1932

Abstract

Releases of anthropogenic radionuclides from European nuclear fuel reprocessing plants enter the surface circulation of the high-latitude North Atlantic and are transported northward into the Arctic Ocean and southward from the Nordic Seas into the deep North Atlantic, thereby providing tracers of water circulation, mixing, ventilation, and deep-water formation. Early tracer studies focused on 137Cs, which revealed some of the first significant insights into the Arctic Ocean circulation, while more recent work has benefited from advances in accelerator mass spectrometry to enable the measurement of the conservative, long-lived radionuclide tracers 129I and 236U. The latest studies of these tracers, supported by simulations using the North Atlantic–Arctic Ocean–Sea Ice Model (NAOSIM) and enhanced by the use of transit time distributions to more precisely accommodate mixing, have provided a rich inventory of transport data for circulation in the Arctic and North Atlantic Oceans that are of great importance to global thermohaline circulation and climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032122-112413
2023-01-16
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/marine/15/1/annurev-marine-032122-112413.html?itemId=/content/journals/10.1146/annurev-marine-032122-112413&mimeType=html&fmt=ahah

Literature Cited

  1. Alfimov V, Aldahan A, Possnert G. 2004a. Tracing water masses with 129I in the western Nordic Seas in early spring 2002. Geophys. Res. Lett. 31:L19305
    [Google Scholar]
  2. Alfimov V, Aldahan A, Possnert G. 2013. Water masses and 129I distribution in the Nordic Seas. Nucl. Instrum. Methods Phys. Res. B 294:542–46
    [Google Scholar]
  3. Alfimov V, Aldahan A, Possnert G, Winsor P. 2004b. Anthropogenic iodine-129 in seawater along a transect from the Norwegian coastal current to the North Pole. Mar. Pollut. Bull. 49:1097–104
    [Google Scholar]
  4. Beining P, Roether W. 1996. Temporal evolution of CFC 11 and CFC 12 concentrations in the ocean interior. J. Geophys. Res. Oceans 101:16455–64
    [Google Scholar]
  5. Boers N. 2021. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11:680–88
    [Google Scholar]
  6. Broecker WS, Peng T-H. 1982. Tracers in the sea Rep. Lamont-Doherty Geol. Obs., Columbia Univ. Palisades, NY:
  7. Caesar L, McCarthy GD, Thornalley DJR, Cahill N, Rahmstorf S. 2021. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14:118–20
    [Google Scholar]
  8. Cao Y, Liang S, Chen X, He T, Wang D, Cheng X. 2017. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Sci. Rep. 7:8462
    [Google Scholar]
  9. Carmack E, Polyakov I, Padman L, Fer I, Hunke E et al. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96:2079–105
    [Google Scholar]
  10. Carmack EC, Aagaard K, Swift JH, MacDonald RW, McLaughlin FA et al. 1997. Changes in temperature and tracer distributions within the Arctic Ocean: results from the 1994 Arctic Ocean Section. Deep-Sea Res. II 44:1487–502
    [Google Scholar]
  11. Casacuberta N, Christl M, Lachner J, van der Loeff MR, Masque P, Synal HA. 2014. A first transect of 236U in the North Atlantic Ocean. Geochim. Cosmochim. Acta 133:34–46
    [Google Scholar]
  12. Casacuberta N, Christl M, Vockenhuber C, Wefing A-M, Wacker L et al. 2018. Tracing the three Atlantic branches entering the Arctic Ocean with 129I and 236U. J. Geophys. Res. Oceans 123:6909–21
    [Google Scholar]
  13. Casacuberta N, Masque P, Henderson G, van der Loeff MR, Bauch D et al. 2016. First 236U data from the Arctic Ocean and use of 236U/238U and 129I/236U as a new dual tracer. Earth Planet. Sci. Lett. 440:127–34
    [Google Scholar]
  14. Castrillejo M, Casacuberta N, Christl M, Vockenhuber C, Synal HA et al. 2018. Tracing water masses with 129I and 236U in the subpolar North Atlantic along the GEOTRACES GA01 section. Biogeosciences 15:5545–64
