1932

Abstract

Constraining rates of marine carbonate burial through geologic time is critical for interpreting reconstructed changes in ocean chemistry and understanding feedbacks and interactions between Earth's carbon cycle and climate. The Quaternary Period (the past 2.6 million years) is of particular interest due to dramatic variations in sea level that periodically exposed and flooded areas of carbonate accumulation on the continental shelf, likely impacting the global carbonate budget and atmospheric carbon dioxide. These important effects remain poorly quantified. Here, we summarize the importance of carbonate burial in the ocean–climate system, review methods for quantifying carbonate burial across depositional environments, discuss advances in reconstructing Quaternary carbonate burial over the past three decades, and identify gaps and challenges in reconciling the existing records. Emerging paleoceanographic proxies such as the stable strontium and calcium isotope systems, as well as innovative modeling approaches, are highlighted as new opportunities to produce continuous records of global carbonate burial.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-031122-031137
2023-01-16
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-031122-031137.html?itemId=/content/journals/10.1146/annurev-marine-031122-031137&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson RF, Fleisher MQ, Lao Y, Winckler G. 2008. Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-Pleistocene glacial cycles. Mar. Chem. 111:30–46
    [Google Scholar]
  2. Andersson AJ 2014. The oceanic CaCO3 cycle. Treatise on Geochemistry HD Holland, KK Turekian 519–42 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  3. Archer DE. 1991. Equatorial Pacific calcite preservation cycles: production or dissolution?. Paleoceanography 6:561–71
    [Google Scholar]
  4. Archer DE. 2010. The Global Carbon Cycle Princeton, NJ: Princeton Univ. Press
  5. Archer DE, Maier-Reimer E. 1994. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–63
    [Google Scholar]
  6. Armstrong McKay D. 2015. Investigating the drivers of perturbations to the Cenozoic carbon-climate system PhD Thesis Univ. Southampton Southampton, UK:
  7. Arrhenius G. 1952. Sediment Cores from the East Pacific Rep. Swed. Deep-Sea Exped 1947–1948 Vol. 5 Göteburg, Swed.: Elanders
  8. Averyt KB, Paytan A. 2003. Empirical partition coefficients for Sr and Ca in marine barite: implications for reconstructing seawater Sr and Ca concentrations. Geochem. Geophys. Geosyst. 4:1039
    [Google Scholar]
  9. Balsam WL. 1983. Carbonate dissolution on the Muir Seamount (western North Atlantic); interglacial/glacial changes. J. Sediment. Res. 53:719–31
    [Google Scholar]
  10. Balsam WL, McCoy FW Jr. 1987. Atlantic sediments: glacial/interglacial comparisons. Paleoceanography 2:531–42
    [Google Scholar]
  11. Balter V, Lécuyer C, Barrat J-A. 2011. Reconstructing seawater Sr/Ca during the last 70 My using fossil fish tooth enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310:133–38
    [Google Scholar]
  12. Bassinot FC, Beaufort L, Vincent E, Labeyrie LD, Rostek F et al. 1994. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: a 1500-kyr record of carbonate dissolution. Paleoceanography 9:579–600
    [Google Scholar]
  13. Battaglia G, Steinacher M, Joos F. 2016. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean. Biogeosciences 13:2823–48
    [Google Scholar]
  14. Berger WH. 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69:87–88
    [Google Scholar]
  15. Berner RA. 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–26
    [Google Scholar]
  16. Berner RA. 2004. The Phanerozoic Carbon Cycle: CO2 and O2 Oxford, UK: Oxford Univ. Press
  17. Biscaye PE, Kolla V, Turekian KK. 1976. Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J. Geophys. Res. 81:2595–603
    [Google Scholar]
  18. Boudreau BP, Luo Y. 2017. Retrodiction of secular variations in deep-sea CaCO3 burial during the Cenozoic. Earth Planet. Sci. Lett. 474:1–12
    [Google Scholar]
  19. Broecker WS 2003. The oceanic CaCO3 cycle. Treatise on Geochemistry HD Holland, KK Turekian 529–49 Oxford, UK: Pergamon. , 1st ed..
