1932

Abstract

Advances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include () determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and () searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070813-113258
2014-07-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-070813-113258.html?itemId=/content/journals/10.1146/annurev-matsci-070813-113258&mimeType=html&fmt=ahah

Literature Cited

  1. Dagotto E.1.  2002. Nanoscale Phase Separation and Colossal Magnetoresistance Berlin: Springer
  2. Dagotto E.2.  2005. Complexity in strongly correlated electronic systems. Science 309:5732257–62 [Google Scholar]
  3. Imada M, Fujimori A, Tokura Y. 3.  1998. Metal-insulator transitions. Rev. Mod. Phys. 70:41039–263 [Google Scholar]
  4. Chakhalian J, Millis AJ, Rondinelli J. 4.  2012. Whither the oxide interface. Nat. Mater. 11:292–94 [Google Scholar]
  5. Rondinelli JM, May SJ, Freeland JW. 5.  2012. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37:3261–70 [Google Scholar]
  6. Tsuda N, Nasu K, Fujimori A, Siratori K. 6.  2000. Electronic Conduction in Oxides Berlin: Springer
  7. Caviglia AD, Scherwitzl R, Popovich P, Hu W, Bromberger H. 7.  et al. 2012. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108:13136801 [Google Scholar]
  8. Basov DN, Averitt RD, van der Marel D, Dressel M, Haule K. 8.  2011. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83:2471–541 [Google Scholar]
  9. Dressel M, Grüner G. 9.  2002. Electrodynamics of Solids: Optical Properties of Electrons in Matter Cambridge, UK: Cambridge Univ. Press
  10. Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A. 10.  et al. 2011. Light-induced superconductivity in a stripe-ordered cuprate. Science 331:6014189–91 [Google Scholar]
  11. Rini M, Tobey R, Dean N, Itatani J, Tomioka Y. 11.  et al. 2007. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449:715872–74 [Google Scholar]
  12. Cavalleri A, Rini M, Chong H, Fourmaux S, Glover T. 12.  et al. 2005. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95:6067405 [Google Scholar]
  13. Kübler C, Ehrke H, Huber R, Lopez R, Halabica A. 13.  et al. 2007. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Phys. Rev. Lett. 99:11116401 [Google Scholar]
  14. Pashkin A, Kübler C, Ehrke H, Lopez R, Halabica A. 14.  et al. 2011. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83:19195120 [Google Scholar]
  15. Hilton D, Prasankumar R, Fourmaux S, Cavalleri A, Brassard D. 15.  et al. 2007. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys. Rev. Lett. 99:22226401 [Google Scholar]
  16. Liu MK, Pardo B, Zhang J, Qazilbash MM, Yun SJ. 16.  et al. 2011. Photoinduced phase transitions by time-resolved far-IR spectroscopy in V2O3. Phys. Rev. Lett. 107:6066403 [Google Scholar]
  17. Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K. 17.  et al. 2012. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487:7407345–48 [Google Scholar]
  18. Orenstein J.18.  2012. Ultrafast spectroscopy of quantum materials. Phys. Today 65:944–50 [Google Scholar]
  19. Polkovnikov A, Sengupta K, Silva A, Vengalattore M. 19.  2011. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83:3863–83 [Google Scholar]
  20. Bunkov YM, Godfrin H. 20.  2000. Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions Berlin: Springer
  21. Chaikin PM, Lubensky TC. 21.  2000. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press
  22. Yang Z, Ko C, Ramanathan S. 22.  2011. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41:1337–67 [Google Scholar]
