1932

Abstract

Over the last decade, immunometabolism has emerged as a novel interdisciplinary field of research and yielded significant fundamental insights into the regulation of immune responses. Multiple classical approaches to interrogate immunometabolism, including bulk metabolic profiling and analysis of metabolic regulator expression, paved the way to appreciating the physiological complexity of immunometabolic regulation in vivo. Studying immunometabolism at the systems level raised the need to transition towards the next-generation technology for metabolic profiling and analysis. Spatially resolved metabolic imaging and computational algorithms for multi-modal data integration are new approaches to connecting metabolism and immunity. In this review, we discuss recent studies that highlight the complex physiological interplay between immune responses and metabolism and give an overview of technological developments that bear the promise of capturing this complexity most directly and comprehensively.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101220-031513
2023-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101220-031513.html?itemId=/content/journals/10.1146/annurev-immunol-101220-031513&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Muehlenbein MP, Hirschtick JL, Bonner JZ, Swartz AM. 2010. Toward quantifying the usage costs of human immunity: Altered metabolic rates and hormone levels during acute immune activation in men. Am. J. Hum. Biol. 22:4546–56
    [Google Scholar]
  2. 2.
    Menk AV, Scharping NE, Moreci RS, Zeng X, Guy C et al. 2018. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep 22:61509–21
    [Google Scholar]
  3. 3.
    Kelly B, O'Neill LAJ 2015. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:7771–84
    [Google Scholar]
  4. 4.
    Waters LR, Ahsan FM, Wolf DM, Shirihai O, Teitell MA 2018. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience 5:99–109
    [Google Scholar]
  5. 5.
    Murray PJ. 2016. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17:2132–39
    [Google Scholar]
  6. 6.
    O'Neill LAJ, Pearce EJ 2015. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213:115–23
    [Google Scholar]
  7. 7.
    Voss K, Hong HS, Bader JE, Sugiura A, Lyssiotis CA, Rathmell JC. 2021. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21:10637–52
    [Google Scholar]
  8. 8.
    Purohit V, Wagner A, Yosef N, Kuchroo VK. 2022. Systems-based approaches to study immunometabolism. Cell Mol. Immunol. 19:3409–20
    [Google Scholar]
  9. 9.
    Artyomov MN, Van den Bossche J. 2020. Immunometabolism in the single-cell era. Cell Metab 32:5710–25
    [Google Scholar]
  10. 10.
    Jung J, Zeng H, Horng T. 2019. Metabolism as a guiding force for immunity. Nat. Cell Biol. 21:185–93
    [Google Scholar]
  11. 11.
    Ye J, Medzhitov R. 2019. Control strategies in systemic metabolism. Nat. Metab. 1:10947–57
    [Google Scholar]
  12. 12.
    Davis MM, Tato CM, Furman D. 2017. Systems immunology: just getting started. Nat. Immunol. 18:7725–32
    [Google Scholar]
  13. 13.
    Poon MML, Farber DL. 2020. The whole body as the system in systems immunology. iScience 23:9101509
    [Google Scholar]
  14. 14.
    Villani A-C, Sarkizova S, Hacohen N. 2018. Systems immunology: learning the rules of the immune system. Annu. Rev. Immunol. 36:813–42
    [Google Scholar]
  15. 15.
    O'Neill LAJ, Kishton RJ, Rathmell J. 2016. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16:9553–65
    [Google Scholar]
  16. 16.
    Schipper HS, Prakken B, Kalkhoven E, Boes M. 2012. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol. Metab. 23:8407–15
    [Google Scholar]
  17. 17.
    Trim WV, Lynch L. 2022. Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev. Immunol. 22:6371–86
    [Google Scholar]
  18. 18.
    Huby T, Gautier EL. 2022. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 22:7429–43
    [Google Scholar]
  19. 19.
    Lercher A, Baazim H, Bergthaler A. 2020. Systemic immunometabolism: challenges and opportunities. Immunity 53:3496–509
    [Google Scholar]
  20. 20.