    [Google Scholar]
  20. Broecker WS. 2009. Wally's quest to understand the ocean's CaCO3 cycle. Annu. Rev. Mar. Sci. 1:1–18
    [Google Scholar]
  21. Broecker WS, Peng T-H. 1982. Tracers in the Sea New York: Eldigio
  22. Broecker WS, Peng T-H. 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1:15–29
    [Google Scholar]
  23. Brovkin V, Ganopolski A, Archer D, Rahmstorf S. 2007. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22:PA4202
    [Google Scholar]
  24. Cabioch G, Montaggioni L, Thouveny N, Frank N, Sato T et al. 2008. The chronology and structure of the western New Caledonian barrier reef tracts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268:91–105
    [Google Scholar]
  25. Camoin GF, Ebren P, Eisenhauer A, Bard E, Faure G. 2001. A 300 000-yr coral reef record of sea level changes, Mururoa atoll (Tuamotu archipelago, French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175:325–41
    [Google Scholar]
  26. Camoin GF, Seard C, Deschamps P, Webster JM, Abbey E et al. 2012. Reef response to sea-level and environmental changes during the last deglaciation: Integrated Ocean Drilling Program Expedition 310, Tahiti Sea Level. Geology 40:643–46
    [Google Scholar]
  27. Camoin GF, Webster JM. 2015. Coral reef response to Quaternary sea-level and environmental changes: state of the science. Sedimentology 62:401–28
    [Google Scholar]
  28. Campbell SM, Moucha R, Derry LA, Raymo ME. 2018. Effects of dynamic topography on the Cenozoic carbonate compensation depth. Geochem. Geophys. Geosyst. 19:1025–34
    [Google Scholar]
  29. Cartapanis O, Galbraith ED, Bianchi D, Jaccard SL. 2018. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past 14:1819–50
    [Google Scholar]
  30. Castro-Sanguino C, Bozec Y-M, Mumby PJ. 2020. Dynamics of carbonate sediment production by Halimeda: implications for reef carbonate budgets. Mar. Ecol. Prog. Ser. 639:91–106
    [Google Scholar]
  31. Catubig NR, Archer DE, Francois R, deMenocal P, Howard W, Yu E-F. 1998. Global deep-sea burial rate of calcium carbonate during the Last Glacial Maximum. Paleoceanography 13:298–310
    [Google Scholar]
  32. Clark PU, McCabe AM, Mix AC, Weaver AJ. 2004. Rapid rise of sea level 19,000 years ago and its global implications. Science 304:1141–44
    [Google Scholar]
  33. Coggon RM, Teagle DAH, Smith-Duque CE, Alt JC, Cooper MJ. 2010. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327:1114–17
    [Google Scholar]
  34. Costa KM, Hayes CT, Anderson RF, Pavia FJ, Bausch A et al. 2020. 230Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean. Paleoceanogr. Paleoclimatol. 35:e2019PA003820
    [Google Scholar]
  35. Crowley TJ 1985. Late Quaternary carbonate changes in the North Atlantic and Atlantic/Pacific comparisons. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present WS Broecker, ET Sundquist 271–84 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  36. Davies PJ. 2011. Halimeda bioherms. Encyclopedia of Modern Coral Reefs: Structure, Form and Process D Hopley 535–49 Dordrecht, Neth.: Springer
    [Google Scholar]
  37. De La Rocha CL, DePaolo DJ 2000. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–78
    [Google Scholar]
  38. de Macêdo Carneiro PB, de Morais JO. 2016. Carbonate sediment production in the equatorial continental shelf of South America: quantifying Halimeda incrassata (Chlorophyta) contributions. J. S. Am. Earth Sci. 72:1–6
    [Google Scholar]
  39. de Macêdo Carneiro PB, Pereira JU, Matthews-Cascon H. 2018. Standing stock variations, growth and CaCO3 production by the calcareous green alga Halimeda opuntia. J. Mar. Biol. Assoc. UK 98:401–9