    [Google Scholar]
  15. Castrillejo M, Casacuberta N, Vockenhuber C, Lherminier P. 2022. Rapidly increasing artificial iodine highlights pathways of Iceland-Scotland Overflow Water and Labrador Sea Water. Front. . Mar. Sci. 9:897729
    [Google Scholar]
  16. Castrillejo M, Witbaard R, Casacuberta N, Richardson CA, Dekker R et al. 2020. Unravelling 5 decades of anthropogenic 236U discharge from nuclear reprocessing plants. Sci. Total Environ. 717:137094
    [Google Scholar]
  17. Christl M, Casacuberta N, Lachner J, Herrmann J, Synal H-A. 2017. Anthropogenic 236U in the North Sea – a closer look into a source region. Environ. Sci. Technol. 51:12146–53
    [Google Scholar]
  18. Christl M, Casacuberta N, Vockenhuber C, Elsässer C, Bailly du Bois P et al. 2015. Reconstruction of the 236U input function for the Northeast Atlantic Ocean: implications for 129I/236U and 236U/238U-based tracer ages. J. Geophys. Res. Oceans 120:7282–99
    [Google Scholar]
  19. Christl M, Lachner J, Vockenhuber C, Goroncy I, Herrmann J, Synal H-A. 2013. First data of uranium-236 in the North Sea. Nucl. Instrum. Methods Phys. Res. B 294:530–36
    [Google Scholar]
  20. Christl M, Lachner J, Vockenhuber C, Lechtenfeld O, Stimac I et al. 2012. A depth profile of uranium-236 in the Atlantic Ocean. Geochim. Cosmochim. Acta 77:98–107
    [Google Scholar]
  21. Dahlgaard H, Chen Q, Herrmann J, Nies H, Ibbett RD, Kershaw PJ. 1995. On the background level of 99Tc, 90Sr and 137Cs in the North Atlantic. J. Mar. Syst. 6:571–78
    [Google Scholar]
  22. Edmonds HN, Smith JN, Livingston HD, Kilius LR, Edmond JM. 1998. 129I in archived seawater samples. Deep-Sea Res. I 45:1111–25
    [Google Scholar]
  23. Edmonds HN, Zhou ZQ, Raisbeck GM, Yiou F, Kilius LR, Edmond JM. 2001. Distribution and behavior of anthropogenic 129I in water masses ventilating the North Atlantic Ocean. J. Geophys. Res. Oceans 106:6881–94
    [Google Scholar]
  24. Fine RA. 2011. Observations of CFCs and SF6 as ocean tracers. Annu. Rev. Mar. Sci. 3:173–95
    [Google Scholar]
  25. Frajka-Williams E, Ansorge IJ, Baehr J, Bryden HL, Chidichimo MP et al. 2019. Atlantic Meridional Overturning Circulation: observed transport and variability. Front. Mar. Sci. 6:260
    [Google Scholar]
  26. Haine TWN, Hall TM. 2002. A generalized transport theory: water-mass composition and age. J. Phys. Oceanogr. 32:1932–46
    [Google Scholar]
  27. Hetherington JA, Jefferies DF. 1974. The distribution of some fission product radionuclides in sea and estuarine sediments. Neth. J. Sea Res. 8:319–38
    [Google Scholar]
  28. Jefferies DF, Preston A, Steele AK 1973. Distribution of caesium-137 in British coastal waters. Mar. Pollut. Bull. 4:118–22
    [Google Scholar]
  29. Jefferies DF, Steele AK, Preston A 1982. Further studies on the distribution of 137Cs in British coastal waters—I. Irish Sea. Deep-Sea Res. A 29:713–38
    [Google Scholar]
  30. Jenkins WJ, Smethie WM Jr. 1996. Transient tracers track ocean climate signals. Oceanus 39:229–32
    [Google Scholar]
  31. Jochumsen K, Köllner M, Quadfasel D, Dye S, Rudels B, Valdimarsson H. 2015. On the origin and propagation of Denmark Strait overflow water anomalies in the Irminger Basin. J. Geophys. Res. Oceans 120:1841–55
    [Google Scholar]
  32. Karcher MJ, Gerdes R, Kauker F, Köberle C. 2003. Arctic warming: evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. J. Geophys. Res. Oceans 108:3034
    [Google Scholar]
  33. Karcher MJ, Gerland S, Harms IH, Iosjpe M, Heldal HE et al. 2004. The dispersion of 99Tc in the Nordic Seas and the Arctic Ocean: a comparison of model results and observations. J. Environ. Radioact. 74:185–98
    [Google Scholar]
  34. Karcher MJ, Smith JN, Kauker F, Gerdes R, Smethie WM Jr. 2012. Recent changes in Arctic Ocean circulation revealed by iodine-129 observations and modeling. J. Geophys. Res. Oceans 117:C08007
