1932

Abstract

Transforming growth factor β (TGF-β) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-β maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-β promotes the differentiation of Th17 and Th9 cells. TGF-β is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-β is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-β also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-β regulation of T cells and provide a personal perspective of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101921-045939
2023-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101921-045939.html?itemId=/content/journals/10.1146/annurev-immunol-101921-045939&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sporn MB. 2006. The early history of TGF-beta, and a brief glimpse of its future. Cytokine Growth Factor Rev. 17:3–7
    [Google Scholar]
  2. 2.
    Mosmann TR, Coffman RL. 1989. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:145–73
    [Google Scholar]
  3. 3.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–69
    [Google Scholar]
  4. 4.
    Zhu J, Paul WE. 2010. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol. Rev. 238:247–62
    [Google Scholar]
  5. 5.
    Dong C. 2008. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8:337–48
    [Google Scholar]
  6. 6.
    Littman DR, Rudensky AY. 2010. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–58
    [Google Scholar]
  7. 7.
    Kaplan MH, Hufford MM, Olson MR. 2015. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 15:295–307
    [Google Scholar]
  8. 8.
    Sakaguchi S. 2000. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–58
    [Google Scholar]
  9. 9.
    Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63
    [Google Scholar]
  10. 10.
    Jameson SC, Masopust D. 2018. Understanding subset diversity in T cell memory. Immunity 48:214–26
    [Google Scholar]
  11. 11.
    Kok L, Masopust D, Schumacher TN. 2022. The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nat. Rev. Immunol. 22:283–93
    [Google Scholar]
  12. 12.
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145–49
    [Google Scholar]
  13. 13.
    Cheroutre H, Lambolez F, Mucida D. 2011. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11:445–56
    [Google Scholar]
  14. 14.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. 2004. NKT cells: What's in a name?. Nat. Rev. Immunol. 4:231–37
    [Google Scholar]
  15. 15.
    Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. 1981. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. PNAS 78:5339–43
    [Google Scholar]
  16. 16.
    Chen W, Ten Dijke P. 2016. Immunoregulation by members of the TGFβ superfamily. Nat. Rev. Immunol. 16:723–40
    [Google Scholar]
  17. 17.
    Massague J. 1996. TGFβ signaling: receptors, transducers, and Mad proteins. Cell 85:947–50
    [Google Scholar]
  18. 18.
    Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M et al. 2006. A “traffic control” role for TGFβ3: orchestrating dermal and epidermal cell motility during wound healing. J. Cell Biol. 172:1093–105
    [Google Scholar]
  19. 19.
    Wu L, Siddiqui A, Morris DE, Cox DA, Roth SI, Mustoe TA. 1997. Transforming growth factor β3 (TGFβ3) accelerates wound healing without alteration of scar prominence: histologic and competitive reverse-transcription-polymerase chain reaction studies. Arch. Surg. 132:753–60
    [Google Scholar]
  20. 20.
    Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M et al. 1993. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. PNAS 90:770–74
    [Google Scholar]
  21. 21.
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ et al. 1992. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–99
    [Google Scholar]
  22. 22.
    Li MO, Sanjabi S, Flavell RA. 2006. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25:455–71
    [Google Scholar]
  23. 23.
    Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W 2008. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9:632–40
    [Google Scholar]
  24. 24.
    Marie JC, Liggitt D, Rudensky AY. 2006. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25:441–54
    [Google Scholar]
  25. 25.
    Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R et al. 2010. Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185:842–55
    [Google Scholar]
  26. 26.
    Derynck R, Zhang YE. 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–84
    [Google Scholar]
  27. 27.
    Letterio JJ, Roberts AB. 1998. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16:137–61
    [Google Scholar]
  28. 28.
    Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. 2006. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24:99–146
    [Google Scholar]
  29. 29.
    Massague J. 1996. TGFβ signaling: receptors, transducers, and Mad proteins. Cell 85:947–50
    [Google Scholar]
  30. 30.
    Rubtsov YP, Rudensky AY. 2007. TGFβ signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 7:443–53
    [Google Scholar]
  31. 31.
    Travis MA, Sheppard D. 2014. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32:51–82
    [Google Scholar]
  32. 32.
    Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. 2022. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 7:eabi4613
    [Google Scholar]
  33. 33.
