1932

Abstract

Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-062910-100458
2014-07-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-062910-100458.html?itemId=/content/journals/10.1146/annurev-matsci-062910-100458&mimeType=html&fmt=ahah

Literature Cited

  1. Barthlott W, Neinhuis C. 1.  1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8 [Google Scholar]
  2. Bechert DW, Bruse M, Hage W. 2.  2000. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids 28:403–12 [Google Scholar]
  3. Yu KL, Fan TX, Lou S, Zhang D. 3.  2013. Biomimetic optical materials: integration of nature's design for manipulation of light. Prog. Mater. Sci. 58:825–73 [Google Scholar]
  4. Gorb SN.4.  2006. Functional surfaces in biology: mechanisms and applications. Biomimetics: Biologically Inspired Technologies Y Bar-Cohen 381–97 Boca Raton, FL: CRC [Google Scholar]
  5. Creton C, Gorb S. 5.  2007. Sticky feet: from animals to materials. MRS Bull. 32:466–72 [Google Scholar]
  6. Waite JH, Andersen NH, Jewhurst S, Sun CJ. 6.  2005. Mussel adhesion: finding the tricks worth mimicking. J. Adhes. 81:297–317 [Google Scholar]
  7. Santos R, Gorb S, Jamar V, Flammang P. 7.  2005. Adhesion of echinoderm tube feet to rough surfaces. J. Exp. Biol. 208:2555–678 [Google Scholar]
  8. Israelachvili JN.8.  1992. Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems London: /Orlando, FL: Academic
  9. Popov VL.9.  2010. Contact Mechanics and Friction: Physical Principles and Applications Berlin: /Heidelberg, Ger.: Springer
  10. Kendall K.10.  2001. Molecular Adhesion and Its Applications New York: Kluwer Acad.
  11. Gumbiner BM.11.  1996. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–57 [Google Scholar]
  12. Tsang PH, Li GL, Brun YV, Ben Freund L, Tang JX. 12.  2006. Adhesion of single bacterial cells in the micronewton range. Proc. Natl. Acad. Sci. USA 103:5764–68 [Google Scholar]
  13. Gorb SN.13.  2001. Attachment Devices of Insect Cuticle Dordrecht, Neth: Kluwer Acad.
  14. Persson BNJ.14.  2000. Sliding Friction: Physical Principles and Applications Berlin: Springer
  15. Maboudian R, Howe RT. 15.  1997. Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15:1–20 [Google Scholar]
  16. Kendall K.16.  1971. Adhesion and surface energy of elastic solids. J. Phys. D 4:1186 [Google Scholar]
  17. Brockmann W, Gei ß PL, Klingen J, Schröder B. 17.  2009. Adhesive Bonding: Adhesives, Applications and Processes Weinheim, Ger: Wiley
  18. Autumn K.18.  2007. Gecko adhesion: structure, function, and applications. MRS Bull. 32:473–78 [Google Scholar]
  19. Gorb SN.19.  2011. Biological fibrillar adhesives: functional principles and biomimetic applications. Handbook of Adhesion Technology 2 LFM da Silva, A Öchsner, RD Adams 1409–36 Heidelberg, Ger: Springer [Google Scholar]
  20. Huber G, Gorb SN, Spolenak R, Arzt E. 20.  2005. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 1:2–4 [Google Scholar]
  21. Vogel MJ, Steen PH. 21.  2010. Capillarity-based switchable adhesion. Proc. Natl. Acad. Sci. USA 107:3377–81 [Google Scholar]
  22. Steudle E.22.  2001. The cohesion-tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:847–75 [Google Scholar]
  23. Gorb SN, Popov VL. 23.  2002. Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Philos. Trans. R. Soc. A 360:211–25 [Google Scholar]
  24. Jin X, Strueben J, Heepe L, Kovalev A, Mishra YK. 24.  et al. 2012. Joining the un-joinable: adhesion between low surface energy polymers using tetrapodal ZnO linkers. Adv. Mater. 24:5676–80 [Google Scholar]