    Kaymak I, Williams KS, Cantor JR, Jones RG. 2021. Immunometabolic interplay in the tumor microenvironment. Cancer Cell 39:128–37
    [Google Scholar]
  21. 21.
    Wang A, Luan HH, Medzhitov R. 2019. An evolutionary perspective on immunometabolism. Science 363:6423eaar3932
    [Google Scholar]
  22. 22.
    Zhao S, Peralta RM, Avina-Ochoa N, Delgoffe GM, Kaech SM. 2021. Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Semin. Immunol. 52:101485
    [Google Scholar]
  23. 23.
    Corrado M, Pearce EL 2022. Targeting memory T cell metabolism to improve immunity. J. Clin. Investig. 132:1e148546
    [Google Scholar]
  24. 24.
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:7444238–42
    [Google Scholar]
  25. 25.
    Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y et al. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:3419–30
    [Google Scholar]
  26. 26.
    Mills EL, Kelly B, Logan A, Costa ASH, Varma M et al. 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167:2457–70.e13
    [Google Scholar]
  27. 27.
    Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H et al. 2014. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15:4323–32
    [Google Scholar]
  28. 28.
    Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S et al. 2013. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14:101064–72
    [Google Scholar]
  29. 29.
    Raza IGA, Clarke AJ. 2021. B cell metabolism and autophagy in autoimmunity. Front. Immunol. 12:681105
    [Google Scholar]
  30. 30.
    Sheppard S, Santosa EK, Lau CM, Violante S, Giovanelli P et al. 2021. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep 35:9109210
    [Google Scholar]
  31. 31.
    Makowski L, Chaib M, Rathmell JC. 2020. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295:15–14
    [Google Scholar]
  32. 32.
    Artyomov MN, Sergushichev A, Schilling JD. 2016. Integrating immunometabolism and macrophage diversity. Semin. Immunol. 28:5417–24
    [Google Scholar]
  33. 33.
    Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A et al. 2018. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab 28:3463–75.e4
    [Google Scholar]
  34. 34.
    Russell DG, Huang L, VanderVen BC. 2019. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 19:5291–304
    [Google Scholar]
  35. 35.
    Ogger PP, Byrne AJ. 2021. Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunol 14:2282–95
    [Google Scholar]
  36. 36.
    Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C et al. 2019. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat. Immunol. 20:5571–80
    [Google Scholar]
  37. 37.
    Elmentaite R, Teichmann SA, Madissoon E. 2019. Studying immune to non-immune cell cross-talk using single-cell technologies. Curr. Opin. Syst. Biol. 18:87–94
    [Google Scholar]
  38. 38.
    Han MS, Jung DY, Morel C, Lakhani SA, Kim JK et al. 2013. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:6116218–22
    [Google Scholar]
  39. 39.
    Chakarov S, Blériot C, Ginhoux F. 2022. Role of adipose tissue macrophages in obesity-related disorders. J. Exp. Med. 219:7e20211948
    [Google Scholar]
  40. 40.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H et al. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15:8914–20
    [Google Scholar]
  41. 41.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15:8930–39
    [Google Scholar]
  42. 42.
    Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K et al. 2020. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579:7800581–85
    [Google Scholar]
  43. 43.
    Kubes P, Jenne C. 2018. Immune responses in the liver. Annu. Rev. Immunol. 36:1247–77
    [Google Scholar]
  44. 44.
    Haas JT, Francque S, Staels B. 2016. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78:181–205
    [Google Scholar]
  45. 45.
    Sutti S, Albano E. 2020. Adaptive immunity: an emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 17:281–92
    [Google Scholar]
  46. 46.
    Elia I, Haigis MC 2021. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3:121–32
    [Google Scholar]
  47. 47.
    Li F, Simon MC. 2020. Cancer cells don't live alone: metabolic communication within tumor microenvironments. Dev. Cell 54:2183–95
    [Google Scholar]
  48. 48.
    Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE et al. 2021. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593:7858282–88
    [Google Scholar]
  49. 49.
    Geeraerts X, Fernández-Garcia J, Hartmann FJ, de Goede KE, Martens L et al. 2021. Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Rep 37:13110171
    [Google Scholar]
  50. 50.
    Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM et al. 2021. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591:7851645–51
    [Google Scholar]
  51. 51.
    McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37:457–95
    [Google Scholar]
  52. 52.
    Guo Y, Xie Y-Q, Gao M, Zhao Y, Franco F et al. 2021. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22:6746–56
    [Google Scholar]
  53. 53.
    Liu X, Hartman CL, Li L, Albert CJ, Si F et al. 2021. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci. Transl. Med. 13:587eaaz6314
    [Google Scholar]
  54. 54.
    Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC et al. 2020. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183:71848–66.e26
    [Google Scholar]
  55. 55.
    Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D et al. 2018. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19:121330–40
    [Google Scholar]
  56. 56.
    Mogilenko DA, Haas JT, L'homme L, Fleury S, Quemener S et al. 2019. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell 177:51201–16.e19
    [Google Scholar]
  57. 57.
    Singer BD, Chandel NS. 2019. Immunometabolism of pro-repair cells. J. Clin. Investig. 129:72597–607
    [Google Scholar]
  58. 58.
    Intlekofer AM, Dematteo RG, Venneti S, Finley LWS, Lu C et al. 2015. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:2304–11
    [Google Scholar]
  59. 59.
    Oldham WM, Clish CB, Yang Y, Loscalzo J 2015. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22:2291–303
    [Google Scholar]
  60. 60.
    Xu T, Stewart KM, Wang X, Liu K, Xie M et al. 2017. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548:7666228–33
    [Google Scholar]
  61. 61.
    Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT et al. 2016. S-2-Hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540:7632236–41
    [Google Scholar]
  62. 62.
    Doran AC, Yurdagul A, Tabas I. 2020. Efferocytosis in health and disease. Nat. Rev. Immunol. 20:4254–67
    [Google Scholar]
  63. 63.
    Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M et al. 2019. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab 29:2443–56.e5
    [Google Scholar]
  64. 64.
    Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y et al. 2018. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563:7733714–18
    [Google Scholar]
  65. 65.
    Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K et al. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606:7915776–84
    [Google Scholar]
  66. 66.
    Shang M, Cappellesso F, Amorim R, Serneels J, Virga F et al. 2020. Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature 587:7835626–31
    [Google Scholar]
  67. 67.
    Stein WH, Moore S 1954. The free amino acids of human blood plasma. J. Biol. Chem. 211:2915–26
    [Google Scholar]
  68. 68.
    Yu Y, Newman H, Shen L, Sharma D, Hu G et al. 2019. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab 29:4966–78.e4
    [Google Scholar]
  69. 69.
    Kim CS, Ding X, Allmeroth K, Biggs LC, Kolenc OI et al. 2020. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle. Cell Metab 32:4629–42.e8
    [Google Scholar]
  70. 70.
    Minhas PS, Latif-Hernandez A, McReynolds MR, Durairaj AS, Wang Q et al. 2021. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590:7844122–28
    [Google Scholar]
  71. 71.
    Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. 2015. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:4414–21
    [Google Scholar]
  72. 72.
    Hayek MG, Meydani SN, Meydani M, Blumberg JB. 1994. Age differences in eicosanoid production of mouse splenocytes: effects on mitogen-induced T-cell proliferation. J. Gerontol. 49:5B197–207
    [Google Scholar]
  73. 73.
    Desdín-Micó G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E et al. 2020. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368:64971371–76
    [Google Scholar]
  74. 74.
    Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16:6341–52
    [Google Scholar]
  75. 75.
    Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19:155–71
    [Google Scholar]
  76. 76.
    Chang PV, Hao L, Offermanns S, Medzhitov R. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS 111:62247–52
    [Google Scholar]
  77. 77.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:2159–66
    [Google Scholar]
  78. 78.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:7480446–50
    [Google Scholar]
  79. 79.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:7480451–55
    [Google Scholar]
  80. 80.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:6145569–73
    [Google Scholar]
  81. 81.
    Kuipers F, Bloks VW, Groen AK. 2014. Beyond intestinal soap—bile acids in metabolic control. Nat. Rev. Endocrinol. 10:8488–98
    [Google Scholar]
  82. 82.
    Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM et al. 1999. Identification of a nuclear receptor for bile acids. Science 284:54181362–65
    [Google Scholar]
  83. 83.
    Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG et al. 1999. Bile acids: natural ligands for an orphan nuclear receptor. Science 284:54181365–68
    [Google Scholar]
  84. 84.
    Chen ML, Takeda K, Sundrud MS. 2019. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 12:4851–61
    [Google Scholar]
  85. 85.
    Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M et al. 2020. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:7809475–79
    [Google Scholar]
  86. 86.
    Hang S, Paik D, Yao L, Kim E, Trinath J et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:7785143–48. Erratum 2020. Nature 579:E7
    [Google Scholar]
  87. 87.
    Stražar M, Temba GS, Vlamakis H, Kullaya VI, Lyamuya F et al. 2021. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nat. Commun. 12:14845
    [Google Scholar]
  88. 88.
    Guo H, Chou W-C, Lai Y, Liang K, Tam JW et al. 2020. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 370:6516eaay9097
    [Google Scholar]
  89. 89.
    Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB et al. 2022. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376:6594eabl5197
    [Google Scholar]
  90. 90.
    Chapman NM, Chi H 2022. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55:114–30
    [Google Scholar]
  91. 91.
    Llufrio EM, Wang L, Naser FJ, Patti GJ. 2018. Sorting cells alters their redox state and cellular metabolome. Redox Biol 16:381–87
    [Google Scholar]
  92. 92.
    Fessenden M. 2016. Metabolomics: small molecules, single cells. Nature 540:7631153–55
    [Google Scholar]
  93. 93.
    Bonilla DL, Reinin G, Chua E. 2021. Full spectrum flow cytometry as a powerful technology for cancer immunotherapy research. Front. Mol. Biosci. 7:612801
    [Google Scholar]
  94. 94.
    Spitzer MH, Nolan GP. 2016. Mass cytometry: single cells, many features. Cell 165:4780–91
    [Google Scholar]
  95. 95.
    Hartmann FJ, Bendall SC. 2020. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16:287–99
    [Google Scholar]
  96. 96.
    Ahl PJ, Hopkins RA, Xiang WW, Au B, Kaliaperumal N et al. 2020. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun. Biol. 3:305
    [Google Scholar]
  97. 97.
    Levine LS, Hiam-Galvez KJ, Marquez DM, Tenvooren I, Madden MZ et al. 2021. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 54:4829–44.e5
    [Google Scholar]
  98. 98.
    Hartmann FJ, Mrdjen D, McCaffrey E, Glass DR, Greenwald NF et al. 2021. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39:2186–97
    [Google Scholar]
  99. 99.
    Shay T, Kang J. 2013. Immunological Genome Project and systems immunology. Trends Immunol 34:12602–9
    [Google Scholar]
  100. 100.
    Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD et al. 2021. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27:5904–16
    [Google Scholar]
  101. 101.
    Gainullina A, Mogilenko DA, Huang L-H, Todorov H, Narang Vet al 2023. Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes. Cell Rep 422112046
  102. 102.
    Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J et al. 2021. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184:164168–85.e21
    [Google Scholar]
  103. 103.
    Fitzgerald KC, Smith MD, Kim S, Sotirchos ES, Kornberg MD et al. 2021. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2:10100424
    [Google Scholar]
  104. 104.
    Lee JW, Su Y, Baloni P, Chen D, Pavlovitch-Bedzyk AJ et al. 2022. Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nat. Biotechnol. 40:1110–20
    [Google Scholar]
  105. 105.
    Gilmore IS, Heiles S, Pieterse CL. 2019. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12:201–24
    [Google Scholar]
  106. 106.
    Taylor MJ, Lukowski JK, Anderton CR. 2021. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics. J. Am. Soc. Mass Spectrom. 32:4872–94
    [Google Scholar]
  107. 107.
    Buchberger AR, DeLaney K, Johnson J, Li L 2018. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90:1240–65
    [Google Scholar]
  108. 108.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. 2007. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4:10828–33
    [Google Scholar]
  109. 109.