    Shevach EM. 2017. Garp as a therapeutic target for modulation of T regulatory cell function. Expert Opin. Ther. Targets 21:191–200
    [Google Scholar]
  34. 34.
    Pesu M, Watford WT, Wei L, Xu L, Fuss I et al. 2008. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 455:246–50
    [Google Scholar]
  35. 35.
    Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V et al. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10:1199–207
    [Google Scholar]
  36. 36.
    Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE 2008. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol. Cell 31:918–24
    [Google Scholar]
  37. 37.
    Chen W, Konkel JE. 2015. Development of thymic Foxp3+ regulatory T cells: TGF-beta matters. Eur. J. Immunol. 45:958–65
    [Google Scholar]
  38. 38.
    Klein L, Robey EA, Hsieh CS. 2019. Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 19:7–18
    [Google Scholar]
  39. 39.
    Konkel JE, Jin W, Abbatiello B, Grainger JR, Chen W 2014. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. PNAS 111:E465–73
    [Google Scholar]
  40. 40.
    Ouyang W, Beckett O, Ma Q, Li MO 2010. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32:642–53
    [Google Scholar]
  41. 41.
    Konkel JE, Maruyama T, Carpenter AC, Xiong Y, Zamarron BF et al. 2011. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat. Immunol. 12:312–19
    [Google Scholar]
  42. 42.
    Etzensperger R, Kadakia T, Tai X, Alag A, Guinter TI et al. 2017. Identification of lineage-specifying cytokines that signal all CD8+-cytotoxic-lineage-fate ‘decisions’ in the thymus. Nat. Immunol. 18:1218–27
    [Google Scholar]
  43. 43.
    Ouyang W, Oh SA, Ma Q, Bivona MR, Zhu J, Li MO. 2013. TGF-beta cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor alpha expression. Immunity 39:335–46
    [Google Scholar]
  44. 44.
    Takada K, Jameson SC. 2009. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9:823–32
    [Google Scholar]
  45. 45.
    Jenkins MK. 1994. The ups and downs of T cell costimulation. Immunity 1:443–46
    [Google Scholar]
  46. 46.
    Tu E, Chia CPZ, Chen W, Zhang D, Park SA et al. 2018. T cell receptor-regulated TGF-beta type I receptor expression determines T cell quiescence and activation. Immunity 48:745–59.e6
    [Google Scholar]
  47. 47.
    Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. 2010. The polarization of immune cells in the tumour environment by TGFβ. Nat. Rev. Immunol. 10:554–67
    [Google Scholar]
  48. 48.
    Gorelik L, Flavell RA. 2002. Transforming growth factor-beta in T-cell biology. Nat. Rev. Immunol. 2:46–53
    [Google Scholar]
  49. 49.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL et al. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6:1123–32
    [Google Scholar]
  50. 50.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R et al. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133–41
    [Google Scholar]
  51. 51.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27:485–517
    [Google Scholar]
  52. 52.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–48
    [Google Scholar]
  53. 53.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38
    [Google Scholar]
  54. 54.
    Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC et al. 2006. Transforming growth factor-beta induces development of the TH17 lineage. Nature 441:231–34
    [Google Scholar]
  55. 55.
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. 2006. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89
    [Google Scholar]
  56. 56.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L et al. 2003. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198:1875–86
    [Google Scholar]
  57. 57.
    Zhou L, Littman DR. 2009. Transcriptional regulatory networks in Th17 cell differentiation. Curr. Opin. Immunol. 21:146–52
    [Google Scholar]
  58. 58.
    Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D et al. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282:9358–63
    [Google Scholar]
  59. 59.
    Ghoreschi K, Laurence A, Yang XP, Hirahara K, O'Shea JJ. 2011. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 32:395–401
    [Google Scholar]
  60. 60.
    Zhang S, Takaku M, Zou L, Gu AD, Chou WC et al. 2017. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551:105–9
    [Google Scholar]
  61. 61.
    Maruyama T, Li J, Vaque JP, Konkel JE, Wang W et al. 2011. Control of the differentiation of regulatory T cells and TH17 cells by the DNA-binding inhibitor Id3. Nat. Immunol. 12:86–95
    [Google Scholar]
  62. 62.
    Zhang F, Fuss IJ, Yang Z, Strober W 2014. Transcription of RORγt in developing Th17 cells is regulated by E-proteins. Mucosal Immunol. 7:521–32
    [Google Scholar]
  63. 63.