  25. Wright DR, Chen L, Federlin P, Forbes K. 25.  1995. Manufacturing issues of electrostatic chucks. J. Vac. Sci. Technol. B 13:1910–16 [Google Scholar]
  26. Fremerey M, Gorb S, Heepe L, Kasper D, Maempel J, Witte H. 26.  2012. Shifting allometry: combination of macroscopic engineering with microscopic biomimetics allows realization of new robot functions in meso dimension. Proc. ROBOTIK 2012, 7th Munich, Ger., May 21–22 1–6
  27. Federle W.27.  2006. Why are so many adhesive pads hairy?. J. Exp. Biol. 209:2611–21 [Google Scholar]
  28. Kamperman M, Kroner E, del Campo A, McMeeking RM, Arzt E. 28.  2010. Functional adhesive surfaces with “gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12:335–48 [Google Scholar]
  29. Jagota A, Hui CY. 29.  2011. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R 72:253–92 [Google Scholar]
  30. Gorb SN, Beutel RG. 30.  2001. Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88:530–34 [Google Scholar]
  31. Beutel RG, Gorb SN. 31.  2001. Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39:177–207 [Google Scholar]
  32. Varenberg M, Pugno NM, Gorb SN. 32.  2010. Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–72 [Google Scholar]
  33. Jagota A, Bennison SJ. 33.  2002. Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42:1140–45 [Google Scholar]
  34. Arzt E, Gorb SN, Spolenak R. 34.  2003. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100:10603–6 [Google Scholar]
  35. Peressadko A, Gorb SN. 35.  2004. When less is more: experimental evidence for tenacity enhancement by division of contact area. J. Adhes. 80:247–61 [Google Scholar]
  36. Crosby AJ, Hageman M, Duncan A. 36.  2005. Controlling polymer adhesion with “pancakes.”. Langmuir 21:11738–43 [Google Scholar]
  37. Varenberg M, Murarash B, Kligerman Y, Gorb SN. 37.  2011. Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl. Phys. A 103:933–38 [Google Scholar]
  38. Hui CY, Glassmaker NJ, Tang T, Jagota A. 38.  2004. Design of biomimetic fibrillar interfaces. 2. Mechanics of enhanced adhesion. J. R. Soc. Interface 1:35–48 [Google Scholar]
  39. Chung JY, Chaudhury MK. 39.  2005. Roles of discontinuities in bio-inspired adhesive pads. J. R. Soc. Interface 2:55–61 [Google Scholar]
  40. Tang T, Hui CY. 40.  2005. Can a fibrillar interface be stronger and tougher than a non-fibrillar one?. J. R. Soc. Interface 2:505–16 [Google Scholar]
  41. Persson BNJ.41.  2003. On the mechanism of adhesion in biological systems. J. Chem. Phys. 118:7614–21 [Google Scholar]
  42. Persson BNJ, Gorb S. 42.  2003. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 119:11437–44 [Google Scholar]
  43. Kim TW, Bhushan B. 43.  2007. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J. Adhes. Sci. Technol. 21:1–20 [Google Scholar]
  44. Filippov A, Popov VL, Gorb SN. 44.  2011. Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. J. Theor. Biol. 276:126–31 [Google Scholar]
  45. Spolenak R, Gorb S, Arzt E. 45.  2005. Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 1:5–13 [Google Scholar]
  46. Spolenak R, Gorb S, Gao HJ, Arzt E. 46.  2005. Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A 461:305–19 [Google Scholar]
  47. del Campo A, Greiner C, Arzt E. 47.  2007. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23:10235–43 [Google Scholar]
  48. Greiner C, Spolenak R, Arzt E. 48.  2009. Adhesion design maps for fibrillar adhesives: the effect of shape. Acta Biomater. 5:597–606 [Google Scholar]
  49. Peisker H, Michels J, Gorb SN. 49.  2013. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 4:1661 [Google Scholar]
  50. Vincent JFV.50.  2002. Arthropod cuticle: a natural composite shell system. Composites A 33:1311–15 [Google Scholar]
