1932

Abstract

Carbon fixation by phytoplankton near the surface and the sinking of this particulate material to deeper waters are key components of the biological carbon pump. The efficiency of the biological pump is influenced by the size and taxonomic composition of the phytoplankton community. Large, heavily ballasted taxa such as diatoms sink quickly and thus efficiently remove fixed carbon from the upper ocean. Smaller, nonballasted species such as picoplanktonic cyanobacteria are usually thought to contribute little to export production. Research in the past decade, however, has shed new light on the potential importance of small phytoplankton to carbon export, especially in oligotrophic oceans, where small cells dominate primary productivity. Here, I examine the mechanisms and pathways through which small-phytoplankton carbon is exported from the surface ocean and the role of small phytoplankton in food webs of a variety of ocean ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063627
2019-01-03
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-121916-063627.html?itemId=/content/journals/10.1146/annurev-marine-121916-063627&mimeType=html&fmt=ahah

Literature Cited

  1. Alkire MB, D'Asaro E, Lee C, Perry MJ, Gray A et al. 2012. Estimates of net community production and export using high resolution, Lagrangian measurements of O2, NO3, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep-Sea Res. I 64:157–74
    [Google Scholar]
  2. Alkire MB, Lee C, D'Asaro E, Perry MJ, Briggs N et al. 2014. Net community production and export from Seaglider measurements in the North Atlantic after the spring bloom. J. Geophys. Res. Oceans 119:6121–39
    [Google Scholar]
  3. Alldredge AL, Gotschalk C 1988. In situ settling behavior of marine snow. Limnol. Oceanogr. 33:339–51
    [Google Scholar]
  4. Alldredge AL, Passow U, Logan BE 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. I 40:1131–40
    [Google Scholar]
  5. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49:219–36
    [Google Scholar]
  6. Baines SB, Twining BS, Brzezinski MA, Krause JW, Vogt S et al. 2012. Significant silicon accumulation by marine picocyanobacteria. Nat. Geosci. 5:886–91
    [Google Scholar]
  7. Beaugrand G, Edwards M, Legendre L 2010. Marine biodiversity, ecosystem functioning, and carbon cycles. PNAS 107:10120–24
    [Google Scholar]
  8. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M 2005. Response of diatoms distribution to global warming and potential implications: a global model study. Geophys. Res. Lett. 32:L19606
    [Google Scholar]
  9. Bopp L, Monfray P, Aumont O, Dufresne JL, LeTreut H et al. 2001. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15:81–99
    [Google Scholar]
  10. Boyd PW, Newton PP 1999. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces. Deep-Sea Res. I 46:63–91
    [Google Scholar]
  11. Brew HS, Moran SB, Lomas MW, Burd AB 2009. Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea. J. Mar. Res. 67:845–68
    [Google Scholar]
  12. Bruland KW, Silver MW 1981. Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar. Biol. 63:295–300
    [Google Scholar]
  13. Brzezinski MA, Krause JW, Baines SB, Collier JL, Ohnemus DC, Twining BS 2017. Patterns and regulation of silicon accumulation in Synechococcus spp. J. Phycol. 53:746–61
    [Google Scholar]
  14. Brzezinski MA, Krause JW, Bundy RM, Barbeau KA, Franks P et al. 2015. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. J. Geophys. Res. Oceans 120:4654–69
    [Google Scholar]
  15. Buesseler KO, Benitez-Nelson CR, Moran SB, Burd A, Charette M et al. 2006. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as a POC flux proxy. Mar. Chem. 100:213–33
    [Google Scholar]
  16. Burd AB, Jackson GA 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1:65–90
    [Google Scholar]
  17. Cai P, Zhao D, Wang L, Huang B, Dai M 2015. Role of particle stock and phytoplankton community structure in regulating particulate organic carbon export in a large marginal sea. J. Geophys. Res. Oceans 120:2063–95
    [Google Scholar]