  23. Schultze M, Bothschafter EM, Sommer A, Holzner S, Schweinberger W. 23.  et al. 2013. Controlling dielectrics with the electric field of light. Nature 493:743075–78 [Google Scholar]
  24. Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D. 24.  et al. 2013. Optical-field-induced current in dielectrics. Nature 493:743070–74 [Google Scholar]
  25. Cavalleri A, Wall S, Simpson C, Statz E, Ward DW. 25.  et al. 2006. Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction. Nature 442:7103664–66 [Google Scholar]
  26. Chuang YD, Lee WS, Kung YF, Sorini AP, Moritz B. 26.  et al. 2013. Real-time manifestation of strongly coupled spin and charge order parameters in stripe-ordered La1.75Sr0.25Nio4 nickelate crystals using time-resolved resonant X-ray diffraction. Phys. Rev. Lett. 110:12127404 [Google Scholar]
  27. Wen H, Chen P, Cosgriff MP, Walko DA, Lee JH. 27.  et al. 2013. Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys. Rev. Lett. 110:3037601 [Google Scholar]
  28. Collet E, Lemée-Cailleau M-H, Buron-Le Cointe M, Cailleau H, Wulff M. 28.  et al. 2003. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300:5619612–15 [Google Scholar]
  29. Lee WS, Chuang YD, Moore RG, Zhu Y, Patthey L. 29.  et al. 2012. Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate. Nat. Commun. 3:838 [Google Scholar]
  30. Ichikawa H, Nozawa S, Sato T, Tomita A, Ichiyanagi K. 30.  et al. 2011. Transient photoinduced “hidden” phase in a manganite. Nat. Mater. 10:2101–5 [Google Scholar]
  31. Baum P, Yang D-S, Zewail AH. 31.  2007. 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318:5851788–92 [Google Scholar]
  32. Gedik N, Yang D-S, Logvenov G, Bozovic I, Zewail AH. 32.  2007. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316:5823425–29 [Google Scholar]
  33. Eichberger M, Schäfer H, Krumova M, Beyer M, Demsar J. 33.  et al. 2010. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468:7325799–802 [Google Scholar]
  34. He R-H, Hashimoto M, Karapetyan H, Koralek JD, Hinton JP. 34.  et al. 2011. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 331:60241579–83 [Google Scholar]
  35. Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A. 35.  et al. 2011. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471:7339490–93 [Google Scholar]
  36. Perfetti L, Loukakos PA, Lisowski M, Bovensiepen U, Eisaki H, Wolf M. 36.  2007. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99:19197001 [Google Scholar]
  37. Averitt RD, Taylor AJ. 37.  2002. Ultrafast optical and far-IR quasiparticle dynamics in correlated electron materials. J. Phys. Condens. Matter 14:50R1357–90 [Google Scholar]
  38. Hilton DJ, Prasankumar RP, Trugman SA, Taylor AJ, Averitt RD. 38.  2006. On photo-induced phenomena in complex materials: probing quasiparticle dynamics using IR and far-IR pulses. J. Phys. Soc. Jpn. 75:1011006 [Google Scholar]
  39. Kampfrath T, Tanaka K, Nelson KA. 39.  2013. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7:9680–90 [Google Scholar]
  40. Jepsen PU, Cooke DG, Koch M. 40.  2011. Terahertz spectroscopy and imaging—modern techniques and applications. Laser Photonics Rev. 5:1124–66 [Google Scholar]
  41. Hoffmann MC, Fülöp JA. 41.  2011. Intense ultrashort terahertz pulses: generation and applications. J. Phys. D. 44:8083001 [Google Scholar]
  42. Basov DN.42.  2005. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77:2721–79 [Google Scholar]
  43. Millis AJ.43.  2004. Optical conductivity and correlated electron physics. Strong Interact. Low Dimens. 25:195–235 [Google Scholar]