  51. Vincent JFV, Wegst UGK. 51.  2004. Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33:187–99 [Google Scholar]
  52. Barbakadze N, Enders S, Gorb S, Arzt E. 52.  2006. Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 209:722–30 [Google Scholar]
  53. Puthoff JB, Prowse MS, Wilkinson M, Autumn K. 53.  2010. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 213:3699–704 [Google Scholar]
  54. Prowse MS, Wilkinson M, Puthoff JB, Mayer G, Autumn K. 54.  2011. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater. 7:733–38 [Google Scholar]
  55. Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP. 55.  et al. 2000. Adhesive force of a single gecko foot-hair. Nature 405:681–85 [Google Scholar]
  56. Russell AP.56.  1975. A contribution to functional-analysis of foot of Tokay, Gekko gecko (reptilia: Gekkonidae). J. Zool. 176:437–76 [Google Scholar]
  57. Gao HJ, Wang X, Yao HM, Gorb S, Arzt E. 57.  2005. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37:275–85 [Google Scholar]
  58. Niederegger S, Gorb S. 58.  2003. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J. Insect Physiol. 49:611–20 [Google Scholar]
  59. Federle W, Brainerd EL, McMahon TA, Holldobler B. 59.  2001. Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc. Natl. Acad. Sci. USA 98:6215–20 [Google Scholar]
  60. Hosoda N, Gorb SN. 60.  2011. Friction force reduction triggers feet grooming behaviour in beetles. Proc. R. Soc. B 278:1748–52 [Google Scholar]
  61. Fuller KNG, Tabor D. 61.  1975. The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. A 345:327–42 [Google Scholar]
  62. Persson BNJ, Tosatti E. 62.  2001. The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 115:5597–610 [Google Scholar]
  63. Persson BNJ.63.  2002. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8:385–401 [Google Scholar]
  64. Purtov J, Gorb EV, Steinhardt M, Gorb SN. 64.  2013. Measuring of the hardly measurable: adhesion properties of anti-adhesive surfaces. Appl. Phys. A 111:183–89 [Google Scholar]
  65. Lorenz B, Krick BA, Mulakaluri N, Smolyakova M, Dieluweit S. 65.  et al. 2013. Adhesion: role of bulk viscoelasticity and surface roughness. J. Phys. Condens. Matter 25:225004 [Google Scholar]
  66. Varenberg M, Gorb SN. 66.  2009. Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21:483–86 [Google Scholar]
  67. Kovalev AE, Varenberg M, Gorb SN. 67.  2012. Wet versus dry adhesion of biomimetic mushroom-shaped microstructures. Soft Matter 8:7560–66 [Google Scholar]
  68. Stark AY, Badge I, Wucinich NA, Sullivan TW, Niewiarowski PH, Dhinojwala A. 68.  2013. Surface wettability plays a significant role in gecko adhesion underwater. Proc. Natl. Acad. Sci. USA 110:6340–45 [Google Scholar]
  69. Borodich FM, Gorb EV, Gorb SN. 69.  2010. Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach. Appl. Phys. A 100:63–71 [Google Scholar]
  70. Gorb SN, Varenberg M. 70.  2007. Mushroom-shaped geometry of contact elements in biological adhesive systems. J. Adhes. Sci. Technol. 21:1175–83 [Google Scholar]
  71. Gorb SN.71.  1998. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc. R. Soc. B 265:747–52 [Google Scholar]
  72. Hiller U.72.  1968. Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morphol. Tiere 62:307–62 [Google Scholar]
  73. Tian Y, Pesika N, Zeng HB, Rosenberg K, Zhao BX. 73.  et al. 2006. Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 103:19320–25 [Google Scholar]
  74. Niederegger S, Gorb SN. 74.  2006. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J. Comp. Physiol. A 192:1223–32 [Google Scholar]