    Tanaka S, Jiang Y, Martinez GJ, Tanaka K, Yan X et al. 2018. Trim33 mediates the proinflammatory function of Th17 cells. J. Exp. Med. 215:1853–68
    [Google Scholar]
  64. 64.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Investig. 101:890–98
    [Google Scholar]
  65. 65.
    Kasagi S, Zhang P, Che L, Abbatiello B, Maruyama T et al. 2014. In vivo-generated antigen-specific regulatory T cells treat autoimmunity without compromising antibacterial immune response. Sci. Transl. Med. 6:241ra78
    [Google Scholar]
  66. 66.
    Perruche S, Zhang P, Liu Y, Saas P, Bluestone JA, Chen W 2008. CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells. Nat. Med. 14:528–35
    [Google Scholar]
  67. 67.
    Esplugues E, Huber S, Gagliani N, Hauser AE, Town T et al. 2011. Control of TH17 cells occurs in the small intestine. Nature 475:514–18
    [Google Scholar]
  68. 68.
    Zhang D, Jin W, Wu R, Li J, Park SA et al. 2019. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-beta cytokine activation. Immunity 51:671–81.e5
    [Google Scholar]
  69. 69.
    Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO. 2011. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34:396–408
    [Google Scholar]
  70. 70.
    Diveu C, McGeachy MJ, Cua DJ. 2008. Cytokines that regulate autoimmunity. Curr. Opin. Immunol. 20:663–68
    [Google Scholar]
  71. 71.
    Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ et al. 2010. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33:279–88
    [Google Scholar]
  72. 72.
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ et al. 2010. Generation of pathogenic TH17 cells in the absence of TGF-beta signalling. Nature 467:967–71
    [Google Scholar]
  73. 73.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S et al. 2012. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13:991–99
    [Google Scholar]
  74. 74.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. 2007. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8:942–49
    [Google Scholar]
  75. 75.
    Chen Z, Tato CM, Muul L, Laurence A, O'Shea JJ. 2007. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56:2936–46
    [Google Scholar]
  76. 76.
    van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW et al. 2007. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–69
    [Google Scholar]
  77. 77.
    Manel N, Unutmaz D, Littman DR. 2008. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9:641–49
    [Google Scholar]
  78. 78.
    Lu Y, Hong S, Li H, Park J, Hong B et al. 2012. Th9 cells promote antitumor immune responses in vivo. J. Clin. Investig. 122:4160–71
    [Google Scholar]
  79. 79.
    Schmitt E, Germann T, Goedert S, Hoehn P, Huels C et al. 1994. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J. Immunol. 153:3989–96
    [Google Scholar]
  80. 80.
    Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W et al. 2008. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat. Immunol. 9:1347–55
    [Google Scholar]
  81. 81.
    Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A et al. 2008. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9:1341–46
    [Google Scholar]
  82. 82.
    Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD et al. 2010. TGF-beta induces IL-9 production from human Th17 cells. J. Immunol. 185:46–54
    [Google Scholar]
  83. 83.
    Uyttenhove C, Brombacher F, Van Snick J. 2010. TGF-beta interactions with IL-1 family members trigger IL-4-independent IL-9 production by mouse CD4+ T cells. Eur. J. Immunol. 40:2230–35
    [Google Scholar]
  84. 84.
    Wong MT, Ye JJ, Alonso MN, Landrigan A, Cheung RK et al. 2010. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol. Cell Biol. 88:624–31
    [Google Scholar]
  85. 85.
    Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C 2010. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol. 11:250–56
    [Google Scholar]
  86. 86.
    Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K et al. 2015. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4+ T cells. Nat. Immunol. 16:1077–84
    [Google Scholar]
  87. 87.
    Xiao X, Balasubramanian S, Liu W, Chu X, Wang H et al. 2012. OX40 signaling favors the induction of TH9 cells and airway inflammation. Nat. Immunol. 13:981–90
    [Google Scholar]
  88. 88.
    Kaplan MH. 2017. The transcription factor network in Th9 cells. Semin. Immunopathol. 39:11–20
    [Google Scholar]
  89. 89.
    Elyaman W, Bassil R, Bradshaw EM, Orent W, Lahoud Y et al. 2012. Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36:623–34
    [Google Scholar]
  90. 90.