  44. Wall S, Prabhakaran D, Boothroyd AT, Cavalleri A. 44.  2009. Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO3. Phys. Rev. Lett. 103:097402 [Google Scholar]
  45. Shah J.45.  1999. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Berlin: Springer
  46. Huber R, Tauser F, Brodschelm A, Bichler M, Abstreiter G, Leitenstorfer A. 46.  2001. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414:6861286–89 [Google Scholar]
  47. Allen PB.47.  1987. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59:131460–63 [Google Scholar]
  48. Sun C-K, Vallée F, Acioli L, Ippen E, Fujimoto J. 48.  1994. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50:2015337–48 [Google Scholar]
  49. Brorson SD, Kazeroonian A, Moodera JS, Face DW, Cheng TK. 49.  et al. 1990. Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors. Phys. Rev. Lett. 64:182172–75 [Google Scholar]
  50. Groeneveld RHM, Sprik R. 50.  1995. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 51:1711433–45 [Google Scholar]
  51. Beaurepaire E, Merle J-C, Daunois A, Bigot J-Y. 51.  1996. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76:224250–53 [Google Scholar]
  52. Kimel AV, Kirilyuk A, Usachev PA, Pisarev RV, Balbashov AM, Rasing T. 52.  2005. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435:7042655–57 [Google Scholar]
  53. Kaindl RA, Carnahan MA, Hägele D, Lövenich R, Chemla DS. 53.  2003. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423:6941734–38 [Google Scholar]
  54. Leinß S, Kampfrath T, Volkmann K, Wolf M, Steiner J. 54.  et al. 2008. Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett. 101:24246401 [Google Scholar]
  55. Zeiger H, Vidal J, Cheng T, Ippen E, Dresselhaus G, Dresselhaus M. 55.  1992. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45:2768–78 [Google Scholar]
  56. Thomsen C, Strait J, Vardeny Z, Maris H, Tauc J, Hauser J. 56.  1984. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53:10989–92 [Google Scholar]
  57. Thomsen C, Grahn H, Maris H, Tauc J. 57.  1986. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34:64129–38 [Google Scholar]
  58. Misochko OV.58.  2001. Coherent phonons and their properties. J. Exp. Theor. Phys. 92:2246–59 [Google Scholar]
  59. Merlin R.59.  1997. Generating coherent THz phonons with light pulses. Solid State Commun. 102:2–3207–20 [Google Scholar]
  60. Demsar J, Biljaković K, Mihailovic D. 60.  1999. Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett. 83:4800–3 [Google Scholar]
  61. Demsar J, Averitt RD, Ahn KH, Graf MJ, Trugman SA. 61.  et al. 2003. Quasiparticle relaxation dynamics in heavy fermion compounds. Phys. Rev. Lett. 91:2027401 [Google Scholar]
  62. Gedik N, Langner M, Orenstein J, Ono S, Abe Y, Ando Y. 62.  2005. Abrupt transition in quasiparticle dynamics at optimal doping in a cuprate superconductor system. Phys. Rev. Lett. 95:11117005 [Google Scholar]
  63. Hinton JP, Koralek JD, Yu G, Motoyama EM, Lu YM. 63.  et al. 2013. Time-resolved optical reflectivity of the electron-doped Nd2−xCexCuO4+δ cuprate superconductor: evidence for an interplay between competing orders. Phys. Rev. Lett. 110:21217002 [Google Scholar]
  64. Schoenlein R, Lin W, Fujimoto J, Eesley G. 64.  1987. Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58:161680–83 [Google Scholar]
  65. Kabanov VV, Demsar J, Mihailovic D. 65.  2005. Kinetics of a superconductor excited with a femtosecond optical pulse. Phys. Rev. Lett. 95:14147002 [Google Scholar]