  75. Autumn K, Dittmore A, Santos D, Cutkosky M. 75.  2006. Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209:3569–79 [Google Scholar]
  76. Pesika NS, Tian Y, Zhao BX, Rosenberg K, Zeng H. 76.  et al. 2007. Peel-zone model of tape peeling based on the gecko adhesive system. J. Adhes. 83:383–401 [Google Scholar]
  77. Pugno N, Gorb S. 77.  2009. Functional mechanism of biological adhesive systems described by multiple peeling approach. Proc. Int. Conf. Fract., 12th, Ottawa, July 12–17 [Google Scholar]
  78. Pugno NM.78.  2011. The theory of multiple peeling. Int. J. Fract. 171:185–93 [Google Scholar]
  79. Lin Q, Gourdon D, Sun CJ, Holten-Andersen N, Anderson TH. 79.  et al. 2007. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104:3782–86 [Google Scholar]
  80. Pelletier Y, Smilowitz Z. 80.  1987. Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces. Can. Entomol. 119:1139–42 [Google Scholar]
  81. Stork NE.81.  1983. A comparison of the adhesive setae on the feet of lizards and arthropods. J. Nat. Hist. 17:829–35 [Google Scholar]
  82. Daltorio KA, Horchler AD, Gorb SN, Ritzmann RE, Quinn RD. 82.  2005. A small wall-walking robot with compliant, adhesive feet. Proc. IEEE Int. Conf. Intell. Robots and Systems, Edmonton, Can.4018–23 Piscataway, NJ: IEEE [Google Scholar]
  83. Kim S, Sitti M. 83.  2006. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89:261911 [Google Scholar]
  84. Gorb S, Varenberg M, Peressadko A, Tuma J. 84.  2007. Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4:271–75 [Google Scholar]
  85. Varenberg M, Gorb S. 85.  2007. Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4:721–25 [Google Scholar]
  86. Kim S, Aksak B, Sitti M. 86.  2007. Enhanced friction of elastomer microfiber adhesives with spatulate tips. Appl. Phys. Lett. 91:221913 [Google Scholar]
  87. Varenberg M, Gorb S. 87.  2008. A beetle-inspired solution for underwater adhesion. J. R. Soc. Interface 5:383–85 [Google Scholar]
  88. Varenberg M, Gorb S. 88.  2008. Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour. J. R. Soc. Interface 5:785–89 [Google Scholar]
  89. Spuskanyuk AV, McMeeking RM, Deshpande VS, Arzt E. 89.  2008. The effect of shape on the adhesion of fibrillar surfaces. Acta Biomater. 4:1669–76 [Google Scholar]
  90. Murphy MP, Aksak B, Sitti M. 90.  2009. Gecko-inspired directional and controllable adhesion. Small 5:170–75 [Google Scholar]
  91. Murphy MP, Kim S, Sitti M. 91.  2009. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl. Mater. Interfaces 1:849–55 [Google Scholar]
  92. Davies J, Haq S, Hawke T, Sargent JP. 92.  2009. A practical approach to the development of a synthetic Gecko tape. Int. J. Adhes. Adhes. 29:380–90 [Google Scholar]
  93. Cheung E, Sitti M. 93.  2009. Adhesion of biologically inspired polymer microfibers on soft substrates. Langmuir 25:6613–16 [Google Scholar]
  94. Glass P, Chung HY, Washburn NR, Sitti M. 94.  2009. Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions. Langmuir 25:6607–12 [Google Scholar]
  95. Kim S, Cheung E, Sitti M. 95.  2009. Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. Langmuir 25:7196–99 [Google Scholar]
  96. Sitti M, Cusick B, Aksak B, Nese A, Lee HI. 96.  et al. 2009. Dangling chain elastomers as repeatable fibrillar adhesives. ACS Appl. Mater. Interfaces 1:2277–87 [Google Scholar]
  97. Sameoto D, Menon C. 97.  2009. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. J. Micromech. Microeng. 19:115002 [Google Scholar]
  98. Li YS, Sameoto D, Menon C. 98.  2010. Enhanced compliant adhesive design and fabrication with dual-level hierarchical structure. J. Bionic Eng. 7:228–34 [Google Scholar]
