1932

Abstract

In multiferroics, magnetism is coupled to ferroelectricity so that the configuration of magnetic moments may be modified by an external electric field and, conversely, the electrically polar state may be magnetically switched. Such functionality has the potential for new technology such as energy-efficient, electrically written magnetic memories. Furthermore, multiferroics are of interest in fundamental research into quantum matter. Understanding the interplay between magnetism and ferroelectricity has posed a significant challenge to the scientific community. State-of-the-art diffraction experiments have played a unique role, as they are sensitive to both magnetic ordering and the atomic displacements associated with ferroelectricity. Exceptional insights have been gained from neutron polarimetry techniques complemented by X-ray magnetic scattering experiments, which, for the first time, have been applied to a large selection of related materials and problems. In this review, we discuss a broad selection of multiferroics and the diffraction experiments used to explain their phenomenology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070813-113524
2014-07-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-070813-113524.html?itemId=/content/journals/10.1146/annurev-matsci-070813-113524&mimeType=html&fmt=ahah

Literature Cited

  1. Pyatakov AP, Zvezdin AK. 1.  2012. Magnetoelectric and multiferroic media. Phys. Uspekhi 55:557–81 [Google Scholar]
  2. O'Dell TH.2.  1970. The Electrodynamics of Magneto-Electric Media Amsterdam: North-Holland
  3. Fiebig M.3.  2005. Revival of the magnetoelectric effect. J. Phys. D 38:R123 [Google Scholar]
  4. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 4.  2003. Magnetic control of ferroelectric polarization. Nature 426:55–58 [Google Scholar]
  5. Cheong S-W, Mostovoy M. 5.  2007. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6:13–20 [Google Scholar]
  6. Spaldin NA, Fiebig M. 6.  2005. The renaissance of magnetoelectric multiferroics. Science 309:391–92 [Google Scholar]
  7. Sosnowska I, Neumaier TP, Steichele E. 7.  1982. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15:4835 [Google Scholar]
  8. Sosnowska I, Zvezdin VA. 8.  1995. Origin of the long period magnetic ordering in BiFeO3. J. Magn. Magn. Mater. 140:167–68 [Google Scholar]
  9. Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Goukasov A. 9.  2008. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100:227602 [Google Scholar]
  10. Lee S, Choi T, Ratcliff W, Erwin R, Cheong S-W, Kiryukhin V. 10.  2008. Single ferroelectric and chiral magnetic domain of single-crystalline BiFeO3 in an electric field. Phys. Rev. B 78:100101 [Google Scholar]
  11. Johnson RD, Barone P, Bombardi A, Bean RJ, Picozzi S. 11.  et al. 2013. X-ray imaging and multiferroic coupling of cycloidal magnetic domains in ferroelectric monodomain BiFeO3. Phys. Rev. Lett. 110:217206 [Google Scholar]
  12. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M. 12.  et al. 2006. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5:823–29 [Google Scholar]
  13. Radaelli PG, Chapon LC, Daoud-Aladine A, Vecchini C, Brown PJ. 13.  et al. 2008. Electric field switching of antiferromagnetic domains in YMn2O5: a probe of the multiferroic mechanism. Phys. Rev. Lett. 101:067205 [Google Scholar]
  14. Walker HC, Fabrizi F, Paolasini L, de Bergevin F, Herrero-Martin J. 14.  et al. 2011. Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3. Science 333:1273–76 [Google Scholar]
  15. Johnson RD, Nair S, Chapon LC, Bombardi A, Vecchini C. 15.  et al. 2011. Cu3Nb2O8: a multiferroic with chiral coupling to the crystal structure. Phys. Rev. Lett. 107:137205 [Google Scholar]