  66. Demsar J, Podobnik B, Kabanov V, Wolf T, Mihailovic D. 66.  1999. Superconducting gap Δc, the pseudogap Δp, and pair fluctuations above Tc in overdoped Y1−xCaxBa2Cu3O7−δ from femtosecond time-domain spectroscopy. Phys. Rev. Lett. 82:244918–21 [Google Scholar]
  67. Gedik N, Orenstein J, Liang R, Bonn DA, Hardy WN. 67.  2003. Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300:56241410–12 [Google Scholar]
  68. Mazurenko D, Nugroho A, Palstra T, van Loosdrecht P. 68.  2008. Dynamics of spin and orbital phase transitions in YVO3. Phys. Rev. Lett. 101:24245702 [Google Scholar]
  69. Chia E, Zhu J-X, Talbayev D, Averitt R, Taylor A. 69.  et al. 2007. Observation of competing order in a high-Tc superconductor using femtosecond optical pulses. Phys. Rev. Lett. 99:14147008 [Google Scholar]
  70. Lim D, Thorsmølle V, Averitt R, Jia Q, Ahn K. 70.  et al. 2005. Coherent optical and acoustic phonon generation correlated with the charge-ordering phase transition in La1−xCaxMnO3. Phys. Rev. B 71:13134403 [Google Scholar]
  71. Polli D, Rini M, Wall S, Schoenlein RW, Tomioka Y. 71.  et al. 2007. Coherent orbital waves in the photo-induced insulator-metal dynamics of a magnetoresistive manganite. Nat. Mater. 6:9643–47 [Google Scholar]
  72. Ruello P, Zhang S, Laffez P, Perrin B, Gusev V. 72.  2009. Laser-induced coherent acoustical phonons mechanisms in the metal-insulator transition compound NdNiO3: thermal and nonthermal processes. Phys. Rev. B 79:9094303 [Google Scholar]
  73. Yusupov R, Mertelj T, Kabanov VV, Brazovskii S, Kusar P. 73.  et al. 2010. Coherent dynamics of macroscopic electronic order through a symmetry breaking transition. Nat. Phys. 6:9681–84 [Google Scholar]
  74. Averitt RD.74.  2010. Symmetry breaking transitions: dynamics of broken symmetry. Nat. Phys. 6:9639–40 [Google Scholar]
  75. Hinton JP, Koralek JD, Lu YM, Vishwanath A, Orenstein J. 75.  et al. 2013. New collective mode in YBa2Cu3O6+x observed by time-domain reflectometry. Phys. Rev. B 88:6060508 [Google Scholar]
  76. Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C. 76.  et al. 2011. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477:191–94 [Google Scholar]
  77. Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C. 77.  et al. 2012. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337:6096821–25 [Google Scholar]
  78. Chang J, Blackburn E, Holmes AT, Christensen NB, Larsen J. 78.  et al. 2012. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8:12871–76 [Google Scholar]
  79. Hansmann P, Toschi A, Sangiovanni G, Saha-Dasgupta T, Lupi S. 79.  et al. 2013. Mott-Hubbard transition in V2O3 revisited. Phys. Status Solid. 250:71251–64 [Google Scholar]
  80. Mansart B, Boschetto D, Sambri A, Malaquias R, Miletto Granozio F. 80.  et al. 2010. Ultrafast dynamical response of strongly correlated oxides: role of coherent optical and acoustic oscillations. J. Mod. Opt. 57:11959–66 [Google Scholar]
  81. Först M, Manzoni C, Kaiser S, Tomioka Y, Tokura Y. 81.  et al. 2011. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7:11854–56 [Google Scholar]
  82. Dienst A, Hoffmann MC, Fausti D, Petersen JC, Pyon S. 82.  et al. 2011. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photonics 5:8485–88 [Google Scholar]
  83. Kaiser S, Nicoletti D, Hunt CR, Hu W, Gierz I. 83.  et al. 2012. Light-induced inhomogeneous superconductivity far above Tc in YBa2Cu3O6+x. arXiv:1205.4661 [cond-mat.supr-con]