    Tamiya T, Ichiyama K, Kotani H, Fukaya T, Sekiya T et al. 2013. Smad2/3 and IRF4 play a cooperative role in IL-9-producing T cell induction. J. Immunol. 191:2360–71
    [Google Scholar]
  91. 91.
    Wang A, Pan D, Lee YH, Martinez GJ, Feng XH, Dong C. 2013. Cutting edge: Smad2 and Smad4 regulate TGF-β-mediated Il9 gene expression via EZH2 displacement. J. Immunol. 191:4908–12
    [Google Scholar]
  92. 92.
    Wilhelm C, Turner JE, Van Snick J, Stockinger B. 2012. The many lives of IL-9: a question of survival?. Nat. Immunol. 13:637–41
    [Google Scholar]
  93. 93.
    Fontenot JD, Gavin MA, Rudensky AY. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4:330–36
    [Google Scholar]
  94. 94.
    Hori S, Nomura T, Sakaguchi S. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–61
    [Google Scholar]
  95. 95.
    Khattri R, Cox T, Yasayko SA, Ramsdell F. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4:337–42
    [Google Scholar]
  96. 96.
    Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. 2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6:1219–27
    [Google Scholar]
  97. 97.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155:1151–64
    [Google Scholar]
  98. 98.
    Shevach EM. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–45
    [Google Scholar]
  99. 99.
    Chen WJ, Frank M, Jin WW, Lei KJ, Hardegen N, Wahl SM. 2001. TGF-β induces anergic/suppressor CD4+ CD25+ CTLA-4+ T cells. J. Leuk. Biol. 2001:Suppl.102 Abstr. )
    [Google Scholar]
  100. 100.
    Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA. 2001. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol. 166:7282–89
    [Google Scholar]
  101. 101.
    Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L et al. 2004. Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J. Immunol. 172:6003–10
    [Google Scholar]
  102. 102.
    Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. 2004. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172:5149–53
    [Google Scholar]
  103. 103.
    Fu S, Zhang N, Yopp AC, Chen D, Mao M et al. 2004. TGF-β induces Foxp3 + T-regulatory cells from CD4 + CD25 − precursors. Am. J. Transplant. 4:1614–27
    [Google Scholar]
  104. 104.
    Rao PE, Petrone AL, Ponath PD. 2005. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-β. J. Immunol. 174:1446–55
    [Google Scholar]
  105. 105.
    Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. 2004. Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J. Immunol. 172:5213–21
    [Google Scholar]
  106. 106.
    Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. 2007. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204:1765–74
    [Google Scholar]
  107. 107.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM et al. 2007. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204:1757–64
    [Google Scholar]
  108. 108.
    Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T et al. 2012. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–99
    [Google Scholar]
  109. 109.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:1775–85
    [Google Scholar]
  110. 110.
    Mucida D, Park Y, Kim G, Turovskaya O, Scott I et al. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–60
    [Google Scholar]
  111. 111.
    Floess S, Freyer J, Siewert C, Baron U, Olek S et al. 2007. Epigenetic control of the foxp3 locus in regulatory T cells. PLOS Biol 5:e38
    [Google Scholar]
  112. 112.
    Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA et al. 2016. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213:377–97
    [Google Scholar]
  113. 113.
    Yue X, Samaniego-Castruita D, Gonzalez-Avalos E, Li X, Barwick BG, Rao A. 2021. Whole-genome analysis of TET dioxygenase function in regulatory T cells. EMBO Rep 22:e52716
    [Google Scholar]
  114. 114.
    Chen W, Frank ME, Jin W, Wahl SM 2001. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14:715–25
    [Google Scholar]
  115. 115.
    Chen X, Yang X, Yuan P, Jin R, Bao L et al. 2021. Modular immune-homeostatic microparticles promote immune tolerance in mouse autoimmune models. Sci. Transl. Med. 13:eaaw9668
    [Google Scholar]
  116. 116.
    Chen Z, Zhang T, Kam HT, Qiao D, Jin W et al. 2021. Induction of antigen-specific Treg cells in treating autoimmune uveitis via bystander suppressive pathways without compromising anti-tumor immunity. eBioMedicine 70:103496
    [Google Scholar]
  117. 117.