  18. Cassar N, Wright SW, Thomson PG, Trull TW, Westwood KJ et al. 2015. The relation of mixed-layer net community production to phytoplankton community composition in the Southern Ocean. Glob. Biogeochem. Cycles 29:446–62
    [Google Scholar]
  19. Cavan EL, Trimmer M, Shelley F, Sanders R 2017. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8:14847
    [Google Scholar]
  20. Choi HY, Stewart GM, Lomas MW, Kelly RP, Moran SB 2014. Linking the distribution of 210Po and 210Pb with plankton community along Line P, Northeast Subarctic Pacific. J. Environ. Radioact. 138:390–401
    [Google Scholar]
  21. Chow JS, Lee C, Engel A 2015. The influence of extracellular polysaccharides, growth rate, and free coccoliths on the coagulation efficiency of Emiliania huxleyi. Mar. Chem 175:5–17
    [Google Scholar]
  22. Close HG, Shah SR, Ingalls AE, Diefendorf AF, Brodie EL et al. 2013. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. PNAS 110:12565–70
    [Google Scholar]
  23. Deibel D, Lee SH 1992. Retention efficiency of submicrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoeffeni. Mar. Ecol. Prog. Ser 81:25–30
    [Google Scholar]
  24. DeMartini F, Neuer S, Hamill D, Robidart J, Lomas MW 2018. Clade and strain-specific contributions of Synechococcus and Prochlorococcus to carbon export in the Sargasso Sea. Limnol. Oceanogr. 63:S448–57
    [Google Scholar]
  25. Durkin CA, Estapa ML, Buesseler KO 2015. Observations of carbon export by small sinking particles in the upper mesopelagic. Mar. Chem. 175:72–81
    [Google Scholar]
  26. Durkin CA, Van Mooy BAS, Dyhrman ST, Buesseler KO 2016. Sinking phytoplankton associated with carbon flux in the Atlantic Ocean. Limnol. Oceanogr. 61:1172–87
    [Google Scholar]
  27. Ebersbach F, Assmy P, Martin P, Schulz I, Wolzenburg S, Nöthig E-M 2014. Particle flux characterization and sedimentation patterns of protistan plankton during the iron fertilization experiment LOHAFEX in the Southern Ocean. Deep-Sea Res. I 89:94–103
    [Google Scholar]
  28. Fernández D, Lopez-Urrutia A, Fernández A, Acuña JL, Harris R 2004. Retention efficiency of 0.2 to 6 μm particles by the appendicularians Oikopleura dioica and Fritillaria borealis. Mar. Ecol. Prog. Ser. 266:89–101
    [Google Scholar]
  29. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL et al. 2013. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS 110:9824–29
    [Google Scholar]
  30. Gardner WD 2000. Sediment Trap Sampling in Surface Waters Cambridge, UK: Cambridge Univ. Press
  31. Gorsky G, Chrétiennot-Dinet MJ, Blanchot J, Palassoli I 1999. Picoplankton and nanoplankton aggregation by appendicularians: fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. J. Geophys. Res. 104:3381–90
    [Google Scholar]
  32. Guidi LM, Chaffron S, Bittner L, Eveillard D, Abdelhalim L et al. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–70
    [Google Scholar]
  33. Guidi LM, Stemmann L, Jackson GA, Ibanez F, Claustre H et al. 2009. Effects of phytoplankton community on production, size, and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54:1951–63
    [Google Scholar]
  34. Iversen MH, Pakhomov EA, Hunt BPV, van der Jagt H, Wolf-Gladrow D, Klaas C 2017. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep-Sea Res. II 138:116–25
    [Google Scholar]
  35. Jackson GA 2001. Effect of coagulation on a model planktonic food web. Deep-Sea Res. I 48:95–123
    [Google Scholar]
  36. Jannasch H, Zafiriou OC, Farrington JW 1980. A sequencing sediment trap for time-series studies of fragile particles. Limnol. Oceanogr. 25:939–43
    [Google Scholar]
  37. Jiao N, Luo T, Zhang R, Yan W, Lin Y et al. 2014. Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean. Biogeosciences 11:2391–400
    [Google Scholar]
  38. Kawakami H, Honda MC, Matsumoto K, Fujiki T, Watanabe S 2010. East-west distribution of POC fluxes estimated from 234Th in the northern North Pacific in autumn. J. Oceanogr. 66:71–83
    [Google Scholar]
  39. Klaas C, Archer DE 2002. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16:1116
    [Google Scholar]
  40. Klut ME, Stockner JG 1991. Picoplankton associations in an ultra-oligotrophic lake on Vancouver Island, British Columbia. Can. J. Fish. Aquat. Sci. 48:1092–99