  16. Gibbs D, Harshman DR, Isaacs ED, McWhan DB, Mills D, Vettier C. 16.  1988. Polarization and resonance properties of magnetic X-ray scattering in holmium. Phys. Rev. Lett. 61:1241–44 [Google Scholar]
  17. Blume M, Gibbs D. 17.  1988. Polarization dependence of magnetic X-ray scattering. Phys. Rev. B 37:1779–89 [Google Scholar]
  18. Blume M.18.  1963. Polarization effects in the magnetic elastic scattering of slow neutrons. Phys. Rev. 130:1670–76 [Google Scholar]
  19. Maleev SV, Bar'yaktar VG, Suris RA. 19.  1963. The scattering of slow neutrons by complex magnetic structures. Sov. Phys. Solid State 4:2533 [Google Scholar]
  20. Brown PJ, Forsyth JB, Tasset F. 20.  1993. Neutron polarimetry. Proc. R. Soc. A 442:147–60 [Google Scholar]
  21. Brown PJ.21.  1998. A study of magnetoelectric domain formation in Cr2O3. J. Phys. Condens. Matter 10:663 [Google Scholar]
  22. Daoud-Aladine A, Kundys B, Martin C, Radaelli PG, Brown PJ. 22.  et al. 2009. Multiferroicity and spiral magnetism in FeVO4 with quenched Fe orbital moments. Phys. Rev. B 80:220402 [Google Scholar]
  23. Choi YJ, Yi HT, Lee S, Huang Q, Kiryukhin V, Cheong S-W. 23.  2008. Ferroelectricity in an Ising chain magnet. Phys. Rev. Lett. 100:047601 [Google Scholar]
  24. Hur N, Park S, Sharma PA, Ahn J, Guha S, Cheong S-W. 24.  2004. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429:392–95 [Google Scholar]
  25. Buisson G.25.  1973. Structures magnétiques sinusoïdales et hélicoïdales de la terre rare dans TMn2O5. Phys. Status Solid. A 17:191–98 [Google Scholar]
  26. Wilkinson C, Sinclair F, Gardner PP, Forsyth JB, Wanklyn BMR. 26.  1981. The antiferromagnetic structure of DyMn2O5 at 4.2K. J. Phys. C 14:1671 [Google Scholar]
  27. Gardner PP, Wilkinson C, Forsyth JB, Wanklyn BM. 27.  1988. The magnetic structures of the rare-earth manganates ErMn2O5 and TbMn2O5. J. Phys. C 21:5653 [Google Scholar]
  28. Blake GR, Chapon LC, Radaelli PG, Park S, Hur N. 28.  et al. 2005. Spin structure and magnetic frustration in multiferroic RMn2O5 (R = Tb,Ho,Dy). Phys. Rev. B 71:214402 [Google Scholar]
  29. Kobayashi S, Osawa T, Kimura H, Noda Y, Kagomiya I, Kohn K. 29.  2004. 2D-to-1D modulated-to-lock in successive magnetic phase transitions associated with ferroelectricity in ErMn2O5. J. Phys. Soc. Jpn. 73:1031–35 [Google Scholar]
  30. Kobayashi S, Osawa T, Kimura H, Noda Y, Kagomiya I, Kohn K. 30.  2004. Reinvestigation of simultaneous magnetic and ferroelectric phase transitions in YMn2O5. J. Phys. Soc. Jpn. 73:1593–96 [Google Scholar]
  31. Chapon LC, Blake GR, Gutmann MJ, Park S, Hur N. 31.  et al. 2004. Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5. Phys. Rev. Lett. 93:177402 [Google Scholar]
  32. Muñoz A, Alonso JA, Casais MT, Martínez-Lope MJ, Martínez JL, Fernández-Díaz MT. 32.  2002. Magnetic structure and properties of BiMn2O5 oxide: a neutron diffraction study. Phys. Rev. B 65:144423 [Google Scholar]
  33. Kim J-H, Lee S-H, Park SI, Kenzelmann M, Harris AB. 33.  et al. 2008. Spiral spin structures and origin of the magnetoelectric coupling in YMn2O5. Phys. Rev. B 78:245115 [Google Scholar]
  34. Radaelli PG, Vecchini C, Chapon LC, Brown PJ, Park S, Cheong S-W. 34.  2009. Incommensurate magnetic structure of YMn2O5: a stringent test of the multiferroic mechanism. Phys. Rev. B 79:020404 [Google Scholar]
  35. Cao K, Guo G-C, Vanderbilt D, He L. 35.  2009. First-principles modeling of multiferroic RMn2O5. Phys. Rev. Lett. 103:257201 [Google Scholar]