    Rappez L, Stadler M, Triana S, Gathungu RM, Ovchinnikova K et al. 2021. SpaceM reveals metabolic states of single cells. Nat. Methods 18:7799–805
    [Google Scholar]
  110. 110.
    Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A et al. 2020. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217:8e20191920
    [Google Scholar]
  111. 111.
    Comi TJ, Neumann EK, Do TD, Sweedler JV. 2017. microMS: a Python platform for image-guided mass spectrometry profiling. J. Am. Soc. Mass Spectrom. 28:91919–28
    [Google Scholar]
  112. 112.
    Castro DC, Xie YR, Rubakhin SS, Romanova EV, Sweedler JV. 2021. Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization. Nat. Methods 18:101233–38
    [Google Scholar]
  113. 113.
    Wang L, Xing X, Zeng X, Jackson SR, TeSlaa T et al. 2022. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19:2223–30
    [Google Scholar]
  114. 114.
    Winograd N. 2018. Gas cluster ion beams for secondary ion mass spectrometry. Annu. Rev. Anal. Chem. 11:29–48
    [Google Scholar]
  115. 115.
    Yuan Z, Zhou Q, Cai L, Pan L, Sun W et al. 2021. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nat. Methods 18:101223–32
    [Google Scholar]
  116. 116.
    Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F et al. 2017. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14:121175–83
    [Google Scholar]
  117. 117.
    Ganesh S, Hu T, Woods E, Allam M, Cai S et al. 2021. Spatially resolved 3D metabolomic profiling in tissues. Sci. Adv. 7:5eabd0957
    [Google Scholar]
  118. 118.
    Pareek V, Tian H, Winograd N, Benkovic SJ. 2020. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368:6488283–90
    [Google Scholar]
  119. 119.
    Kompauer M, Heiles S, Spengler B. 2017. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14:190–96
    [Google Scholar]
  120. 120.
    Geier B, Sogin EM, Michellod D, Janda M, Kompauer M et al. 2020. Spatial metabolomics of in situ host-microbe interactions at the micrometre scale. Nat. Microbiol. 5:3498–510
    [Google Scholar]
  121. 121.
    Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. 2020. Multimodal imaging mass spectrometry: next generation molecular mapping in biology and medicine. J. Am. Soc. Mass Spectrom. 31:122401–15
    [Google Scholar]
  122. 122.
    Kaya I, Sämfors S, Levin M, Borén J, Fletcher JS. 2020. Multimodal MALDI imaging mass spectrometry reveals spatially correlated lipid and protein changes in mouse heart with acute myocardial infarction. J. Am. Soc. Mass Spectrom. 31:102133–42
    [Google Scholar]
  123. 123.
    Borodinov N, Lorenz M, King ST, Ievlev AV, Ovchinnikova OS. 2020. Toward nanoscale molecular mass spectrometry imaging via physically constrained machine learning on co-registered multimodal data. npj Comput. Mater. 6:83
    [Google Scholar]
  124. 124.
    Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G et al. 2022. Sphingolipids control dermal fibroblast heterogeneity. Science 376:6590eabh1623
    [Google Scholar]
  125. 125.
    Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K et al. 2022. Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 40:6639–55.e13
    [Google Scholar]
  126. 126.
    Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:62131258096
    [Google Scholar]
  127. 127.
    Adli M. 2018. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9:11911
    [Google Scholar]
  128. 128.
    Huang H, Zhou P, Wei J, Long L, Shi H et al. 2021. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 184:51245–61.e21
    [Google Scholar]
  129. 129.
    Sugiura A, Andrejeva G, Voss K, Heintzman DR, Xu X et al. 2022. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55:165–81.e9
    [Google Scholar]
  130. 130.
    Huang B, Phelan JD, Preite S, Gomez-Rodriguez J, Johansen KH et al. 2022. In vivo CRISPR screens reveal a HIF-1α-mTOR-network regulates T follicular helper versus Th1 cells. Nat. Commun. 13:1805
    [Google Scholar]
  131. 131.
    Adamski J. 2012. Genome-wide association studies with metabolomics. Genome Med 4:434
    [Google Scholar]
  132. 132.