  84. Hu W, Gierz I, Nicoletti D, Kaiser S, Hunt CR. 84.  et al. 2013. Enhancement of superconductivity by redistribution of interlayer coupling in optically stimulated YBa2Cu3O6.5. arXiv:1308.3204 [cond-mat.supr-con]
  85. Yeh K-L, Hoffmann MC, Hebling J, Nelson KA. 85.  2007. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90:17171121 [Google Scholar]
  86. Hoffmann MC, Hebling J, Hwang HY, Yeh K-L, Nelson KA. 86.  2009. Thz-pump/THz-probe spectroscopy of semiconductors at high field strengths. J. Opt. Soc. Am. B 26:A29–34 [Google Scholar]
  87. Hirori H, Doi A, Blanchard F, Tanaka K. 87.  2011. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 98:9091106 [Google Scholar]
  88. Hirori H, Shinokita K, Shirai M, Tani S, Kadoya Y, Tanaka K. 88.  2011. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nat. Commun. 2:594 [Google Scholar]
  89. Hoffmann M, Hebling J, Hwang H, Yeh K-L, Nelson K. 89.  2009. Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy. Phys. Rev. B 79:16161201 [Google Scholar]
  90. Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S. 90.  et al. 2010. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5:131–34 [Google Scholar]
  91. Khomskii DI.91.  2010. Basic Aspects of the Quantum Theory of Solids: Order and Elementary Excitations Cambridge, UK: Cambridge Univ. Press
  92. Katayama I, Aoki H, Takeda J, Shimosato H, Ashida M. 92.  et al. 2012. Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses. Phys. Rev. Lett. 108:9097401 [Google Scholar]
  93. Matsunaga R, Shimano R. 93.  2012. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Phys. Rev. Lett. 109:18187002 [Google Scholar]
  94. Matsunaga R, Hamada YI, Makise K, Uzawa Y, Terai H. 94.  et al. 2013. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111:5057002 [Google Scholar]
  95. Zhang C, Jin B, Han J, Kawayama I, Murakami H. 95.  et al. 2013. Terahertz nonlinear superconducting metamaterials. Appl. Phys. Lett. 102:8081121 [Google Scholar]
  96. Beck M, Rosseau I, Klammer M, Leiderer P, Mittendorff M. 96.  et al. 2013. Transient increase of the energy gap of superconducting NbN thin films excited by resonant narrow-band terahertz pulses. Phys. Rev. Lett. 110:267003 [Google Scholar]
  97. Dienst A, Cassandruc E, Faust D, Zhang L, Eckstein M. 97.  et al. 2013. Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nat. Mater. 12:535–41 [Google Scholar]
  98. Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J. 98.  et al. 2013. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 8:4256–60 [Google Scholar]
  99. Rana DS, Kawayama I, Mavani K, Takahashi K, Murakami H, Tonouchi M. 99.  2009. Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO3. Adv. Mater. 21:282881–85 [Google Scholar]
  100. Koshihara S, Takahashi Y, Sakai H, Tokura Y, Luty T. 100.  1999. Photoinduced cooperative charge transfer in low-dimensional organic crystals. J. Phys. Chem. B 103:142592–600 [Google Scholar]
  101. Tokura Y.101.  2006. Photoinduced phase transition: a tool for generating a hidden state of matter. J. Phys. Soc. Jpn. 75:1011001 [Google Scholar]
  102. Yonemitsu K, Nasu K. 102.  2008. Theory of photoinduced phase transitions in itinerant electron systems. Phys. Rep. 465:11–60 [Google Scholar]
  103. Nasu K.103.  2004. Photoinduced Phase Transitions Singapore: World Sci.
  104. Kise T, Ogasawara T, Ashida M, Tomioka Y, Tokura Y, Kuwata-Gonokami M. 104.  2000. Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet: Sr2FeMoO6. Phys. Rev. Lett. 85:91986–89 [Google Scholar]