    Xu J, Liu O, Wang D, Wang F, Zhang D et al. 2022. In vivo generating SSA/Ro-antigen specific regulatory T cells improves experimental Sjögren's syndrome in mice. Arthritis Rheumatol 74:101699–705
    [Google Scholar]
  118. 118.
    Zhang D, Chia C, Jiao X, Jin W, Kasagi S et al. 2017. d-Mannose induces regulatory T cells and suppresses immunopathology. Nat. Med. 23:1036–45
    [Google Scholar]
  119. 119.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. 2010. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10:490–500
    [Google Scholar]
  120. 120.
    Amarnath S, Dong L, Li J, Wu Y, Chen W 2007. Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25 T cells. Retrovirology 4:57
    [Google Scholar]
  121. 121.
    Tran DQ, Ramsey H, Shevach EM. 2007. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110:2983–90
    [Google Scholar]
  122. 122.
    Chen W, Jin W, Tian H, Sicurello P, Frank M et al. 2001. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J. Exp. Med. 194:439–53
    [Google Scholar]
  123. 123.
    Kawakami R, Kitagawa Y, Chen KY, Arai M, Ohara D et al. 2021. Distinct Foxp3 enhancer elements coordinate development, maintenance, and function of regulatory T cells. Immunity 54:947–61.e8
    [Google Scholar]
  124. 124.
    Kim HP, Leonard WJ. 2007. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204:1543–51
    [Google Scholar]
  125. 125.
    Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K et al. 2017. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol. 18:173–83
    [Google Scholar]
  126. 126.
    Placek K, Hu G, Cui K, Zhang D, Ding Y et al. 2017. MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat. Immunol. 18:1035–45
    [Google Scholar]
  127. 127.
    Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC et al. 2009. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31:932–40
    [Google Scholar]
  128. 128.
    Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. 2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9:194–202
    [Google Scholar]
  129. 129.
    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–12
    [Google Scholar]
  130. 130.
    Dikiy S, Li J, Bai L, Jiang M, Janke L et al. 2021. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 54:931–46.e11
    [Google Scholar]
  131. 131.
    Chen W, Wahl SM. 2003. TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor. Rev. 14:85–89
    [Google Scholar]
  132. 132.
    Nakamura K, Kitani A, Strober W. 2001. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 194:629–44
    [Google Scholar]
  133. 133.
    Stockis J, Colau D, Coulie PG, Lucas S 2009. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur. J. Immunol. 39:3315–22
    [Google Scholar]
  134. 134.
    Azhar M, Yin M, Bommireddy R, Duffy JJ, Yang J et al. 2009. Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis 47:423–31
    [Google Scholar]
  135. 135.
    Choi G, Kim BS, Chang JH, Chung Y. 2021. Defining the role of transforming growth factor β1 in Foxp3+ T regulatory cells. Immunity 54:393–94
    [Google Scholar]
  136. 136.
    Turner JA, Stephen-Victor E, Wang S, Rivas MN, Abdel-Gadir A et al. 2020. Regulatory T cell-derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity. Immunity 53:1202–14.e6
    [Google Scholar]
  137. 137.
    Velegraki M, Salem M, Ansa-Addo EA, Wu BX, Li Z. 2021. Autocrine transforming growth factor β1 in regulatory T cell biology—gone but not missed. Immunity 54:395–96
    [Google Scholar]
  138. 138.
    Wang R, Zhu J, Dong X, Shi M, Lu C, Springer TA. 2012. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol. Cell 23:1129–39
    [Google Scholar]
  139. 139.
    Worthington JJ, Kelly A, Smedley C, Bauche D, Campbell S et al. 2015. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42:903–15
    [Google Scholar]
  140. 140.
    Travis MA, Reizis B, Melton AC, Masteller E, Tang Q et al. 2007. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449:361–65
    [Google Scholar]
  141. 141.
    Metelli A, Wu BX, Riesenberg B, Guglietta S, Huck JD et al. 2020. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci. Transl. Med. 12:eaay4860
    [Google Scholar]
  142. 142.
    Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. 2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10:595–602
    [Google Scholar]
  143. 143.
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y et al. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–91
    [Google Scholar]
  144. 144.
    Konkel JE, Zhang D, Zanvit P, Chia C, Zangarle-Murray T et al. 2017. Transforming growth factor-beta signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity 46:660–74
    [Google Scholar]
  145. 145.