  36. Beutier G, Bombardi A, Vecchini C, Radaelli PG, Park S. 36.  et al. 2008. Commensurate phase of multiferroic HoMn2O5 studied by X-ray magnetic scattering. Phys. Rev. B 77:172408 [Google Scholar]
  37. Lee N, Vecchini C, Choi YJ, Chapon LC, Bombardi A. 37.  et al. 2013. Giant tunability of ferroelectric polarization in GdMn2O5. Phys. Rev. Lett. 110:137203 [Google Scholar]
  38. Muñoz A, Alonso JA, Casais MT, Martínez-Lope MJ, Martínez JL, Fernández-Díaz MT. 38.  2002. The magnetic structure of YMnO3 perovskite revisited. J. Phys. Condens. Matter 14:3285 [Google Scholar]
  39. Okuyama D, Ishiwata S, Takahashi Y, Yamauchi K, Picozzi S. 39.  et al. 2011. Magnetically driven ferroelectric atomic displacements in orthorhombic YMnO3. Phys. Rev. B 84:054440 [Google Scholar]
  40. Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U. 40.  et al. 2012. Origin of the large polarization in multiferroic YMnO3 thin films revealed by soft- and hard-X-ray diffraction. Phys. Rev. Lett. 108:047203 [Google Scholar]
  41. Ye F, Lorenz B, Huang Q, Wang YQ, Sun YY. 41.  et al. 2007. Incommensurate magnetic structure in the orthorhombic perovskite ErMnO3. Phys. Rev. B 76:060402 [Google Scholar]
  42. Huang YH, Fjellvåg H, Karppinen M, Hauback BC, Yamauchi H, Goodenough JB. 42.  2006. Crystal and magnetic structure of the orthorhombic perovskite YbMnO3. Chem. Mater. 18:2130–34 [Google Scholar]
  43. Okamoto H, Imamura N, Hauback BC, Karppinen M, Yamauchi H, Fjellvåg H. 43.  2008. Neutron powder diffraction study of crystal and magnetic structures of orthorhombic LuMnO3. Solid State Commun. 146:152–56 [Google Scholar]
  44. Pomjakushin VYu, Kenzelmann M, Dönni A, Harris AB, Nakajima T. 44.  et al. 2009. Evidence for large electric polarization from collinear magnetism in TmMnO3. New J. Phys. 11:043019 [Google Scholar]
  45. Brinks HW, Rodriguez-Carvajal J, Fjellvåg H, Kjekshus A, Hauback BC. 45.  2001. Crystal and magnetic structure of orthorhombic HoMnO3. Phys. Rev. B 63:094411 [Google Scholar]
  46. Muñoz A, Casáis MT, Alonso JA, Martínez-Lope MJ, Martínez JL, Fernández-Díaz MT. 46.  2001. Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg. Chem. 40:1020–28 [Google Scholar]
  47. Sergienko IA, Şen C, Dagotto E. 47.  2006. Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. Phys. Rev. Lett. 97:227204 [Google Scholar]
  48. Lorenz B, Wang Y-Q, Chu C-W. 48.  2007. Ferroelectricity in perovskite HoMnO3 and YMnO3. Phys. Rev. B 76:104405 [Google Scholar]
  49. Nakamura M, Tokunaga Y, Kawasaki M, Tokura Y. 49.  2011. Multiferroicity in an orthorhombic YMnO3 single-crystal film. Appl. Phys. Lett. 98:082902 [Google Scholar]
  50. Han TC, Chao HH. 50.  2010. Observation of large electric polarization in orthorhombic TmMnO3 thin films. Appl. Phys. Lett. 97:232902 [Google Scholar]
  51. Anderson PW.51.  1950. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79:350–56 [Google Scholar]
  52. Kanamori J.52.  1957. Theory of the magnetic properties of ferrous and cobaltous oxides, I. Prog. Theor. Phys. 17:177–96 [Google Scholar]
  53. Kanamori J.53.  1957. Theory of the magnetic properties of ferrous and cobaltous oxides, II. Prog. Theor. Phys. 17:197–222 [Google Scholar]
  54. Goodenough JB.54.  1958. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J. Phys. Chem. Solids 6:287–97 [Google Scholar]
  55. Zhou J-S, Goodenough JB, Gallardo-Amores JM, Morán E, Alario-Franco MA, Caudillo R. 55.  2006. Hexagonal versus perovskite phase of manganite RMnO3 (R = Y, Ho, Er, Tm, Yb, Lu). Phys. Rev. B 74:014422 [Google Scholar]
  56. Fiebig M, Lottermoser Th, Kneip MK, Bayer M. 56.  2006. Correlations between magnetic and electrical orderings in multiferroic manganites. J. Appl. Phys. 99:08E302 [Google Scholar]