  105. Matsubara M, Okimoto Y, Ogasawara T, Tomioka Y, Okamoto H, Tokura Y. 105.  2007. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0.55Sr0.45MnO3. Phys. Rev. Lett. 99:20207401 [Google Scholar]
  106. Zhou SY, Zhu Y, Langner MC, Chuang Y-D, Yu P. 106.  et al. 2011. Ferromagnetic enhancement of Ce-type spin ordering in (Pr,Ca)MnO3. Phys. Rev. Lett. 106:18186404 [Google Scholar]
  107. Ogasawara T, Kimura T, Ishikawa T, Kuwata-Gonokami M, Tokura Y. 107.  2001. Dynamics of photoinduced melting of charge/orbital order in a layered manganite La0.5Sr1.5MnO4. Phys. Rev. B 63:11113105 [Google Scholar]
  108. Kim H-T, Lee YW, Kim B-J, Chae B-G, Yun SJ. 108.  et al. 2006. Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis. Phys. Rev. Lett. 97:26266401 [Google Scholar]
  109. Cavalleri A, Dekorsy T, Chong H, Kieffer J, Schoenlein R. 109.  2004. Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale. Phys. Rev. B 70:16161102 [Google Scholar]
  110. Rini M, Cavalleri A, Schoenlein RW, López R, Feldman LC. 110.  et al. 2005. Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. Opt. Lett. 30:5558 [Google Scholar]
  111. Cavalleri A, Tóth C, Siders C, Squier J, Ráksi F. 111.  et al. 2001. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87:23237401 [Google Scholar]
  112. Zimmers A, Aigouy L, Mortier M, Sharoni A, Wang S. 112.  et al. 2013. Role of thermal heating on the voltage induced insulator-metal transition in VO2. Phys. Rev. Lett. 110:5056601 [Google Scholar]
  113. Averitt R, Rodriguez G, Lobad A, Siders J, Trugman S, Taylor A. 113.  2001. Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7−δ. Phys. Rev. B 63:14140502 [Google Scholar]
  114. Kaindl R, Carnahan M, Chemla D, Oh S, Eckstein J. 114.  2005. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72:6060510 [Google Scholar]
  115. Kaindl RA.115.  2000. Ultrafast mid-IR response of YBa2Cu3O7−δ. Science 287:5452470–73 [Google Scholar]
  116. Giannetti C, Cilento F, Dal Conte S, Coslovich G, Ferrini G. 116.  et al. 2011. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2:353 [Google Scholar]
  117. Dal Conte S, Giannetti C, Coslovich G, Cilento F, Bossini D. 117.  et al. 2012. Disentangling the electronic and phononic glue in a high-Tc superconductor. Science 335:60761600–3 [Google Scholar]
  118. Torchinsky DH, Mahmood F, Bollinger AT, Božović I, Gedik N. 118.  2013. Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12:5387–91 [Google Scholar]
  119. Tao J, Prasankumar RP, Chia EEM, Taylor AJ, Zhu J-X. 119.  2012. Theory of ultrafast quasiparticle dynamics in high-temperature superconductors: the dependence on pump fluence. Phys. Rev. B 85:14144302 [Google Scholar]
  120. Carr G, Lobo R, LaVeigne J, Reitze D, Tanner D. 120.  2000. Exploring the dynamics of superconductors by time-resolved far-IR spectroscopy. Phys. Rev. Lett. 85:143001–4 [Google Scholar]
  121. Nieva G, Osquiguil E, Guimpel J, Maenhoudt M, Wuyts B. 121.  et al. 1992. Photoinduced changes in the transport properties of oxygen-deficient YBa2Cu3Ox. Phys. Rev. B 46:2114249–52 [Google Scholar]
  122. Nieva G, Osquiguil E, Guimpel J, Maenhoudt M, Wuyts B. 122.  et al. 1992. Photoinduced enhancement of superconductivity. Appl. Phys. Lett. 60:172159 [Google Scholar]
  123. Li T, Patz A, Mouchliadis L, Yan J, Lograsso TA. 123.  et al. 2013. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations. Nature 496:744369–73 [Google Scholar]
  124. Tolédano JC, Tolédano P. 124.  1987. The Landau Theory of Phase Transitions: Application to Structural, Incommensurate, Magnetic and Liquid Crystal Systems. Singapore: World Sci.