    Kastenmüller G, Raffler J, Gieger C, Suhre K. 2015. Genetics of human metabolism: an update. Hum. Mol. Genet. 24:R1R93–101
    [Google Scholar]
  133. 133.
    Nath AP, Ritchie SC, Byars SG, Fearnley LG, Havulinna AS et al. 2017. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation. Genome Biol 18:1146
    [Google Scholar]
  134. 134.
    Burgener A-V, Bantug GR, Meyer BJ, Higgins R, Ghosh A et al. 2019. SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2. Nat. Immunol. 20:101311–21
    [Google Scholar]
  135. 135.
    Verbeeck N, Caprioli RM, Van de Plas R. 2020. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom. Rev. 39:3245–91
    [Google Scholar]
  136. 136.
    van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9:862579–605
    [Google Scholar]
  137. 137.
    McInnes L, Healy J, Saul N, Grossberger L. 2018. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3:29861
    [Google Scholar]
  138. 138.
    Abdelmoula WM, Lopez BG-C, Randall EC, Kapur T, Sarkaria JN et al. 2021. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat. Commun. 12:15544
    [Google Scholar]
  139. 139.
    Zhang W, Claesen M, Moerman T, Groseclose MR, Waelkens E et al. 2021. Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning. Anal. Bioanal. Chem. 413:102803–19
    [Google Scholar]
  140. 140.
    Ovchinnikova K, Stuart L, Rakhlin A, Nikolenko S, Alexandrov T. 2020. ColocML: machine learning quantifies co-localization between mass spectrometry images. Bioinformatics 36:103215–24
    [Google Scholar]
  141. 141.
    Alexandrov T, Bartels A. 2013. Testing for presence of known and unknown molecules in imaging mass spectrometry. Bioinformatics 29:182335–42
    [Google Scholar]
  142. 142.
    Paine MRL, Kim J, Bennett RV, Parry RM, Gaul DA et al. 2016. Whole reproductive system non-negative matrix factorization mass spectrometry imaging of an early-stage ovarian cancer mouse model. PLOS ONE 11:5e0154837
    [Google Scholar]
  143. 143.
    Moerman AM, Visscher M, Slijkhuis N, Van Gaalen K, Heijs B et al. 2021. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J. Lipid Res. 62:100020
    [Google Scholar]
  144. 144.
    Sun C, Li T, Song X, Huang L, Zang Q et al. 2019. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. PNAS 116:152–57
    [Google Scholar]
  145. 145.
    Tuck M, Grélard F, Blanc L, Desbenoit N. 2022. MALDI-MSI towards multimodal imaging: challenges and perspectives. Front. Chem. 10:904688
    [Google Scholar]
  146. 146.
    Van de Plas R, Yang J, Spraggins J, Caprioli RM 2015. Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat. Methods 12:4366–72
    [Google Scholar]
  147. 147.
    Goossens P, Lu C, Cao J, Gijbels MJ, Karel JMH et al. 2022. Integrating multiplex immunofluorescent and mass spectrometry imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metab. 34:81214–25.e6
    [Google Scholar]
  148. 148.
    Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T et al. 2018. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14:6e8124
    [Google Scholar]
  149. 149.
    Velten B, Braunger JM, Argelaguet R, Arnol D, Wirbel J et al. 2022. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19:2179–86
    [Google Scholar]
  150. 150.
    Sindelar M, Patti GJ. 2020. Chemical discovery in the era of metabolomics. J. Am. Chem. Soc. 142:209097–105
    [Google Scholar]
  151. 151.
    Stancliffe E, Schwaiger-Haber M, Sindelar M, Patti GJ. 2021. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat. Methods 18:7779–87
    [Google Scholar]
  152. 152.
    Pomyen Y, Wanichthanarak K, Poungsombat P, Fahrmann J, Grapov D, Khoomrung S. 2020. Deep metabolome: applications of deep learning in metabolomics. Comput. Struct. Biotechnol. J. 18:2818–25
    [Google Scholar]
  153. 153.
    Ji H, Deng H, Lu H, Zhang Z. 2020. Predicting a molecular fingerprint from an electron ionization mass spectrum with deep neural networks. Anal. Chem. 92:138649–53
    [Google Scholar]
  154. 154.
    Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D et al. 2017. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14:157–60
    [Google Scholar]
  155. 155.
    Alexandrov T, Ovchinnikova K, Palmer A, Kovalev V, Tarasov A et al. 2019. METASPACE: a community-populated knowledge base of spatial metabolomes in health and disease. bioRxiv 539478, Feb. 13. https://doi.org/10.1101/539478
  156. 156.
    da Silva RR, Dorrestein PC, Quinn RA. 2015. Illuminating the dark matter in metabolomics. PNAS 112:4112549–50
    [Google Scholar]
  157. 157.
    Shen X, Wang R, Xiong X, Yin Y, Cai Y et al. 2019. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat. Commun. 10:11516
    [Google Scholar]
  158. 158.
    Chen L, Lu W, Wang L, Xing X, Chen Z et al. 2021. Metabolite discovery through global annotation of untargeted metabolomics data. Nat. Methods 18:111377–85
    [Google Scholar]
  159. 159.
    Hastings J, Owen G, Dekker A, Ennis M, Kale N et al. 2016. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:D1D1214–19
    [Google Scholar]
  160. 160.
    Bansal P, Morgat A, Axelsen KB, Muthukrishnan V, Coudert E et al. 2022. Rhea, the reaction knowledgebase in 2022. Nucleic Acids Res 50:D1D693–700
    [Google Scholar]
  161. 161.
    Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:127–30
    [Google Scholar]
  162. 162.
    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K et al. 2018. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D1D608–17
    [Google Scholar]
  163. 163.
    O'Donnell VB, Dennis EA, Wakelam MJO, Subramaniam S. 2019. LIPID MAPS: serving the next generation of lipid researchers with tools, resources, data, and training. Sci. Signal. 12:563eaaw2964
    [Google Scholar]
  164. 164.
    Jassal B, Matthews L, Viteri G, Gong C, Lorente P et al. 2020. The reactome pathway knowledgebase. Nucleic Acids Res 48:D1D498–503
    [Google Scholar]
  165. 165.
    MohammadiPeyhani H, Hafner J, Sveshnikova A, Viterbo V, Hatzimanikatis V. 2022. Expanding biochemical knowledge and illuminating metabolic dark matter with ATLASx. Nat. Commun. 13:11560
    [Google Scholar]
  166. 166.
    Gene Ontol. Consort 2019. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47:D1D330–38
    [Google Scholar]
  167. 167.
    Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. 2011. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:121739–40
    [Google Scholar]
  168. 168.
    Zhang Y, Ma Y, Huang Y, Zhang Y, Jiang Q et al. 2020. Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data. Comput. Struct. Biotechnol. J. 18:2953–61
    [Google Scholar]
  169. 169.
    Li S, Park Y, Duraisingham S, Strobel FH, Khan N et al. 2013. Predicting network activity from high throughput metabolomics. PLOS Comput. Biol. 9:7e1003123
    [Google Scholar]
  170. 170.
    Gaud C, Sousa BC, Nguyen A, Fedorova M, Ni Z et al. 2021. BioPAN: a web-based tool to explore mammalian lipidome metabolic pathways on LIPID MAPS. F1000Research 10:4
    [Google Scholar]
  171. 171.
    Pang Z, Zhou G, Ewald J, Chang L, Hacariz O et al. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17:81735–61
    [Google Scholar]
  172. 172.
    Wieder C, Lai RPJ, Ebbels T. 2022. Single sample pathway analysis in metabolomics: performance evaluation and application. bioRxiv 2022.04.11.487976, Apr. 12
  173. 173.
    Amara A, Frainay C, Jourdan F, Naake T, Neumann S et al. 2022. Networks and graphs discovery in metabolomics data analysis and interpretation. Front. Mol. Biosci. 9:841373
    [Google Scholar]
  174. 174.
    Hafner J, Hatzimanikatis V. 2021. NICEpath: finding metabolic pathways in large networks through atom-conserving substrate-product pairs. Bioinformatics 37:203560–68
    [Google Scholar]
  175. 175.