  57. Zhou J-S, Goodenough JB. 57.  2006. Unusual evolution of the magnetic interactions versus structural distortions in RMnO3 perovskites. Phys. Rev. Lett. 96:247202 [Google Scholar]
  58. Huang Q, Santoro A, Lynn JW, Erwin RW, Borchers JA. 58.  et al. 1997. Structure and magnetic order in undoped lanthanum manganite. Phys. Rev. B 55:14987 [Google Scholar]
  59. Mryasov ON, Sabiryanov RF, Freeman AJ, Jaswal SS. 59.  1997. Effect of lattice distortions on the competition between the double and superexchange mechanisms in LaMnO3. Phys. Rev. B 56:7255–61 [Google Scholar]
  60. Rodriguez-Carvajal J, Hennion M, Moussa F, Moudden AH, Pinsard L, Revcolevschi A. 60.  1998. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3. Phys. Rev. B 57:R3189–92 [Google Scholar]
  61. McCormack M, Jin S, Tiefel TH, Fleming RM, Phillips JM. 61.  1994. Very large magnetoresistance in perovskite-like La-Ca-Mn-O thin films. Appl. Phys. Lett. 64:3045–47 [Google Scholar]
  62. Ishihara S, Maekawa S. 62.  1998. Theory of anomalous X-ray scattering in orbital-ordered manganites. Phys. Rev. Lett. 80:3799–802 [Google Scholar]
  63. Murakami Y, Hill JP, Gibbs D, Blume M, Koyama I. 63.  et al. 1998. Resonant X-ray scattering from orbital ordering in LaMnO3. Phys. Rev. Lett. 81:582–85 [Google Scholar]
  64. Quezel S, Tcheou F, Rossat-Mignod J, Quezel G, Roudaut E. 64.  1977. Magnetic structure of the perovskite-like compound TbMnO3. Physica B 86:916–18 [Google Scholar]
  65. Kimura T, Ishihara S, Shintani H, Arima T, Takahashi KT. 65.  et al. 2003. Distorted perovskite with e1g configuration as a frustrated spin system. Phys. Rev. B 68:060403 [Google Scholar]
  66. Kenzelmann M, Harris AB, Jonas S, Broholm C, Schefer J. 66.  et al. 2005. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95:087206 [Google Scholar]
  67. Katsura H, Nagaosa N, Balatsky AV. 67.  2005. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95:057205 [Google Scholar]
  68. Mostovoy M.68.  2006. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96:067601 [Google Scholar]
  69. Yamasaki Y, Sagayama H, Goto T, Matsuura M, Hirota K. 69.  et al. 2007. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98:147204 [Google Scholar]
  70. Fabrizi F, Walker HC, Paolasini L, de Bergevin F, Boothroyd AT. 70.  et al. 2009. Circularly polarized X rays as a probe of noncollinear magnetic order in multiferroic TbMnO3. Phys. Rev. Lett. 102:237205 [Google Scholar]
  71. Kajimoto R, Yoshizawa H, Shintani H, Kimura T, Tokura Y. 71.  2004. Magnetic structure of TbMnO3 by neutron diffraction. Phys. Rev. B 70:012401 [Google Scholar]
  72. Prokhnenko O, Feyerherm R, Mostovoy M, Aliouane N, Dudzik E. 72.  et al. 2007. Coupling of frustrated Ising spins to the magnetic cycloid in multiferroic TbMnO3. Phys. Rev. Lett. 99:177206 [Google Scholar]
  73. Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y. 73.  2004. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92:257201 [Google Scholar]
  74. Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N. 74.  et al. 2007. Enhanced ferroelectric polarization by induced Dy spin order in multiferroic DyMnO3. Phys. Rev. Lett 98:05720 [Google Scholar]
  75. Feyerherm R, Dudzik E, Aliouane N, Argyriou DN. 75.  2006. Commensurate Dy magnetic ordering associated with incommensurate lattice distortion in multiferroic DyMnO3. Phys. Rev. B 73:180401 [Google Scholar]
  76. Feyerherm R, Dudzik E, Wolter AUB, Valencia S, Prokhnenko O. 76.  et al. 2009. Magnetic-field induced effects on the electric polarization in RMnO3 (R = Dy,Gd). Phys. Rev. B 79:134426 [Google Scholar]