    Yang K, Kallies A. 2021. Tissue-specific differentiation of CD8+ resident memory T cells. Trends Immunol. 42:876–90
    [Google Scholar]
  146. 146.
    Mishra S, Liao W, Liu Y, Yang M, Ma C et al. 2021. TGF-β and Eomes control the homeostasis of CD8+ regulatory T cells. J. Exp. Med. 218:e20200030
    [Google Scholar]
  147. 147.
    McCarron MJ, Marie JC. 2014. TGF-beta prevents T follicular helper cell accumulation and B cell autoreactivity. J. Clin. Investig. 124:4375–86
    [Google Scholar]
  148. 148.
    Kim YJ, Stringfield TM, Chen Y, Broxmeyer HE. 2005. Modulation of cord blood CD8+ T-cell effector differentiation by TGF-β1 and 4–1BB costimulation. Blood 105:274–81
    [Google Scholar]
  149. 149.
    McKarns SC, Schwartz RH. 2005. Distinct effects of TGF-beta 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J. Immunol. 174:2071–83
    [Google Scholar]
  150. 150.
    Thomas DA, Massague J. 2005. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–80
    [Google Scholar]
  151. 151.
    Budhu S, Schaer DA, Li Y, Toledo-Crow R, Panageas K et al. 2017. Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci. Signal. 10:eaak9702
    [Google Scholar]
  152. 152.
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K et al. 2018. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–48
    [Google Scholar]
  153. 153.
    Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J et al. 2018. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–43
    [Google Scholar]
  154. 154.
    Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A et al. 2016. TGFβ1-media3ted SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov. 6:366–81
    [Google Scholar]
  155. 155.
    Alvarez M, Bouchlaka MN, Sckisel GD, Sungur CM, Chen M, Murphy WJ 2014. Increased antitumor effects using IL-2 with anti-TGF-β reveals competition between mouse NK and CD8 T cells. J. Immunol. 193:1709–16
    [Google Scholar]
  156. 156.
    Bellavance EC, Kohlhapp FJ, Zloza A, O'Sullivan JA, McCracken J et al. 2011. Development of tumor-infiltrating CD8+ T cell memory precursor effector cells and antimelanoma memory responses are the result of vaccination and TGF-beta blockade during the perioperative period of tumor resection. J. Immunol. 186:3309–16
    [Google Scholar]
  157. 157.
    Sanjabi S, Mosaheb MM, Flavell RA. 2009. Opposing effects of TGF-beta and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity 31:131–44
    [Google Scholar]
  158. 158.
    Gate D, Danielpour M, Rodriguez J Jr., Kim GB, Levy R et al. 2014. T-cell TGF-beta signaling abrogation restricts medulloblastoma progression. PNAS 111:E3458–66
    [Google Scholar]
  159. 159.
    Wallberg M, Wong FS, Green EA. 2011. An islet-specific pulse of TGF-beta abrogates CTL function and promotes beta cell survival independent of Foxp3+ T cells. J. Immunol. 186:2543–51
    [Google Scholar]
  160. 160.
    Zhang N, Bevan MJ. 2012. TGF-beta signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat. Immunol. 13:667–73
    [Google Scholar]
  161. 161.
    Bromley SK, Akbaba H, Mani V, Mora-Buch R, Chasse AY et al. 2020. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response. Cell Rep. 32:108085
    [Google Scholar]
  162. 162.
    Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT et al. 2013. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14:1294–301
    [Google Scholar]
  163. 163.
    Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrancois L. 2014. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity 40:747–57
    [Google Scholar]
  164. 164.
    Borges da Silva H, Peng C, Wang H, Wanhainen KM, Ma C et al. 2020. Sensing of ATP via the purinergic receptor P2RX7 promotes CD8+ Trm cell generation by enhancing their sensitivity to the cytokine TGF-β. Immunity 53:158–71.e6
    [Google Scholar]
  165. 165.
    Laidlaw BJ, Zhang N, Marshall HD, Staron MM, Guan T et al. 2014. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41:633–45
    [Google Scholar]
  166. 166.
    Wu J, Madi A, Mieg A, Hotz-Wagenblatt A, Weisshaar N et al. 2020. T cell factor 1 suppresses CD103+ lung tissue-resident memory T cell development. Cell Rep. 31:107484
    [Google Scholar]
  167. 167.