    Alcaraz N, Pauling J, Batra R, Barbosa E, Junge A et al. 2014. KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape. BMC Syst. Biol. 8:99
    [Google Scholar]
  176. 176.
    Emelianova M, Gainullina A, Poperechnyi N, Loboda A, Artyomov M, Sergushichev A. 2022. Shiny GATOM: omics-based identification of regulated metabolic modules in atom transition networks. Nucleic Acids Res 50:W1W690–96
    [Google Scholar]
  177. 177.
    Wiwie C, Kuznetsova I, Mostafa A, Rauch A, Haakonsson A et al. 2019. Time-resolved systems medicine reveals viral infection-modulating host targets. Syst. Med. 2:11–9
    [Google Scholar]
  178. 178.
    Orth JD, Thiele I, Palsson BØ. 2010. What is flux balance analysis?. Nat. Biotechnol. 28:3245–48
    [Google Scholar]
  179. 179.
    Blazier A, Papin J. 2012. Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3:299
    [Google Scholar]
  180. 180.
    Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE et al. 2016. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24:1158–66
    [Google Scholar]
  181. 181.
    Hrovatin K, Fischer DS, Theis FJ. 2022. Toward modeling metabolic state from single-cell transcriptomics. Mol. Metab. 57:101396
    [Google Scholar]
  182. 182.
    Alghamdi N, Chang W, Dang P, Lu X, Wan C et al. 2021. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res 31:101867–84
    [Google Scholar]
  183. 183.
    Winter G, Krömer JO. 2013. Fluxomics—connecting ’omics analysis and phenotypes. Environ. Microbiol. 15:71901–16
    [Google Scholar]
  184. 184.
    Byrd JB, Greene AC, Prasad DV, Jiang X, Greene CS. 2020. Responsible, practical genomic data sharing that accelerates research. Nat. Rev. Genet. 21:10615–29
    [Google Scholar]
  185. 185.
    Clough E, Barrett T. 2016. The Gene Expression Omnibus Database. Statistical Genomics: Methods and Protocols E Mathé, S Davis 93–110. New York: Springer
    [Google Scholar]
  186. 186.
    Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA et al. 2015. ArrayExpress update—simplifying data submissions. Nucleic Acids Res 43:D1D1113–16
    [Google Scholar]
  187. 187.
    Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O'Sullivan C. 2022. The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Res 50:D1D387–90
    [Google Scholar]
  188. 188.
    Sud M, Fahy E, Cotter D, Azam K, Vadivelu I et al. 2016. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44:D1D463–70
    [Google Scholar]
  189. 189.
    Haug K, Cochrane K, Nainala VC, Williams M, Chang J et al. 2020. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res 48:D1D440–44
    [Google Scholar]
  190. 190.
    Alexandrov T. 2020. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Annu. Rev. Biomed. Data Sci. 3:61–87
    [Google Scholar]
  191. 191.
    Monge ME, Dodds JN, Baker ES, Edison AS, Fernández FM 2019. Challenges in identifying the dark molecules of life. Annu. Rev. Anal. Chem. 12:177–99
    [Google Scholar]
  192. 192.
    Zhou X, Franklin RA, Adler M, Jacox JB, Bailis W et al. 2018. Circuit design features of a stable two-cell system. Cell 172:4744–57.e17
    [Google Scholar]
  193. 193.
    Rossi G, Manfrin A, Lutolf MP. 2018. Progress and potential in organoid research. Nat. Rev. Genet. 19:11671–87
    [Google Scholar]
  194. 194.
    Perry WJ, Grunenwald CM, Van de Plas R, Witten JC, Martin DR et al. 2022. Visualizing Staphylococcus aureus pathogenic membrane modification within the host infection environment by multimodal imaging mass spectrometry. Cell Chem. Biol. 29:71209–17.e4
    [Google Scholar]
  195. 195.
    Blanc L, Daudelin IB, Podell BK, Chen P-Y, Zimmerman M et al. 2018. High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. eLife 7:e41115
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101220-031513
Loading
/content/journals/10.1146/annurev-immunol-101220-031513
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error