  77. Schierle E, Soltwisch V, Schmitz D, Feyerherm R, Maljuk A. 77.  et al. 2010. Cycloidal order of 4f moments as a probe of chiral domains in DyMnO3. Phys. Rev. Lett. 105:167207 [Google Scholar]
  78. Baier J, Meier D, Berggold K, Hemberger J, Balbashov A. 78.  et al. 2006. Hysteresis effects in the phase diagram of multiferroic GdMnO3. Phys. Rev. B 73:100402 [Google Scholar]
  79. Brockhouse BN.79.  1954. Antiferromagnetism in cupric oxide. Phys. Rev. A 94:781 [Google Scholar]
  80. Forsyth JB, Brown PJ, Wanklyn BM. 80.  1988. Magnetism in cupric oxide. J. Phys. C 21:2917 [Google Scholar]
  81. Brown PJ, Chattopadhyay T, Forsyth JB, Nunez V. 81.  1991. Antiferromagnetism in CuO studied by neutron polarimetry. J. Phys. Condens. Matter 3:4281 [Google Scholar]
  82. Ain M, Menelle A, Wanklyn BM, Bertaut EF. 82.  1992. Magnetic structure of CuO by neutron diffraction with polarization analysis. J. Phys. Condens. Matter 4:5327 [Google Scholar]
  83. Babkevich P, Poole A, Johnson RD, Roessli B, Prabhakaran D, Boothroyd AT. 83.  2012. Electric field control of chiral magnetic domains in the high-temperature multiferroic CuO. Phys. Rev. B 85:134428 [Google Scholar]
  84. Kimura T, Sekio Y, Nakamura H, Siegrist T, Ramirez AP. 84.  2008. Cupric oxide as an induced-multiferroic with high-TC. Nat. Mater. 7:291–94 [Google Scholar]
  85. Wu WB, Huang DJ, Okamoto J, Huang SW, Sekio Y. 85.  et al. 2010. Multiferroic nanoregions and a memory effect in cupric oxide. Phys. Rev. B 81:172409 [Google Scholar]
  86. Lawes G, Kenzelmann M, Rogado N, Kim KH, Jorge GA. 86.  et al. 2004. Competing magnetic phases on a Kagomé staircase. Phys. Rev. Lett. 93:247201 [Google Scholar]
  87. Ehlers G, Podlesnyak AA, Hahn SE, Fishman RS, Zaharko O. 87.  et al. 2013. Incommensurability and spin dynamics in the low-temperature phases of Ni3V2O8. Phys. Rev. B 87:214418 [Google Scholar]
  88. Lawes G, Harris AB, Kimura T, Rogado N, Cava RJ. 88.  et al. 2005. Magnetically driven ferroelectric order in Ni3V2O8. Phys. Rev. Lett. 95:087205 [Google Scholar]
  89. Cabrera I, Kenzelmann M, Lawes G, Chen Y, Chen WC. 89.  et al. 2009. Coupled magnetic and ferroelectric domains in multiferroic Ni3V2O8. Phys. Rev. Lett. 103:087201 [Google Scholar]
  90. Fabrizi F, Walker HC, Paolasini L, de Bergevin F, Fennell T. 90.  et al. 2010. Electric field control of multiferroic domains in Ni3V2O8 imaged by X-ray polarization–enhanced topography. Phys. Rev. B 82:024434 [Google Scholar]
  91. Hiraoka Y, Tanaka Y, Kojima T, Takata Y, Oura M. 91.  et al. 2011. Spin-chiral domains in Ba0.5Sr1.5Zn2Fe12O22 observed by scanning resonant X-ray microdiffraction. Phys. Rev. B 84:064418 [Google Scholar]
  92. Lautenschläger G, Weitzel H, Vogt T, Hock R, Böhm A. 92.  et al. 1993. Magnetic phase transitions of MnWO4 studied by the use of neutron diffraction. Phys. Rev. B 48:6087–98 [Google Scholar]
  93. Ehrenberg H, Weitzel H, Heid C, Fuess H, Wltschek G. 93.  et al. 1997. Magnetic phase diagrams of MnWO4. J. Phys. Condens. Matter 9:3189 [Google Scholar]
  94. Nojiri H, Yoshii S, Yasui M, Okada K, Matsuda M. 94.  et al. 2011. Neutron Laue diffraction study on the magnetic phase diagram of multiferroic MnWO4 under pulsed high magnetic fields. Phys. Rev. Lett. 106:237202 [Google Scholar]
  95. Arkenbout AH, Palstra TTM, Siegrist T, Kimura T. 95.  2006. Ferroelectricity in the cycloidal spiral magnetic phase of MnWO4. Phys. Rev. B 74:184431 [Google Scholar]
  96. Taniguchi K, Abe N, Takenobu T, Iwasa Y, Arima T. 96.  2006. Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field. Phys. Rev. Lett. 97:097203 [Google Scholar]