    [Google Scholar]
  35. Kershaw PJ, Baxter A. 1995. The transfer of reprocessing wastes from north-west Europe to the Arctic. Deep-Sea Res. II 42:1413–48
    [Google Scholar]
  36. Kershaw PJ, McCubbin D, Leonard KS. 1999. Continuing contamination of north Atlantic and Arctic waters by Sellafield radionuclides. Sci. Total Environ. 237–238:119–32
    [Google Scholar]
  37. Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91
    [Google Scholar]
  38. Kieke D, Yashayaev I. 2015. Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Prog. Oceanogr. 132:220–32
    [Google Scholar]
  39. Kilius LR, Litherland AE, Rucklidge JC, Baba N. 1992. Accelerator mass-spectrometric measurements of heavy long-lived isotopes. Int. J. Radiat. Appl. Instrum. A 43:279–87
    [Google Scholar]
  40. Kilius LR, Rucklidge JC, Litherland AE. 1987. Accelerator mass spectrometry of 129I at isotrace. Nucl. Instrum. Methods Phys. Res. B 29:72–76
    [Google Scholar]
  41. Köberle C, Gerdes R. 2003. Mechanisms determining the variability of Arctic sea ice conditions and export. J. Clim. 16:2843–58
    [Google Scholar]
  42. Le Bras I, Straneo F, Muilwijk M, Smedsrud LH, Li F et al. 2021. How much Arctic fresh water participates in the subpolar overturning circulation?. J. Phys. Oceanogr. 51:955–73
    [Google Scholar]
  43. Livingston HD, Bowen V, Kupferman S. 1982. Radionuclides from Windscale discharges 2: their dispersion in Scottish and Norwegian coastal circulation. J. Mar. Res. 40:1227–58
    [Google Scholar]
  44. Livingston HD, Jenkins WJ. 1983. Radioactive tracers in the sea. Oceanography: The Present and Future PG Brewer 163–91 New York: Springer
    [Google Scholar]
  45. Livingston HD, Kupferman SL, Bowen VT, Moore RM. 1984. Vertical profile of artificial radionuclide concentrations in the Central Arctic Ocean. Geochim. Cosmochim. Acta 48:2195–203
    [Google Scholar]
  46. Livingston HD, Povinec PP. 2002. A millennium perspective on the contribution of global fallout radionuclides to ocean science. Health Phys. 82:656–68
    [Google Scholar]
  47. Livingston HD, Swift JH, Ostlund HG. 1985. Artificial radionuclide tracer supply to the Denmark Strait overflow between 1972 and 1981. J. Geophys. Res. Oceans 90:6971–82
    [Google Scholar]
  48. Lobelle D, Beaulieu C, Livina V, Sévellec F, Frajka-Williams E. 2020. Detectability of an AMOC decline in current and projected climate changes. Geophys. Res. Lett. 47:e2020GL089974
    [Google Scholar]
  49. Macdonald RW, Carmack EC. 1991. Age of Canada Basin deep waters: a way to estimate primary production for the Arctic Ocean. Science 254:1348–50
    [Google Scholar]
  50. Matsumoto K. 2007. Radiocarbon-based circulation age of the world oceans. J. Geophys. Res. Oceans 112:C09004
    [Google Scholar]
  51. McLaughlin FA, Carmack EC, Williams WJ, Zimmermann S, Shimada K, Itoh M. 2009. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993–2007. J. Geophys. Res. Oceans 114:C00A12
    [Google Scholar]
  52. Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A et al. 2019. Polar regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate H-O Pörtner, DC Roberts, V Masson-Delmotte, P Zhai, M Tignor, et al. 203–320 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  53. Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I et al. 2012. Changing Arctic Ocean freshwater pathways. Nature 481:66–70
    [Google Scholar]
  54. NASA (Natl. Aeronaut. Space Adm.) 2022. Arctic sea ice extent. NASA https://climate.nasa.gov/vital-signs/arctic-sea-ice
    [Google Scholar]
  55. NCEI (Natl. Cent. Environ. Inf.) 2022. Arctic Oscillation (AO). NCEI. https://www.ncdc.noaa.gov/teleconnections/ao
    [Google Scholar]
  56. Orre S. 2008. Circulation features in the northern North Atlantic Ocean inferred from simulated radioactive tracers PhD Thesis Univ. Bergen Bergen, Nor:.