    [Google Scholar]
  40. deMenocal P, Archer D, Leth P 1997. Pleistocene variations in deep Atlantic circulation and calcite burial between 1.2 and 0.6 Ma: a combined data-model approach. Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 154 Ceara Rise NJ Shackleton, WB Curry, C Richter, TJ Bralower 285–98 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  41. Drew EA. 1983. Halimeda biomass, growth rates and sediment generation on reefs in the central great barrier reef province. Coral Reefs 2:101–10
    [Google Scholar]
  42. Dullo W-C. 2005. Coral growth and reef growth: a brief review. Facies 51:33–48
    [Google Scholar]
  43. Dunne JP, Hales B, Toggweiler JR. 2012. Global calcite cycling constrained by sediment preservation controls. Glob. Biogeochem. Cycles 26:GB3023
    [Google Scholar]
  44. Elderfield H, Cooper M, Ganssen G. 2000. Sr/Ca in multiple species of planktonic foraminifera: implications for reconstructions of seawater Sr/Ca. Geochem. Geophys. Geosyst. 1:1017
    [Google Scholar]
  45. Fairbanks RG. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–42
    [Google Scholar]
  46. Fantle MS. 2010. Evaluating the Ca isotope proxy. Am. J. Sci. 310:194–230
    [Google Scholar]
  47. Farrell JW, Prell WL. 1989. Climatic change and CaCO3 preservation: an 800,000 year bathymetric Reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4:447–66
    [Google Scholar]
  48. Francois R, Frank M, Rutgers van der Loeff MM, Bacon MP 2004. 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19:PA1018
    [Google Scholar]
  49. Frank TD, James NP, Bone Y, Malcolm I, Bobak LE 2014. Late Quaternary carbonate deposition at the bottom of the world. Sediment. Geol. 305:1–16
    [Google Scholar]
  50. Fu H, Jian X, Zhang W, Shang F. 2020. A comparative study of methods for determining carbonate content in marine and terrestrial sediments. Mar. Pet. Geol. 116:104337
    [Google Scholar]
  51. Gothmann AM, Stolarski J, Adkins JF, Higgins JA. 2017. A Cenozoic record of seawater Mg isotopes in well-preserved fossil corals. Geology 45:1039–42
    [Google Scholar]
  52. Graham D, Bender M, Williams DF, Keigwin L. 1982. Strontium-calcium ratios in Cenozoic planktonic foraminifera. Geochim. Cosmochim. Acta 46:1281–92
    [Google Scholar]
  53. Greene SE, Ridgwell A, Kirtland Turner S, Schmidt DN, Pälike H et al. 2019. Early Cenozoic decoupling of climate and carbonate compensation depth trends. Paleoceanogr. Paleoclimatol. 34:930–45
    [Google Scholar]
  54. Griffith EM, Fantle MS. 2020. Calcium Isotopes Cambridge, UK: Cambridge Univ. Press
  55. Griffith EM, Paytan A. 2012. Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59:1817–35
    [Google Scholar]
  56. Griffith EM, Paytan A, Caldeira K, Bullen TD, Thomas E 2008. A dynamic marine calcium cycle during the past 28 million years. Science 322:1671–74
    [Google Scholar]
  57. Hain M, Sigman D, Haug G 2014. The biological pump in the past. Treatise on Geochemistry HD Holland, KK Turekian 485–517 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  58. Hayes CT, Costa KM, Anderson RF, Calvo E, Chase Z et al. 2021. Global ocean sediment composition and burial flux in the deep sea. Glob. Biogeochem. Cycles 35:e2020GB006769
    [Google Scholar]
  59. Hebbeln D, Bender M, Gaide S, Titschack J, Vandorpe T et al. 2019. Thousands of cold-water coral mounds along the Moroccan Atlantic continental margin: distribution and morphometry. Mar. Geol. 411:51–61
    [Google Scholar]