  99. Sameoto D, Menon C. 99.  2010. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives. J. Micromech. Microeng. 20:115037 [Google Scholar]
  100. Glass P, Chung HY, Washburn NR, Sitti M. 100.  2010. Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-coMEA) tip coating. Langmuir 26:17357–62 [Google Scholar]
  101. Carbone G, Pierro E, Gorb SN. 101.  2011. Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter 7:5545–52 [Google Scholar]
  102. Cheung E, Sitti M. 102.  2011. Enhancing adhesion of biologically inspired polymer microfibers with a viscous oil coating. J. Adhes. 87:547–57 [Google Scholar]
  103. Kwak MK, Jeong HE, Suh KY. 103.  2011. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 23:3949–53 [Google Scholar]
  104. Heepe L, Varenberg M, Itovich Y, Gorb SN. 104.  2011. Suction component in adhesion of mushroom-shaped microstructure. J. R. Soc. Interface 8:585–89 [Google Scholar]
  105. Xue LJ, Kovalev A, Thole F, Rengarajan GT, Steinhart M, Gorb SN. 105.  2012. Tailoring normal adhesion of arrays of thermoplastic, spring-like polymer nanorods by shaping nanorod tips. Langmuir 28:10781–88 [Google Scholar]
  106. Carbone G, Pierro E. 106.  2012. Effect of interfacial air entrapment on the adhesion of bio-inspired mushroom-shaped micro-pillars. Soft Matter 8:7904–8 [Google Scholar]
  107. Kroner E, Arzt E. 107.  2012. Single macropillars as model systems for tilt angle dependent adhesion measurements. Int. J. Adhes. Adhes. 36:32–38 [Google Scholar]
  108. Peng ZL, Chen SH. 108.  2012. The effect of geometry on the adhesive behavior of bio-inspired fibrils. Soft Matter 8:9864–69 [Google Scholar]
  109. Sameoto D, Sharif H, Menon C. 109.  2012. Investigation of low-pressure adhesion performance of mushroom-shaped biomimetic dry adhesive. J. Adhes. Sci. Technol. 26:2641–52 [Google Scholar]
  110. Carbone G, Pierro E. 110.  2012. Sticky bio-inspired micropillars: finding the best shape. Small 8:1449–54 [Google Scholar]
  111. Kovalev AE, Gorb SN. 111.  2012. Charge contribution to the adhesion performance of polymeric microstructures. Tribol. Lett. 48:103–9 [Google Scholar]
  112. Heepe L, Kovalev AE, Varenberg M, Tuma J, Gorb SN. 112.  2012. First mushroom-shaped adhesive microstructure: a review. Theor. Appl. Mech. Lett. 2:014008 [Google Scholar]
  113. Röhrig M, Thiel M, Worgull M, Hölscher H. 113.  2012. 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8:3009–15 [Google Scholar]
  114. Jeong HE, Suh KY. 114.  2012. Precise tip shape transformation of nanopillars for enhanced dry adhesion strength. Soft Matter 8:5375–80 [Google Scholar]
  115. Drotlef DM, Stepien L, Kappl M, Barnes WJP, Butt HJ, del Campo A. 115.  2013. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv. Funct. Mater. 23:1137–46 [Google Scholar]
  116. Kizilkan E, Heepe L, Gorb SN. 116.  2013. Underwater adhesion of mushroom-shaped adhesive microstructure: an air-entrapment effect. Biological and Biomimetic Adhesives: Challenges and Opportunities P Flammang 65–71 London: R. Soc. Chem. [Google Scholar]
  117. Kroner E, Arzt E. 117.  2013. Mechanistic analysis of force-displacement measurements on macroscopic single adhesive pillars. J. Mech. Phys. Solids 61:1295–1304 [Google Scholar]
  118. Piccardo M, Chateauminios A, Fretigny C, Pugno N, Sitti M. 118.  2013. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives. J. R. Soc. Interface 10:20130182 [Google Scholar]