  97. Sagayama H, Taniguchi K, Abe N, Arima T-H, Soda M. 97.  et al. 2008. Correlation between ferroelectric polarization and sense of helical spin order in multiferroic MnWO4. Phys. Rev. B 77:220407 [Google Scholar]
  98. Poole A, Brown PJ, Wills AS. 98.  2009. Spherical neutron polarimetry (SNP) study of magneto-electric coupling in the multiferroic MnWO4. J. Phys. Conf. Ser. 145:012074 [Google Scholar]
  99. Finger T, Senff D, Schmalzl K, Schmidt W, Regnault LP. 99.  et al. 2010. Electric-field control of the chiral magnetism of multiferroic MnWO4 as seen via polarized neutron diffraction. Phys. Rev. B 81:054430 [Google Scholar]
  100. Chaudhury RP, Lorenz B, Wang YQ, Sun YY, Chu CW. 100.  2008. Suppression and recovery of the ferroelectric phase in multiferroic MnWO4. Phys. Rev. B 77:104406 [Google Scholar]
  101. Ye F, Ren Y, Fernandez-Baca JA, Mook HA, Lynn JW. 101.  et al. 2008. Magnetic switching and phase competition in the multiferroic antiferromagnet Mn1−xFexWO4. Phys. Rev. B 78:193101 [Google Scholar]
  102. Chaudhury RP, Ye F, Fernandez-Baca JA, Wang Y-Q, Sun YY. 102.  et al. 2010. Magnetic and multiferroic phases of single-crystalline Mn0.85Co0.15WO3. Phys. Rev. B 82:184422 [Google Scholar]
  103. Urcelay-Olabarria I, Ressouche E, Mukhin AA, Ivanov VYu, Balbashov AM. 103.  et al. 2012. Neutron diffraction, magnetic, and magnetoelectric studies of phase transitions in multiferroic Mn0.90Co0.10WO4. Phys. Rev. B 85:094436 [Google Scholar]
  104. Urcelay-Olabarria I, Ressouche E, Mukhin AA, Ivanov VYu, Balbashov AM. 104.  et al. 2012. Conical antiferromagnetic order in the ferroelectric phase of Mn0.8Co0.2WO4 resulting from the competition between collinear and cycloidal structures. Phys. Rev. B 85:224419 [Google Scholar]
  105. Ye F, Chi S, Fernandez-Baca JA, Cao H, Liang K-C. 105.  et al. 2012. Magnetic order and spin-flop transitions in the cobalt-doped multiferroic Mn1−xCoxWO4. Phys. Rev. B 86:094429 [Google Scholar]
  106. Urcelay-Olabarria I, García-Muñoz JL, Ressouche E, Skumryev V, Ivanov VYu. 106.  et al. 2012. Lattice anomalies at the ferroelectric and magnetic transitions in cycloidal Mn0.95Co0.05WO4 and conical Mn0.80Co0.20WO4 multiferroics. Phys. Rev. B 86:184412 [Google Scholar]
  107. Robertson B, Kostiner E. 107.  1972. Crystal structure and Mössbauer effect investigation of FeVO4. J. Solid State Chem. 4:29–37 [Google Scholar]
  108. Vincent H, Turrillas X, Rasines I. 108.  1987. A novel structural type of hexagonal closest packing the ternary oxide, β-MnSb2O6. Mater. Res. Bull. 22:1369–79 [Google Scholar]
  109. Scott HG.109.  1987. Synthesis and crystal structures of the manganous antimonates Mn2Sb2O7 and MnSb2O6. J. Solid State Chem. 66:171–80 [Google Scholar]
  110. Ishida M, Endoh Y, Mitsuda S, Ishikawa Y, Tanaka M. 110.  1985. Crystal chirality and helicity of the helical spin density wave in MnSi. II. Polarized neutron diffraction. J. Phys. Soc. Jpn. 54:2975–82 [Google Scholar]
  111. Marty K, Simonet V, Ressouche E, Ballou R, Lejay P, Bordet P. 111.  2008. Single domain magnetic helicity and triangular chirality in structurally enantiopure Ba3NbFe3Si2O14. Phys. Rev. Lett. 101:247201 [Google Scholar]
  112. Marty K, Simonet V, Bordet P, Ballou R, Lejay P. 112.  et al. 2009. Magnetic characterization of the non centrosymmetric Ba3NbFe3Si2O14 langasite. J. Magn. Magn. Mater. 321:1778–81 [Google Scholar]
  113. Stock C, Chapon LC, Schneidewind A, Su Y, Radaelli PG. 113.  et al. 2011. Helical spin waves, magnetic order, and fluctuations in the langasite compound Ba3NbFe3Si2O14. Phys. Rev. B 83:104426 [Google Scholar]