  60. Higgins JA, Schrag DP. 2015. The Mg isotopic composition of Cenozoic seawater – evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet. Sci. Lett. 416:73–81
    [Google Scholar]
  61. Hinestrosa G, Webster JM, Beaman RJ. 2022. New constraints on the postglacial shallow-water carbonate accumulation in the Great Barrier Reef. Sci. Rep. 12:924
    [Google Scholar]
  62. Husson L, Pastier A-M, Pedoja K, Elliot M, Paillard D et al. 2018. Reef carbonate productivity during Quaternary sea level oscillations. Geochem. Geophys. Geosyst. 19:1148–64
    [Google Scholar]
  63. Iglesias-Rodriguez MD, Armstrong R, Feely R, Hood R, Kleypas J et al. 2002. Progress made in study of ocean's calcium carbonate budget. Eos Trans. AGU 83:365–75
    [Google Scholar]
  64. Isson TT, Planavsky NJ, Coogan LA, Stewart EM, Ague JJ et al. 2020. Evolution of the global carbon cycle and climate regulation on Earth. Glob. Biogeochem. Cycles 34:e2018GB006061
    [Google Scholar]
  65. Ivany LC, Peters SC, Wilkinson BH, Lohmann KC, Reimer BA. 2004. Composition of the early Oligocene ocean from coral stable isotope and elemental chemistry. Geobiology 2:97–106
    [Google Scholar]
  66. Jaccard SL, Galbraith ED, Sigman DM, Haug GH, Francois R et al. 2009. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277:156–65
    [Google Scholar]
  67. Jones NS, Ridgwell A, Hendy EJ. 2015. Evaluation of coral reef carbonate production models at a global scale. Biogeosciences 12:1339–56
    [Google Scholar]
  68. Jorry S, Jouet G, Edinger EN, Toucanne S, Counts JW et al. 2020. From platform top to adjacent deep sea: new source-to-sink insights into carbonate sediment production and transfer in the SW Indian Ocean 2 (Glorieuses archipelago). Mar. Geol. 423:106144
    [Google Scholar]
  69. Kastens KA, Mascle J, Auroux C, Bonatti E, Broglia C et al., eds. 1987. Proceedings of the Ocean Drilling Program: Initial Report, Vol. 107 Tyrrhenian Sea Sites 650–656 College Station, TX: Ocean Drill. Program
  70. Kerr J, Rickaby R, Yu J, Elderfield H, Sadekov AY. 2017. The effect of ocean alkalinity and carbon transfer on deep-sea carbonate ion concentration during the past five glacial cycles. Earth Planet. Sci. Lett. 471:42–53
    [Google Scholar]
  71. Kleypas JA. 1997. Modeled estimates of global reef habitat and carbonate production since the Last Glacial Maximum. Paleoceanography 12:533–45
    [Google Scholar]
  72. Kleypas JA, Anthony KRN, Gattuso J-P. 2011. Coral reefs modify their seawater carbon chemistry – case study from a barrier reef (Moorea, French Polynesia). Glob. Change Biol. 17:3667–78
    [Google Scholar]
  73. Kohfeld KE, Ridgwell A. 2009. Glacial-interglacial variability in atmospheric CO2. Surface Ocean: Lower Atmosphere Processes C Le Quéré, ES Saltzman 251–86 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  74. Krabbenhöft A, Eisenhauer A, Böhm F, Vollstaedt H, Fietzke J et al. 2010. Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim. Cosmochim. Acta 74:4097–109
    [Google Scholar]
  75. Laugié M, Michel J, Pohl A, Poli E, Borgomano J. 2019. Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters. Sci. Rep. 9:16432
    [Google Scholar]
  76. Lear CH, Elderfield H, Wilson PA. 2003. A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes. Earth Planet. Sci. Lett. 208:69–84
    [Google Scholar]
  77. Lebrato M, Garbe-Schönberg D, Müller MN, Blanco-Ameijeiras S, Feely RA et al. 2020. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. PNAS 117:22281–92
    [Google Scholar]
  78. Lebrato M, Iglesias-Rodríguez D, Feely RA, Greeley D, Jones DOB et al. 2010. Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments. Ecol. Monogr. 80:441–67