    [Google Scholar]
  41. Lampitt RL, Wishner KF, Turley CM, Angel MV 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition, and role as a food source for migrating plankton. Mar. Biol. 116:689–702
    [Google Scholar]
  42. Lapoussière A, Michel C, Gosselin M, Poulin M, Martin J, Tremblay J-E 2013. Primary production and sinking export during fall in the Hudson Bay system, Canada.. Cont. Shelf Res. 52:63–72
    [Google Scholar]
  43. Laufkötter C, Vogt M, Gruber N, Aumont O, Bopp L et al. 2016. Projected decreases in future export production: the role of the carbon flux through the upper ecosystem. Biogeosciences 13:4023–47
    [Google Scholar]
  44. Laurenceau-Cornec EC, Trull TW, Davies DM, Bray SG, Doran J et al. 2015. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau. Biogeosciences 12:1007–27
    [Google Scholar]
  45. LeCourt M, Muggli DL, Harrison PJ 1996. Comparison of growth and sinking rates of non-coccolith- and coccolith-forming strains of Emiliania huxleyi (Prymnesiophyceae) grown under different irradiances and nitrogen sources. J. Phycol. 32:17–21
    [Google Scholar]
  46. Li WKW, McLaughlin FA, Lovejoy C, Carmack EC 2009. Smallest algae thrive as the Arctic Ocean freshens. Science 326:539
    [Google Scholar]
  47. Lochte K, Ducklow HW, Fasham MJR, Stienen C 1993. Plankton succession and carbon cycling at 47°N 20°W during the JGOFS North Atlantic Bloom Experiment. Deep-Sea Res. II 40:91–114
    [Google Scholar]
  48. Logan BE, Passow U, Alldredge AL, Grossart HP, Simon M 1995. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res. II 42:203–14
    [Google Scholar]
  49. Lomas MW, Moran SB 2011. Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone. Biogeosciences 8:203–16
    [Google Scholar]
  50. Lundsgaard C 1995. Use of a high viscosity medium in studies of aggregates. Sediment Trap Studies in the Nordic Countries: Proceedings of the Symposium on Seasonal Dynamics of Planktonic Ecosystems and Sedimentation in Coastal Nordic Waters S Floderus, A-S Heisakanen, M Oleson, P Wassmann 141–52 Helsinki: Finn. Environ. Agency
    [Google Scholar]
  51. Lutz M, Dunbar R, Caldeira K 2002. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochem. Cycles 16:1037–54
    [Google Scholar]
  52. Mackinson BL, Moran SB, Lomas MW, Stewart GM, Kelly RP 2015. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12:3429–46
    [Google Scholar]
  53. Madin LP, Deibel D 1998. Feeding and energetics of Thaliaceans. The Biology of Pelagic Tunicates Q Bone 125–37 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  54. Marsay CM, Sanders RJ, Henson SA, Pabortsava K, Achterberg EP, Lampitt RS 2015. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112:1089–94
    [Google Scholar]
  55. McDonnell AMP, Buesseler KO 2010. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55:2085–96
    [Google Scholar]
  56. Michaels AF, Silver MW 1988. Primary production, sinking fluxes, and the microbial food web. Deep-Sea Res. I 35:473–90
    [Google Scholar]
  57. Morán XAG, López-Urrutia Á, Calvo-Díaz A, Li WKW 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16:1137–44
    [Google Scholar]
  58. Nodder SD, Gall M 1998. Pigment fluxes from the Subtropical Convergence region, east of New Zealand: relationships to planktonic community structure. N. Z. J. Mar. Freshw. Res. 32:441–65
    [Google Scholar]
  59. Paffenhöfer GA, Tzeng M, Hristov R, Smith CL, Mazzocchi MG 2003. Abundance and distribution of nanoplankton in the epipelagic subtropical/tropical open Atlantic Ocean. J. Plankton Res. 25:1535–49
    [Google Scholar]
  60. Passow U 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55:287–333
    [Google Scholar]
  61. Pauly D, Cheung WWL 2018. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24:e15–26
    [Google Scholar]
  62. Peperzak L, Colijn F, Koeman R, Gieskes WWC, Joordens JCA 2003. Phytoplankton sinking rates in the Rhine region of freshwater influence. J. Plankton Res. 25:365–83
    [Google Scholar]