  114. Reimers JN, Greedan JE, Subramanian MA. 114.  1989. Crystal structure and magnetism in MnSb2O6: incommensurate long-range order. J. Solid State Chem. 79:263–76 [Google Scholar]
  115. Johnson RD, Cao K, Chapon LC, Fabrizi F, Perks N. 115.  et al. 2013. MnSb2O6: a polar magnet with a chiral crystal structure. Phys. Rev. Lett. 111:017202 [Google Scholar]
  116. Kimura T.116.  2012. Magnetoelectric hexaferrites. Annu. Rev. Condens. Matter Phys. 3:93–110 [Google Scholar]
  117. Takada Y, Nakagawa T, Tokunaga M, Fukuta Y, Tachibana T. 117.  et al. 2006. Crystal and magnetic structures and their temperature dependence of Co2Z-type hexaferrite (Ba,Sr)3Co2Fe24O41 by high-temperature neutron diffraction. J. Appl. Phys. 100:043904 [Google Scholar]
  118. Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T. 118.  et al. 2010. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105:257201 [Google Scholar]
  119. Soda M, Ishikura T, Nakamura H, Wakabayashi Y, Kimura T. 119.  2011. Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41. Phys. Rev. Lett. 106:087201 [Google Scholar]
  120. Ishiwata S, Taguchi Y, Murakawa H, Onose Y, Tokura Y. 120.  2008. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319:1643–46 [Google Scholar]
  121. Sagayama H, Taniguchi H, Abe N, Arima T-H, Nishikawa Y. 121.  et al. 2009. Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Phys. Rev. B 80:180419(R) [Google Scholar]
  122. Ishiwata S, Okuyama D, Kakurai K, Nishi M, Taguchi Y, Tokura Y. 122.  2010. Neutron diffraction studies on the multiferroic conical magnet Ba2Mg2Fe12O22. Phys. Rev. B 81:174418 [Google Scholar]
  123. Kimura T, Lawes G, Ramirez AP. 123.  2005. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94:137201 [Google Scholar]
  124. Mulders AM, Lawrence SM, Princep AJ, Staub U, Bodenthin Y. 124.  et al. 2010. Circularly polarized soft X-ray diffraction study of helical magnetism in hexaferrite. Phys. Rev. B 81:092405 [Google Scholar]
  125. Asaka T, Yu XZ, Hiraoka Y, Kimoto K, Hirayama T. 125.  et al. 2011. Lattice modulation induced by magnetic order in the magnetoelectric helimagnet Ba0.5Sr1.5Zn2Fe12O22. Phys. Rev. B 83:130401(R) [Google Scholar]
  126. Hearmon AJ, Johnson RD, Beale TAW, Dhesi SS, Luo X. 126.  et al. 2013. Magnetic fan structures in Ba0.5Sr1.5Zn2Fe12O22 hexaferrite revealed by resonant soft X-ray diffraction. Phys. Rev. B 88:174413 [Google Scholar]
  127. Waśkowska A, Gerward L, Staun Olsen J, Morgenroth W, Mączka M, Hermanowicz K. 127.  2010. Temperature- and pressure-dependent lattice behaviour of RbFe(MoO4)2. J. Phys. Condens. Matter 22:055406 [Google Scholar]
  128. Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C. 128.  2012. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108:067201 [Google Scholar]
  129. Perks NJ, Johnson RD, Martin C, Chapon LC, Radaelli PG. 129.  2012. Magneto-orbital helices as a route to coupling magnetism and ferroelectricity in multiferroic CaMn7O12. Nat. Commun. 3:1277 [Google Scholar]
  130. Hearmon AJ, Fabrizi F, Chapon LC, Johnson RD, Prabhakaran D. 130.  et al. 2012. Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2. Phys. Rev. Lett. 108:237201 [Google Scholar]
  131. Inami T.131.  2007. Neutron powder diffraction experiments on the layered triangular-lattice antiferromagnets RbFe(MoO4)2 and CsFe(SO4)2. J. Solid State Chem. 180:2075–79 [Google Scholar]
  132. Kenzelmann M, Lawes G, Harris AB, Gasparovic G, Broholm C. 132.  et al. 2007. Direct transition from a disordered to a multiferroic phase on a triangular lattice. Phys. Rev. Lett. 98:267205 [Google Scholar]