    [Google Scholar]
  79. Lindberg B, Mienert J. 2005. Postglacial carbonate production by cold-water corals on the Norwegian Shelf and their role in the global carbonate budget. Geology 33:537–40
    [Google Scholar]
  80. Lough JM. 2008. Coral calcification from skeletal records revisited. Mar. Ecol. Prog. Ser. 373:257–64
    [Google Scholar]
  81. Lyle M. 2003. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18:1059
    [Google Scholar]
  82. Lyle M, Barron J, Bralower TJ, Huber M, Lyle AO et al. 2008. Pacific Ocean and Cenozoic evolution of climate. Rev. Geophys. 46:RG2002
    [Google Scholar]
  83. Lyle M, Drury AJ, Tian J, Wilkens R, Westerhold T. 2019. Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity. Clim. Past 15:1715–39
    [Google Scholar]
  84. Lyle M, Olivarez A, Backman J, Tripati A 2006. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth. Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 199 Paleogene Equatorial Transect Sites 1215–1222 PA Wilson, M Lyle, JV Firth College Station, TX: Ocean Drill. Program. https://doi.org/10.2973/odp.proc.sr.199.219.2005
    [Crossref] [Google Scholar]
  85. Martin PA, Lea DW, Mashiotta TA, Papenfuss T, Sarnthein M. 1999. Variation of foraminiferal Sr/Ca over Quaternary glacial-interglacial cycles: evidence for changes in mean ocean Sr/Ca?. Geochem. Geophys. Geosyst. 1:1004
    [Google Scholar]
  86. Mazarrasa I, Marbà N, Lovelock CE, Serrano O, Lavery PS et al. 2015. Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences 12:4993–5003
    [Google Scholar]
  87. McGee D, Marcantonio F, McManus JF, Winckler G. 2010. The response of excess 230Th and extraterrestrial 3He to sediment redistribution at the Blake Ridge, western North Atlantic. Earth Planet. Sci. Lett. 299:138–49
    [Google Scholar]
  88. McNeil MA, Nothdurft LD, Dyriw NJ, Webster JM, Beaman RJ. 2020. Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: internal architecture and surface geomorphometrics. Depos. Rec. 7:176–99
    [Google Scholar]
  89. McNeil MA, Webster JM, Beaman RJ, Graham TL. 2016. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35:1343–55
    [Google Scholar]
  90. Milliman JD. 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob. Biogeochem. Cycles 7:927–57
    [Google Scholar]
  91. Milliman JD, Droxler AW. 1996. Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss. Geol. Rundsch. 85:496–504
    [Google Scholar]
  92. Montaggioni LF, Cabioch G, Thouveny N, Frank N, Sato T, Sémah A-M. 2011. Revisiting the Quaternary development history of the western New Caledonian shelf system: from ramp to barrier reef. Mar. Geol. 280:57–75
    [Google Scholar]
  93. Mörth C-M, Backman J. 2011. Practical steps for improved estimates of calcium carbonate concentrations in deep sea sediments using coulometry. Limnol. Oceanogr. Methods 9:565–70
    [Google Scholar]
  94. O'Mara NA, Dunne JP. 2019. Hot spots of carbon and alkalinity cycling in the coastal oceans. Sci. Rep. 9:4434
    [Google Scholar]
  95. Opdyke BN, Walker JCG. 1992. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20:733–36
    [Google Scholar]
  96. Pälike H, Lyle M, Nishi H, Raffi I, Ridgwell A et al. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:609–14
    [Google Scholar]
  97. Paytan A, Griffith EM, Eisenhauer A, Hain MP, Wallmann K, Ridgwell A. 2021. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science 371:1346–50
    [Google Scholar]
  98. Pearce CR, Parkinson IJ, Gaillardet J, Charlier BLA, Mokadem F, Burton KW. 2015. Reassessing the stable (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs. Geochim. Cosmochim. Acta 157:125–46