  125. Demsar J, Averitt RD, Taylor AJ, Kabanov VV, Kang WN. 125.  et al. 2003. Pair-breaking and superconducting state recovery dynamics in MgB2. Phys. Rev. Lett. 91:26267002 [Google Scholar]
  126. Ahn K, Graf M, Trugman S, Demsar J, Averitt R. 126.  et al. 2004. Ultrafast quasiparticle relaxation dynamics in normal metals and heavy-fermion materials. Phys. Rev. B 69:4045114 [Google Scholar]
  127. Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone J-M. 127.  2011. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2:1141–65 [Google Scholar]
  128. Tsymbal EY, Dagotto ERA, Eom C-B, Ramesh R. 128.  2012. Multifunctional Oxide Heterostructures Oxford, UK: Oxford Univ. Press
  129. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 129.  2012. Emergent phenomena at oxide interfaces. Nat. Mater. 11:2103–13 [Google Scholar]
  130. Chakhalian J, Freeland JW, Srajer G, Strempfer J, Khaliullin G. 130.  et al. 2006. Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2:4244–48 [Google Scholar]
  131. Chakhalian J, Freeland JW, Habermeier H-U, Cristiani G, Khaliullin G. 131.  et al. 2007. Orbital reconstruction and covalent bonding at an oxide interface. Science 318:58531114–17 [Google Scholar]
  132. Massa N, Alonso J, Martínez-Lope M, Rasines I. 132.  1997. Reflectivity, transmission, and photoinduced IR spectra of NdNiO3. Phys. Rev. B 56:3986–89 [Google Scholar]
  133. 133. SLAC 2013. X-Ray pump probe (XPP) Retrieved Dec. 6. https://portal.slac.stanford.edu/sites/lcls_public/Instruments/xpp/Pages/Specifications.aspx [Google Scholar]
  134. Liu MK, Wagner M, Abreu E, Kittiwatanakul S, McLeod A. 134.  et al. 2013. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111:9096602 [Google Scholar]
  135. Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ. 135.  et al. 2013. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7:8620–25 [Google Scholar]
  136. Kotliar G, Vollhardt D. 136.  2004. Strongly correlated materials: insights from dynamical mean-field theory. Phys. Today 57:353 [Google Scholar]
  137. Le Tacon M, Sacuto A, Georges A, Kotliar G, Gallais Y. 137.  et al. 2006. Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nat. Phys. 2:8537–43 [Google Scholar]
  138. Held K.138.  2007. Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56:6829–926 [Google Scholar]
  139. Held K, Keller G, Eyert V, Vollhardt D, Anisimov V. 139.  2001. Mott-Hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT (QMC) study. Phys. Rev. Lett. 86:235345–48 [Google Scholar]
  140. Nekrasov IA, Pavlov NS, Sadovskii MV. 140.  2013. Consistent LDA′ + DMFT approach to the electronic structure of transition metal oxides: charge transfer insulators and correlated metals. J. Exp. Theor. Phys. 116:4620–34 [Google Scholar]
  141. Werner P, Tsuji N, Eckstein M. 141.  2012. Nonthermal symmetry-broken states in the strongly interacting Hubbard model. Phys. Rev. B 86:20205101 [Google Scholar]
  142. Eckstein M, Werner P. 142.  2013. Nonequilibrium dynamical mean-field simulation of inhomogeneous systems. Phys. Rev. B 88:7075135 [Google Scholar]
  143. Tsuji N, Eckstein M, Werner P. 143.  2013. Nonthermal antiferromagnetic order and nonequilibrium criticality in the Hubbard model. Phys. Rev. Lett. 110:13136404 [Google Scholar]
  144. Moritz B, Kemper AF, Sentef M, Devereaux TP, Freericks JK. 144.  2013. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states. Phys. Rev. Lett. 111:7077401 [Google Scholar]
  145. De Filippis G, Cataudella V, Nowadnick EA, Devereaux TP, Mishchenko AS, Nagaosa N. 145.  2012. Quantum dynamics of the Hubbard-Holstein model in equilibrium and nonequilibrium: application to pump-probe phenomena. Phys. Rev. Lett. 109:17176402 [Google Scholar]
  146. Tsuji N, Oka T, Werner P, Aoki H. 146.  2011. Dynamical band flipping in fermionic lattice systems: an ac-field-driven change of the interaction from repulsive to attractive. Phys. Rev. Lett. 106:23236401 [Google Scholar]
  147. Kim KW, Pashkin A, Schäfer H, Beyer M, Porer M. 147.  et al. 2012. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat. Mater. 11:497–501 [Google Scholar]
  148. Daranciang D, Highland MJ, Wen H, Young SM, Brandt NC. 148.  et al. 2012. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108:087601 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070813-113258
Loading
/content/journals/10.1146/annurev-matsci-070813-113258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error