Field, CA
  114. Roussinova V, Balachandar R. 2011. Open channel flow past a train of rib roughness. J. Turbul. 12:N28 [Google Scholar]
  115. Sabot J, Comte-Bellot G. 1976. Intermittency of coherent structures in the core region of fully developed turbulent pipe flow. J. Fluid Mech. 74:767–96 [Google Scholar]
  116. Sasamori M, Mamori H, Iwamoto K, Murata A. 2014. Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow. Exp. Fluids 55:1828–42 [Google Scholar]
  117. Schoppa W, Hussain F. 2002. Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453:57–108 [Google Scholar]
  118. Seddighi M, He S, Vardy AE, Orlandi P. 2014. Direct numerical simulation of an accelerating channel flow. Flow Turbul. Combust. 92:473–502 [Google Scholar]
  119. Shinneeb A-M, Pollard A. 2012. Investigation of the flow physics in the human pharynx/larynx region. Exp. Fluids 53:989–1003 [Google Scholar]
  120. Spalart PR. 1988. Direct simulation of a turbulent boundary layer up to Rθ = 1,410. J. Fluid Mech. 187:61–98 [Google Scholar]
  121. Subramanian CS, Rajagopalan S, Antonia RA, Chambers AJ. 1982. Comparison of conditional sampling and averaging techniques in a turbulent boundary layer. J. Fluid Mech. 123:335–62 [Google Scholar]
  122. Sullivan PP, McWilliams JC, Moeng C-H. 2000. Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404:47–85 [Google Scholar]
  123. Suzuki H, Suzuki K, Sato T. 1988. Dissimilarity between heat and momentum transfer in a turbulent boundary layer disturbed by a cylinder. Int. J. Heat Mass Transf. 31:259–65 [Google Scholar]
  124. Talmon AM, Kunen JMG, Ooms G. 1986. Simultaneous flow visualization and Reynolds-stress measurement in a turbulent boundary layer. J. Fluid Mech. 163:459–78 [Google Scholar]
  125. Tamano S, Itoh M. 2011. Comparison of turbulence structures at large and small drag reduction ratios in turbulent boundary layer of surfactant solutions. J. Turbul. 12:N18 [Google Scholar]
  126. Tay GFK, Kuhn DCS, Tachie MF. 2013. Surface roughness effects on the turbulence statistics in a low Reynolds number channel flow. J. Turbul. 14:1121–46 [Google Scholar]
  127. Teitel M, Antonia RA. 1990. The interaction region of a turbulent duct flow. Phys. Fluids 2:808–13 [Google Scholar]
  128. Teitel M, Tanny J. 2005. Heat fluxes and airflow patterns through roof windows in a naturally ventilated enclosure. Flow Turbul. Combust. 74:21–47 [Google Scholar]
  129. Tichenor NR, Humble RA, Bowersox RDW. 2013. Response of a hypersonic turbulent boundary layer to favourable pressure gradients. J. Fluid Mech. 722:187–213 [Google Scholar]
  130. Tsuji Y, Nakamura I. 1994. The fractal aspect of an isovelocity set and its relationship to bursting phenomena in the turbulent boundary layer. Phys. Fluids 6:3429–41 [Google Scholar]
  131. Variano EA, Cowen EA. 2013. Turbulent transport of a high-Schmidt-number scalar near an air-water interface. J. Fluid Mech. 731:259–87 [Google Scholar]
  132. Vinçont J-Y, Simoëns S, Aryault M, Wallace JM. 2000. Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J. Fluid Mech. 424:127–67 [Google Scholar]
  133. Volino RJ, Simon TW. 1994. An application of octant analysis to turbulent and transitional flow data. ASME J. Turbomach. 116:752–58 [Google Scholar]
  134. Walker DT, Tiederman WG. 1990. Turbulent structure in a channel flow with polymer injection at the wall. J. Fluid Mech. 218:377–403 [Google Scholar]
  135. Walker JM, Sargison JE, Henderson AD. 2013. Turbulent boundary-layer structure of flows over freshwater biofilms. Exp. Fluids 54:1628–45 [Google Scholar]
  136. Wallace JM. 2012. Highlights from 50 years of turbulent boundary layer research. J. Turbul. 13:N53 [Google Scholar]
  137. Wallace JM, Brodkey RS. 1977. Reynolds stress and joint probability density distributions in the u-v plane of a turbulent channel flow. Phys. Fluids 20:351–55 [Google Scholar]
  138. Wallace JM, Brodkey RS, Eckelmann H. 1972. The wall region in turbulent shear flow. J. Fluid Mech. 54:39–48 [Google Scholar]
  139. Wallace JM, Brodkey RS, Eckelmann H. 1977. Pattern recognized structures in bounded turbulent shear flows. J. Fluid Mech. 83:673–93 [Google Scholar]
  140. Wallace JM, Duncan JH. 2013. Homage to Bob Brodkey at 85: ejections, sweeps and Reynolds shear stress generation in turbulent pipe flow. arXiv:1310.6250 [physics.flu-dyn]
  141. Wark CE, Nagib HM. 1991. Experimental investigation of coherent structures in turbulent boundary layers. J. Fluid Mech. 230:183–208 [Google Scholar]
  142. Willmarth WW, Lu SS. 1972. Structure of the Reynolds stress near the wall. J. Fluid Mech. 55:65–92 [Google Scholar]
  143. Wu X, Squires KD. 2000. Prediction and investigation of the turbulent flow over a rotating disk. J. Fluid Mech. 418:231–64 [Google Scholar]
  144. Wu Y, Christensen KT. 2007. Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 19:085108 [Google Scholar]
  145. Yang D, Shen L. 2010. Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech. 650:131–80 [Google Scholar]
  146. Yang S-Q, Jiang N. 2012. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method. Sci. China Phys. Mech. Astron. 55:1863–72 [Google Scholar]
  147. Yeo K, Kim B-G, Lee C. 2009. Eulerian and Lagrangian statistics in stably stratified turbulent channel flows. J. Turbul. 10:N17 [Google Scholar]
  148. Zhang Y, Che D. 2012. Effects of two-dimensional V-shaped grooves on turbulent channel flow. Exp. Fluids 52:315–28 [Google Scholar]
  149. Zhou J, Adrian RJ, Balachandar S. 1996. Autogeneration of near-wall vortical structures in channel flow. Phys. Fluids 8:288–90 [Google Scholar]
/content/journals/10.1146/annurev-fluid-122414-034550
Loading
/content/journals/10.1146/annurev-fluid-122414-034550
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error