    Qiu Z, Chu TH, Sheridan BS. 2021. TGF-β: many paths to CD103+ CD8 T cell residency. Cells 10:989
    [Google Scholar]
  168. 168.
    Loi JK, Alexandre YO, Senthil K, Schienstock D, Sandford S et al. 2022. Corneal tissue-resident memory T cells form a unique immune compartment at the ocular surface. Cell Rep. 39:110852
    [Google Scholar]
  169. 169.
    Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V et al. 2004. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20:167–79
    [Google Scholar]
  170. 170.
    Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. 2013. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14:1285–93
    [Google Scholar]
  171. 171.
    Mani V, Bromley SK, Aijo T, Mora-Buch R, Carrizosa E et al. 2019. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science 366:eaav5728
    [Google Scholar]
  172. 172.
    Ferreira C, Barros L, Baptista M, Blankenhaus B, Barros A et al. 2020. Type 1 Treg cells promote the generation of CD8+ tissue-resident memory T cells. Nat. Immunol. 21:766–76
    [Google Scholar]
  173. 173.
    Malenica I, Adam J, Corgnac S, Mezquita L, Auclin E et al. 2021. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat. Commun. 12:5209
    [Google Scholar]
  174. 174.
    Kallies A, Zehn D, Utzschneider DT. 2020. Precursor exhausted T cells: key to successful immunotherapy?. Nat. Rev. Immunol. 20:128–36
    [Google Scholar]
  175. 175.
    Chatterjee S, Chatterjee A, Jana S, Dey S, Roy H et al. 2021. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis 42:38–47
    [Google Scholar]
  176. 176.
    Giordano M, Henin C, Maurizio J, Imbratta C, Bourdely P et al. 2015. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34:2042–58
    [Google Scholar]
  177. 177.
    Smith CJ, Snyder CM. 2021. Inhibitory molecules PD-1, CD73 and CD39 are expressed by CD8+ T cells in a tissue-dependent manner and can inhibit T cell responses to stimulation. Front. Immunol. 12:704862
    [Google Scholar]
  178. 178.
    Stephen TL, Rutkowski MR, Allegrezza MJ, Perales-Puchalt A, Tesone AJ et al. 2014. Transforming growth factor beta-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression. Immunity 41:427–39
    [Google Scholar]
  179. 179.
    Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI. 2009. Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31:145–57
    [Google Scholar]
  180. 180.
    Gabriel SS, Tsui C, Chisanga D, Weber F, Llano-Leon M et al. 2021. Transforming growth factor-beta-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54:1698–714.e5
    [Google Scholar]
  181. 181.
    Pomie C, Menager-Marcq I, van Meerwijk JP. 2008. Murine CD8+ regulatory T lymphocytes: the new era. Hum. Immunol. 69:708–14
    [Google Scholar]
  182. 182.
    Kim HJ, Verbinnen B, Tang X, Lu L, Cantor H. 2010. Inhibition of follicular T-helper cells by CD8+ regulatory T cells is essential for self tolerance. Nature 467:328–32
    [Google Scholar]
  183. 183.
    Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ et al. 2022. KIR+CD8+ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 376:eabi9591
    [Google Scholar]
  184. 184.
    Du J, Yang H, Zhang D, Wang J, Guo H et al. 2010. Structural basis for the blockage of IL-2 signaling by therapeutic antibody basiliximab. J. Immunol. 184:1361–68
    [Google Scholar]
  185. 185.
    Hu B, Jin C, Zeng X, Resch JM, Jedrychowski MP et al. 2020. γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578:610–14
    [Google Scholar]
  186. 186.
    Peters C, Hasler R, Wesch D, Kabelitz D. 2016. Human Vδ2 T cells are a major source of interleukin-9. PNAS 113:12520–25
    [Google Scholar]
  187. 187.
    Bendelac A, Savage PB, Teyton L. 2007. The biology of NKT cells. Annu. Rev. Immunol. 25:297–336
    [Google Scholar]
  188. 188.
    Chuang YH, Lian ZX, Yang GX, Shu SA, Moritoki Y et al. 2008. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 47:571–80
    [Google Scholar]
  189. 189.