  63. Pesant S, Legendre L, Gosselin M, Bjornsen PK, Fortier L et al. 2000. Pathways of carbon cycling in marine surface waters: the fate of small-sized phytoplankton in the Northeast Water Polynya. J. Plankton Res. 22:779–801
    [Google Scholar]
  64. Pfannkuche O, Lochte K 1993. Open ocean pelage-benthic coupling: cyanobacteria as tracers of sedimenting salp feces. Deep-Sea Res. I 40:727–37
    [Google Scholar]
  65. Ploug H, Iversen MH, Koski M, Buitenhuis ET 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnol. Oceanogr. 53:469–76
    [Google Scholar]
  66. Puigcorbé V, Benitez-Nelson CR, Masqué P, Verdeny E, White AE et al. 2015. Small phytoplankton drive high summertime carbon and nutrient export in the Gulf of California and Eastern Tropical North Pacific. Glob. Biogeochem. Cycles 29:1309–32
    [Google Scholar]
  67. Richardson TL, Jackson GA 2007. Small phytoplankton and carbon export from the surface ocean. Science 315:838–40
    [Google Scholar]
  68. Richardson TL, Jackson GA, Ducklow HW, Roman MR 2004. Carbon fluxes through food webs of the eastern equatorial Pacific: an inverse approach. Deep-Sea Res. I 51:1245–74
    [Google Scholar]
  69. Richardson TL, Jackson GA, Duckow HW, Roman MR 2006. Spatial and seasonal patterns of carbon cycling through planktonic food webs of the Arabian Sea determined by inverse analysis. Deep-Sea Res. II 53:555–75
    [Google Scholar]
  70. Rivkin RB, Legendre L, Deibel D, Tremblay J-E, Klein B et al. 1996. Vertical flux of biogenic carbon in the ocean: Is there food web control. Science 272:1163–66
    [Google Scholar]
  71. Rosengard SZ, Lam PJ, Balch WM, Auro ME, Pike S et al. 2015. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt. Biogeosciences 12:3953–71
    [Google Scholar]
  72. Saito MA, Rocap G, Moffett JW 2005. Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol. Oceanogr. 50:279–90
    [Google Scholar]
  73. Sieburth JMCN, Smetacek V, Lenz J 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:1256–63
    [Google Scholar]
  74. Smayda TJ 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Annu. Rev. 8:353–414
    [Google Scholar]
  75. Stewart GM, Moran SB, Lomas MW 2010. Seasonal POC fluxes at BATS estimated from 210Po deficits. Deep-Sea Res. I 57:113–24
    [Google Scholar]
  76. Stone JP, Steinberg DK 2016. Salp contributions to vertical carbon flux in the Sargasso Sea. Deep-Sea Res. I 113:90–100
    [Google Scholar]
  77. Stukel MR, Décima M, Selph K, Taniguchi DAA, Landry MR 2013. The role of Synechococcus in vertical flux in the Costa Rica upwelling dome. Prog. Oceanogr. 112–13:49–59
    [Google Scholar]
  78. Sutherland KR, Madin LP, Stocker R 2010. Filtration of submicrometer particles by pelagic tunicates. PNAS 107:15129–34
    [Google Scholar]
  79. Thornton DCO 2002. Diatom aggregations in the sea: mechanisms and ecological implications. Eur. J. Phycol. 37:149–61
    [Google Scholar]
  80. Turley CM, Mackie PJ 1995. Bacterial and cyanobacterial flux to the deep NE Atlantic on sedimenting particles. Deep-Sea Res. I 42:1453–74
    [Google Scholar]
  81. Urban JL, McKenzie CH, Diebel D 1993. Nanoplankton found in fecal pellets of macrozooplankton in coastal Newfoundland waters. Bot. Mar. 36:267–81
    [Google Scholar]
  82. Waite AM, Safi KA, Hall JA, Nodder SD 2000. Mass sedimentation of picoplankton embedded in organic aggregates. Limnol. Oceanogr. 45:87–97
    [Google Scholar]
  83. Wiedmann I, Reigstad M, Sundfjord A, Basedow S 2014. Potential drivers of sinking particle's size spectra and vertical flux of particulate organic carbon (POC): turbulence, phytoplankton, and zooplankton. J. Geophys. Res. 119:6900–17
    [Google Scholar]
  84. Wilson SE, Steinberg DK 2010. Autotrophic picoplankton in mesozooplankton guts: evidence of aggregate feeding in the mesopelagic zone and export of small phytoplankton. Mar. Ecol. Prog. Ser. 412:11–27
    [Google Scholar]
  85. Worden AZ, Nolan AK, Palenik B 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49:168–79
    [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063627
Loading
/content/journals/10.1146/annurev-marine-121916-063627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error