    [Google Scholar]
  99. Perry CT, Morgan KM, Yarlett RT. 2017. Reef habitat type and spatial extent as interacting controls on platform-scale carbonate budgets. Front. Mar. Sci. 4:185
    [Google Scholar]
  100. Perry CT, Salter MA, Morgan KM, Harborne AR. 2019. Census estimates of algal and epiphytic carbonate production highlight tropical seagrass meadows as sediment production hotspots. Front. Mar. Sci. 6:120
    [Google Scholar]
  101. Rao VP, Mahale VP, Chakraborty B. 2018. Bathymetry and sediments on the carbonate platform off western India: significance of Halimeda bioherms in carbonate sedimentation. J. Earth Syst. Sci. 127:106
    [Google Scholar]
  102. Rees SA, Opdyke BN, Wilson PA, Henstock TJ. 2006. Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–88
    [Google Scholar]
  103. Rickaby REM, Elderfield H, Roberts N, Hillenbrand C-D, Mackensen A. 2010. Evidence for elevated alkalinity in the glacial Southern Ocean. Paleoceanography 25:1209
    [Google Scholar]
  104. Ridgwell A, Watson AJ, Maslin MA, Kaplan JO. 2003. Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum. Paleoceanography 18:1083
    [Google Scholar]
  105. Ridgwell A, Zeebe R. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234:299–315
    [Google Scholar]
  106. Ryan DA, Opdyke BN, Jell JS. 2001. Holocene sediments of Wistari Reef: towards a global quantification of coral reef related neritic sedimentation in the Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 175:173–84
    [Google Scholar]
  107. Schlager W, Reijmer JJG, Droxler A. 1994. Highstand shedding of carbonate platforms. J. Sediment. Res. 64:270–81
    [Google Scholar]
  108. Schlanger SO. 1988. Strontium storage and release during deposition and diagenesis of marine carbonates related to sea-level variations. Physical and Chemical Weathering in Geochemical Cycles A Lerman, M Meybeck 323–39 Dordrecht, Neth.: Springer
    [Google Scholar]
  109. Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–69
    [Google Scholar]
  110. Silverman J, Lazar B, Cao L, Caldeira K, Erez J. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36:L05606
    [Google Scholar]
  111. Silverman J, Lazar B, Erez J. 2007. Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J. Geophys. Res. Oceans 112:C05004
    [Google Scholar]
  112. Smith S, Mackenzie F. 2016. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22:153–75
    [Google Scholar]
  113. Sosdian SM, Lear CH, Tao K, Grossman EL, O'Dea A, Rosenthal Y 2012. Cenozoic seawater Sr/Ca evolution. Geochem. Geophys. Geosyst. 13:Q10014
    [Google Scholar]
  114. Steuber T, Veizer J. 2002. Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology 30:1123–26
    [Google Scholar]
  115. Stoll HM, Schrag DP. 1998. Effects of Quaternary sea level cycles on strontium in seawater. Geochim. Cosmochim. Acta 62:1107–18
    [Google Scholar]
  116. Stoll HM, Schrag DP, Clemens SC. 1999. Are seawater Sr/Ca variations preserved in Quaternary foraminifera?. Geochim. Cosmochim. Acta 63:3535–47
    [Google Scholar]
  117. Sulpis O, Agrawal P, Wolthers M, Munhoven G, Walker M, Middelburg J. 2022. Aragonite dissolution protects calcite at the seafloor. Nat. Commun. 13:1104
    [Google Scholar]
  118. Sulpis O, Jeansson E, Dinauer A, Lauvset SK, Middelburg JJ. 2021. Calcium carbonate dissolution patterns in the ocean. Nat. Geosci. 14:423–28
    [Google Scholar]
  119. Sundquist ET, Visser K 2003. The geologic history of the carbon cycle. Treatise on Geochemistry HD Holland, KK Turekian 425–72 Oxford, UK: Pergamon. , 1st ed..