  133. White JS, Niedermayer Ch, Gasparovic G, Broholm C, Park JMS. 133.  et al. 2013. Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2. Phys. Rev. B 88:060409(R) [Google Scholar]
  134. Soda M, Kimura K, Kimura T, Matsuura M, Hirota K. 134.  2009. Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO2 with proper-screw order. J. Phys. Soc. Jpn. 78:124703 [Google Scholar]
  135. Frontzek M, Ehlers G, Podlesnyak A, Cao H, Matsuda M. 135.  et al. 2012. Magnetic structure of CuCrO2: a single crystal neutron diffraction study. J. Phys. Condens. Matter 24:016004 [Google Scholar]
  136. Oohara Y, Mitsuda S, Yoshizawa H, Yaguchi N, Kuriyama H. 136.  et al. 1994. Magnetic phase transition in AgCrO2. J. Phys. Soc. Jpn. 63:847–50 [Google Scholar]
  137. Lopes AML, Oliveira GNP, Mendonça TM, Agostinho Moreira J, Almeida A. 137.  et al. 2011. Local distortions in multiferroic AgCrO2 triangular spin lattice. Phys. Rev. B 84:014434 [Google Scholar]
  138. Mitsuda S, Yoshizawa H, Yaguchi N, Mekata M. 138.  1991. Neutron diffraction study of CuFeO2. J. Phys. Soc. Jpn. 60:1885–89 [Google Scholar]
  139. Petrenko OA, Balakrishnan G, Lees MR, Paul DM, Hoser A. 139.  2000. High-magnetic-field behavior of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B 62:8983–88 [Google Scholar]
  140. Terada N, Mitsuda S, Ohsumi H, Tajima K. 140.  2006. “Spin-driven” crystal lattice distortion in frustrated magnet CuFeO2: synchrotron X-ray diffraction study. J. Phys. Soc. Jpn. 75:023602 [Google Scholar]
  141. Terada N, Nakajima T, Mitsuda S, Tanaka Y, Mamiya H, Kitazawa H. 141.  2010. Charge disproportionation associated with spin ordering in delafossite CuFeO2 as seen via resonant X-ray diffraction. Phys. Rev. B 81:064424 [Google Scholar]
  142. Tanaka Y, Terada N, Nakajima T, Taguchi M, Kojima T. 142.  et al. 2012. Incommensurate orbital modulation behind ferroelectricity in CuFeO2. Phys. Rev. Lett. 109:127205 [Google Scholar]
  143. Vasiliev A, Volkova O, Presniakov I, Baranov A, Demazeau G. 143.  et al. 2010. Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2. J. Phys. Condens. Matter 22:016007 [Google Scholar]
  144. Terada N, Khalyavin DD, Manuel P, Tsujimoto Y, Knight K. 144.  et al. 2012. Spiral-spin-driven ferroelectricity in a multiferroic delafossite AgFeO2. Phys. Rev. Lett. 109:097203 [Google Scholar]
  145. Bochu B, Buevoz JL, Chenavas J, Collomb A, Joubert JC, Marezio M. 145.  1980. Bond lengths in “CaMn3” (Mn4)O12: a new Jahn-Teller distortion of Mn3+ octahedra. Solid State Commun. 36:133–38 [Google Scholar]
  146. Przeniosło R, Sosnowska I, Suard E, Hewat A, Fitch AN. 146.  2002. Phase coexistence in the charge ordering transition in CaMn7O12. J. Phys. Condens. Matter 14:5747 [Google Scholar]
  147. Przeniosło R, Sosnowska I, Hohlwein, Hauß T, Troyanchuk IO. 147.  1999. Magnetic ordering in the manganese perovskite CaMn7O12. Solid State Commun. 111:687–92 [Google Scholar]
  148. Zhang G, Dong S, Yan Z, Guo Y, Zhang Q. 148.  et al. 2011. Multiferroic properties of CaMn7O12. Phys. Rev. B 84:174413 [Google Scholar]
  149. Mostovoy M.149.  2012. Viewpoint: multiferroic propellers. Physics 5:16 [Google Scholar]
  150. Sławinski W, Przeniosło R, Sosnowska I, Bieringer M, Margiolaki I, Suard E. 150.  2009. Modulation of atomic positions in CaCuxMn7−xO12 (x ≤ 0.1). Acta Crystallogr. B 65:535–42 [Google Scholar]
  151. Sławinski W, Przeniosło R, Sosnowska I, Bieringer M. 151.  2010. Structural and magnetic modulations in CaCuxMn7−xO12. J. Phys. Condens. Matter 22:186001 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070813-113524
Loading
/content/journals/10.1146/annurev-matsci-070813-113524
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error