  57. Orre S, Smith JN, Alfimov V, Bentsen M. 2010. Simulating transport of 129I and idealized tracers in the northern North Atlantic Ocean. Environ. Fluid Mech. 10:213–33
    [Google Scholar]
  58. Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–91
    [Google Scholar]
  59. Proshutinsky A, Dukhovskoy D, Timmermans M-L, Krishfield R, Bamber JL. 2015. Arctic circulation regimes. Philos. Trans. R. Soc. A 373:20140160
    [Google Scholar]
  60. Proshutinsky A, Krishfield R, Timmermans M-L, Toole J, Carmack E et al. 2009. Beaufort Gyre freshwater reservoir: state and variability from observations. J. Geophys. Res. Oceans 114:C00A10
    [Google Scholar]
  61. Rabe B, Karcher M, Kauker F, Schauer U, Toole JM et al. 2014. Arctic Ocean basin liquid freshwater storage trend 1992–2012. Geophys. Res. Lett. 41:961–68
    [Google Scholar]
  62. Raisbeck GM, Yiou F. 1999. 129I in the oceans: origins and applications. Sci. Total Environ. 237–38:31–41
    [Google Scholar]
  63. Raisbeck GM, Yiou F, Zhou ZQ, Kilius LR. 1995. 129I from nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France); potential as an oceanographie tracer. J. Mar. Syst. 6:561–70
    [Google Scholar]
  64. Rhein M, Kieke D, Steinfeldt R. 2015. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans 120:2471–87
    [Google Scholar]
  65. Rudels B 2009. Arctic Ocean circulation. Encyclopedia of Ocean Sciences JH Steele 211–25 Oxford, UK: Academic. , 2nd ed..
    [Google Scholar]
  66. Rudels B, Anderson L, Eriksson P, Fahrbach E, Jakobsson M et al. 2012. Observations in the ocean. Arctic Climate Change P Lemke, HW Jacobi 117–98 Dordrecht, Neth: Springer
    [Google Scholar]
  67. Sabine CL, Tanhua T. 2010. Estimation of anthropogenic CO2 inventories in the ocean. Annu. Rev. Mar. Sci. 2175–98
    [Google Scholar]
  68. Santschi PH, Schink DR, Corapcioglu O, Oktay-Marshall S, Fehn U, Sharma P. 1996. Evidence for elevated levels of iodine-129 in the Deep Western Boundary Current in the Middle Atlantic Bight. Deep-Sea Res. I 43:259–65
    [Google Scholar]
  69. Schlitzer R. 1986. 14C in the deep water of the east Atlantic. Radiocarbon 28:391–96
    [Google Scholar]
  70. Sevellec F, Fedorov AV, Liu W. 2017. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 7:604–10
    [Google Scholar]
  71. Smethie WM Jr., Fine RA, Putzka A, Jones EP. 2000. Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res. Oceans 105:14297–323
    [Google Scholar]
  72. Smith JN, Ellis KM. 1995. Radionuclide tracer profiles at the CESAR Ice Station and Canadian Ice Island in the western Arctic Ocean. Deep-Sea Res. II 42:1449–70
    [Google Scholar]
  73. Smith JN, Ellis KM, Boyd T. 1999. Circulation features in the central Arctic Ocean revealed by nuclear fuel reprocessing tracers from Scientific Ice Expeditions 1995 and 1996. J. Geophys. Res. Oceans 104:29663–77
    [Google Scholar]
  74. Smith JN, Ellis KM, Jones EP. 1990. Cesium 137 transport into the Arctic Ocean through Fram Strait. J. Geophys. Res. Oceans 95:1693–701
    [Google Scholar]
  75. Smith JN, Ellis KM, Kilius LR. 1998. 129I and 137Cs tracer measurements in the Arctic Ocean. Deep-Sea Res. I 45:959–84
    [Google Scholar]
  76. Smith JN, Jones EP, Moran SB, Smethie WM Jr., Kieser WE. 2005. Iodine 129/CFC 11 transit times for Denmark Strait Overflow Water in the Labrador and Irminger Seas. J. Geophys. Res. Oceans 110:C05006
    [Google Scholar]