    [Google Scholar]
  120. Titschack J, Baum D, De Pol-Holz R, Lopez Correa M, Forster N et al. 2015. Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs. Sedimentology 62:1873–98
    [Google Scholar]
  121. Titschack J, Fink HG, Baum D, Wienberg C, Hebbeln D, Freiwald A. 2016. Mediterranean cold-water corals – an important regional carbonate factory?. Depos. Rec. 2:74–96
    [Google Scholar]
  122. Tripati AK, Allmon WD, Sampson DE. 2009. Possible evidence for a large decrease in seawater strontium/calcium ratios and strontium concentrations during the Cenozoic. Earth Planet. Sci. Lett. 282:122–30
    [Google Scholar]
  123. Utami DA, Reuning L, Cahyarini SY. 2018. Satellite- and field-based facies mapping of isolated carbonate platforms from the Kepulauan Seribu Complex, Indonesia. Depos. Rec. 4:255–73
    [Google Scholar]
  124. Van Andel TH. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26:187–94
    [Google Scholar]
  125. Van Andel TH, Heath GR, Moore TC. 1975. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  126. van der Ploeg R, Boudreau BP, Middelburg JJ, Sluijs A. 2019. Cenozoic carbonate burial along continental margins. Geology 47:1025–28
    [Google Scholar]
  127. Vance D, Teagle DAH, Foster GL. 2009. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458:493–96
    [Google Scholar]
  128. Vanden Berg MDV, Jarrard RD. 2002. Determination of equatorial Pacific mineralogy using light absorption spectroscopy. Proceedings of the Ocean Drilling Program: Initial Report, Vol. 199 Paleogene Equatorial Transect Sites 1215–1222 M Lyle, PA Wilson, TR Janecek, J Backman, WH Busch et al. College Station, TX: Ocean Drill. Program. https://doi.org/10.2973/odp.proc.ir.199.105.2002
    [Crossref] [Google Scholar]
  129. Vanden Berg MDV, Jarrard RD 2004. Cenozoic mass accumulation rates in the equatorial Pacific based on high-resolution mineralogy of Ocean Drilling Program Leg 199. Paleoceanography 19:A2021
    [Google Scholar]
  130. Vanden Berg MDV, Jarrard RD 2006. Data report: high-resolution mineralogy for Leg 199 based on reflectance spectroscopy and physical properties. Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 199 Paleogene Equatorial Transect Sites 1215–1222 PA Wilson, M Lyle, JV Firth College Station, TX: Ocean Drill. Program. https://doi.org/10.2973/odp.proc.sr.199.203.2006
    [Crossref] [Google Scholar]
  131. Vecsei A. 2004a. Carbonate production on isolated banks since 20 k.a. BP: climatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214:3–10
    [Google Scholar]
  132. Vecsei A. 2004b. A new estimate of global reefal carbonate production including the fore-reefs. Glob. Planet. Change 43:1–18
    [Google Scholar]
  133. Vecsei A, Berger WH. 2004. Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from patterns of deposition. Glob. Biogeochem. Cycles 18:GB1035
    [Google Scholar]
  134. Vollstaedt H, Eisenhauer A, Wallmann K, Boehm F, Fietzke J et al. 2014. The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128:249–65
    [Google Scholar]
  135. Walker JCG, Opdyke BC. 1995. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments. Paleoceanography 10:415–27
    [Google Scholar]
  136. Wallmann K, Aloisi G. 2012. The global carbon cycle: geological processes. Fundamentals of Geobiology AH Knoll, DE Canfield, KO Konhauser 20–35 Chichester, UK: Wiley-Blackwell
    [Google Scholar]
  137. Webster JM, Braga JC, Humblet M, Potts DC, Iryu Y et al. 2018. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nat. Geosci. 11:426–32
    [Google Scholar]
  138. Yokoyama Y, Esat TM, Thompson WG, Thomas AL, Webster JM et al. 2018. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature 559:603–7
    [Google Scholar]
  139. Yu J, Elderfield H, Jin Z, Tomascak P, Rohling EJ. 2014. Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the late Pleistocene. Quat. Sci. Rev. 98:1–6
    [Google Scholar]
  140. Yu J, Menviel L, Jin ZD, Anderson RF, Jian Z et al. 2020. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion. Nat. Geosci. 13:628–33
    [Google Scholar]
  141. Zeebe RE. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40:141–65
    [Google Scholar]
  142. Zeebe RE, Marchitto TM. 2010. Atmosphere and ocean chemistry. Nat. Geosci. 3:386–87
    [Google Scholar]
  143. Zeebe RE, Westbroek P. 2003. A simple model for the CaCO3 saturation state of the ocean: the “Strangelove,” the “Neritan,” and the “Cretan” Ocean. Geochem. Geophys. Geosyst. 4:1104
    [Google Scholar]
/content/journals/10.1146/annurev-marine-031122-031137
Loading
/content/journals/10.1146/annurev-marine-031122-031137
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error