  119. Henrey M, Díaz Téllez JP, Wormnes K, Pambaguian L, Menon C. 119.  2013. Towards the use of mushroom-capped dry adhesives in outer space: effects of low pressure and temperature on adhesion strength. Aerosp. Sci. Technol. 29:185–90 [Google Scholar]
  120. Heepe L, Kovalev AE, Filippov AE, Gorb SN. 120.  2013. Adhesion failure at 180,000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys. Rev. Lett. 111:104301 [Google Scholar]
  121. Zhou M, Tian Y, Sameoto D, Zhang XJ, Meng YG, Wen SZ. 121.  2013. Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS Appl. Mater. Interfaces 5:10137–44 [Google Scholar]
  122. Kasem H, Varenberg M. 122.  2013. Effect of counterface roughness on adhesion of mushroom-shaped microstructure. J. R. Soc. Interface 10:20130620 [Google Scholar]
  123. Afferante L, Carbone G. 123.  2013. The mechanisms of detachment of mushroom-shaped micro-pillars: from defect propagation to membrane peeling. Macromol. React. Eng. 7:609–15 [Google Scholar]
  124. Bin Khaled W, Sameoto D. 124.  2013. Anisotropic dry adhesive via cap defects. Bioinspir. Biomim. 8:044002 [Google Scholar]
  125. Hossfeld CK, Schneider AS, Arzt E, Frick CP. 125.  2013. Detachment behavior of mushroo-shaped fibrillar adhesive surfaces in peel testing. Langmuir 29:15394–404 [Google Scholar]
  126. Carbone G, Pierro E. 126.  2013. A review of adhesion mechanisms of mushroom-shaped microstructured adhesives. Meccanica 48:1819–33 [Google Scholar]
  127. Sameoto D, Ferguson B. 127.  2014. Robust large-area synthetic dry adhesive. J. Adhes. Sci. Technol. 28:337–53 [Google Scholar]
  128. Heepe L, Carbone G, Pierro E, Kovalev AE, Gorb SN. 128.  2014. Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl. Phys. Lett. 104:011906 [Google Scholar]
  129. Drotlef DM, Blümler P, del Campo A. 129.  2014. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 26:775–79 [Google Scholar]
  130. Varenberg M, Peressadko A, Gorb S, Arzt E, Mrotzek S. 130.  2006. Advanced testing of adhesion and friction with a microtribometer. Rev. Sci. Instrum. 77:066105 [Google Scholar]
  131. Hosoda N, Gorb SN. 131.  2012. Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces. Proc. R. Soc. B 279:4236–42 [Google Scholar]
  132. Maderson PFA.132.  1964. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203:780–81 [Google Scholar]
  133. Stork NE.133.  1980. Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J. Exp. Biol. 88:91–107 [Google Scholar]
  134. Brörmann K, Burger K, Jagota A, Bennewitz R. 134.  2012. Discharge during detachment of micro-structured PDMS sheds light on the role of electrostatics in adhesion. J. Adhes. 88:589–607 [Google Scholar]
  135. Izadi H, Penlidis A. 135.  2013. Polymeric bio-inspired dry adhesives: van der Waals or electrostatic interactions?. Macromol. React. Eng. 7:588–608 [Google Scholar]
  136. Persson BNJ, Scaraggi M, Volokitin AI, Chaudhury MK. 136.  2013. Contact electrification and the work of adhesion. Europhys. Lett. 103:36003 [Google Scholar]
  137. Horn RG, Smith DT. 137.  1992. Contact electrification and adhesion between dissimilar materials. Science 256:362–64 [Google Scholar]
  138. Johnson KL, Kendall K, Roberts AD. 138.  1971. Surface energy and the contact of elastic solids. Proc. R. Soc. A 324:301–13 [Google Scholar]
  139. Kendall K.139.  1975. Thin-film peeling—the elastic term. J. Phys. D 8:1449–52 [Google Scholar]
  140. Murphy MP, Sitti M. 140.  2007. Waalbot: an agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE ASME Trans. Mechatron. 12:330–38 [Google Scholar]
/content/journals/10.1146/annurev-matsci-062910-100458
Loading
/content/journals/10.1146/annurev-matsci-062910-100458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error