  77. Smith JN, Karcher M, Casacuberta N, Williams WJ, Kenna T, Smethie WM Jr. 2021. A changing Arctic Ocean: how measured and modeled 129I distributions indicate fundamental shifts in circulation between 1994 and 2015. J. Geophys. Res. Oceans 126:e2020JC016740
    [Google Scholar]
  78. Smith JN, McLaughlin FA, Smethie WM Jr., Moran SB, Lepore K. 2011. Iodine-129, 137Cs, and CFC-11 tracer transit time distributions in the Arctic Ocean. J. Geophys. Res. Oceans 116:C04024
    [Google Scholar]
  79. Smith JN, Smethie WM Jr., Casacuberta N. 2022. Synoptic 129I and CFC-SF6 transit time distribution (TTD) sections across the central Arctic Ocean from the 2015 GEOTRACES cruises. J. Geophys. Res. Oceans 127:e2021JC018120
    [Google Scholar]
  80. Smith JN, Smethie WM Jr., Yashayev I, Curry R, Azetsu-Scott K. 2016. Time series measurements of transient tracers and tracer-derived transport in the Deep Western Boundary Current between the Labrador Sea and the subtropical Atlantic Ocean at Line W. J. Geophys. Res. Oceans 121:8115–38
    [Google Scholar]
  81. Srokosz MA, Bryden HL. 2015. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348:1255575
    [Google Scholar]
  82. Steele M, Boyd T. 1998. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Oceans 103:10419–35
    [Google Scholar]
  83. Steier P, Bichler M, Fifield KL, Golser R, Kutschera W et al. 2008. Natural and anthropogenic 236U in environmental samples. Nucl. Instrum. Methods Phys. Res. B 266:2246–50
    [Google Scholar]
  84. Stöven T, Tanhua T, Hoppema M, Bullister JL. 2015. Perspectives of transient tracer applications and limiting cases. Ocean Sci 11:699–718
    [Google Scholar]
  85. Stuiver M. 1980. 14C distribution in the Atlantic Ocean. J. Geophys. Res. Oceans 85:2711–18
    [Google Scholar]
  86. Swift JH, Jones EP, Aagaard K, Carmack EC, Hingston M et al. 1997. Waters of the Makarov and Canada basins. Deep-Sea Res. II 44:1503–29
    [Google Scholar]
  87. Timmermans M-L, Marshall J 2020. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans 125:e2018JC014378
    [Google Scholar]
  88. Toole JM, Andres M, Le Bras IA, Joyce TM, McCartney MS 2017. Moored observations of the Deep Western Boundary Current in the NW Atlantic: 2004–2014. J. Geophys. Res. Oceans 122:7488–505
    [Google Scholar]
  89. Waugh DW, Hall TM. 2005. Propagation of tracer signals in boundary currents. J. Phys. Oceanogr. 35:1538–52
    [Google Scholar]
  90. Waugh DW, Hall TM, Haine TWN. 2003. Relationships among tracer ages. J. Geophys. Res. Oceans 108:3138
    [Google Scholar]
  91. Wefing A-M, Casacuberta N, Christl M, Gruber N, Smith JN. 2021. Circulation timescales of Atlantic Water in the Arctic Ocean determined from anthropogenic radionuclides. Ocean Sci 17:111–29
    [Google Scholar]
  92. Wefing A-M, Christl M, Vockenhuber C, Rutgers van der Loeff M, Casacuberta N 2019. Tracing Atlantic waters using 129I and 236U in the Fram Strait in 2016. J. Geophys. Res. Oceans 124:882–96
    [Google Scholar]
  93. Woodgate R. 2013. Arctic Ocean circulation: going around at the top of the world. Nat. Educ. Knowl. 4:8
    [Google Scholar]
  94. Yiou F, Raisbeck GM, Zhou ZQ, Kilius LR. 1994. 129I from nuclear fuel reprocessing; potential as an oceanographic tracer. Nucl. Instrum. Methods Phys. Res. B 92:436–39
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032122-112413
Loading
/content/journals/10.1146/annurev-marine-032122-112413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error