    Monteiro M, Agua-Doce A, Almeida CF, Fonseca-Pereira D, Veiga-Fernandes H, Graca L. 2015. IL-9 expression by invariant NKT cells is not imprinted during thymic development. J. Immunol. 195:3463–71
    [Google Scholar]
  190. 190.
    McDonald BD, Jabri B, Bendelac A. 2018. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 18:514–25
    [Google Scholar]
  191. 191.
    Suzuki R, Nakao A, Kanamaru Y, Okumura K, Ogawa H, Ra C. 2002. Localization of intestinal intraepithelial T lymphocytes involves regulation of αEβ7 expression by transforming growth factor-β. Int. Immunol. 14:339–45
    [Google Scholar]
  192. 192.
    Lim SP, Leung E, Krissansen GW. 1998. The β7 integrin gene (Itgb-7) promoter is responsive to TGF-β1: defining control regions. Immunogenetics 48:184–95
    [Google Scholar]
  193. 193.
    Verstichel G, Vermijlen D, Martens L, Goetgeluk G, Brouwer M et al. 2017. The checkpoint for agonist selection precedes conventional selection in human thymus. Sci. Immunol. 2:eaah4232
    [Google Scholar]
  194. 194.
    Das G, Augustine MM, Das J, Bottomly K, Ray P, Ray A 2003. An important regulatory role for CD4+CD8αα T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. PNAS 100:5324–29
    [Google Scholar]
  195. 195.
    Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R et al. 2013. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14:281–89
    [Google Scholar]
  196. 196.
    Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D. 2013. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:271–80
    [Google Scholar]
  197. 197.
    Sujino T, London M, Hoytema van Konijnenburg DP, Rendon T, Buch T et al. 2016. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. Science 352:1581–86
    [Google Scholar]
  198. 198.
    Cortez VS, Cervantes-Barragan L, Robinette ML, Bando JK, Wang Y et al. 2016. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44:1127–39
    [Google Scholar]
  199. 199.
    Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML et al. 2017. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-beta signaling. Nat. Immunol. 18:995–1003
    [Google Scholar]
  200. 200.
    Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A et al. 2017. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18:1004–15
    [Google Scholar]
  201. 201.
    Nixon BG, Chou C, Krishna C, Dadi S, Michel AO et al. 2022. Cytotoxic granzyme C-expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. Sci. Immunol. 7:eabi8642
    [Google Scholar]
  202. 202.
    Hawke LG, Mitchell BZ, Ormiston ML. 2020. TGF-beta and IL-15 synergize through MAPK pathways to drive the conversion of human NK cells to an innate lymphoid cell 1-like phenotype. J. Immunol. 204:3171–81
    [Google Scholar]
  203. 203.
    Jowett GM, Norman MDA, Yu TTL, Rosell Arevalo P, Hoogland D et al. 2021. ILC1 drive intestinal epithelial and matrix remodelling. Nat. Mater. 20:250–59
    [Google Scholar]
  204. 204.
    Wang L, Tang J, Yang X, Zanvit P, Cui K et al. 2020. TGF-beta induces ST2 and programs ILC2 development. Nat. Commun. 11:35
    [Google Scholar]
  205. 205.
    Zhang J, Qiu J, Zhou W, Cao J, Hu X et al. 2022. Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nat. Immunol. 23:237–50
    [Google Scholar]
  206. 206.
    Laurent P, Allard B, Manicki P, Jolivel V, Levionnois E et al. 2021. TGFβ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis. Ann. Rheum. Dis. 80:1594–603
    [Google Scholar]
  207. 207.
    Bernink JH, Ohne Y, Teunissen MBM, Wang J, Wu J et al. 2019. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20:992–1003
    [Google Scholar]
  208. 208.
    Chea S, Perchet T, Petit M, Verrier T, Guy-Grand D et al. 2016. Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci. Signal. 9:ra45
    [Google Scholar]
  209. 209.
    Viant C, Rankin LC, Girard-Madoux MJ, Seillet C, Shi W et al. 2016. Transforming growth factor-beta and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci. Signal. 9:ra46
    [Google Scholar]
  210. 210.
    Wang S, Xia P, Chen Y, Qu Y, Xiong Z et al. 2017. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 171:201–16.e18
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101921-045939
Loading
/content/journals/10.1146/annurev-immunol-101921-045939
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error