1932

Abstract

Semiconducting and metallic metal phosphide nanocrystals have gained increased attention in the materials science and engineering community due to their demonstrated and theoretical promise in both emissive and catalytic applications. Central to realizing the full potential of nanoscale metal phosphides is a thorough understanding of their surfaces and how surface chemistry impacts their function. In this review, we document what is known about the surface chemistry of metal phosphide nanocrystals, including both as synthesized and postsynthetically modified species, and draw a connection between surface chemistry and functional properties. This survey is intended to provide a comprehensive view of metal phosphide nanocrystal surface chemistry and how it differs across the families of phosphide materials. A clear distinction emerges between the semiconducting and metallic phosphides from both a synthetic and applied standpoint. We seek to expose key knowledge gaps and targets for further scientific and technological development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-011036
2021-07-26
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-011036.html?itemId=/content/journals/10.1146/annurev-matsci-080819-011036&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C 2013. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113:107981–8065
    [Google Scholar]
  2. 2. 
    Greenwood NN, Earnshaw A. 1997. Chemistry of the Elements Oxford, UK: Elsevier. , 2nd ed..
  3. 3. 
    Welker HJ 1976. Discovery and development of III-V compounds. IEEE Trans. Electron Devices 23:7664–74
    [Google Scholar]
  4. 4. 
    Heath JR, Shiang JJ 1998. Covalency in semiconductor quantum dots. Chem. Soc. Rev. 27:65–71
    [Google Scholar]
  5. 5. 
    Green MLH 1995. A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. 500:1127–48
    [Google Scholar]
  6. 6. 
    Green MLH, Parkin G 2014. Application of the covalent bond classification method for the teaching of inorganic chemistry. J. Chem. Educ. 91:6807–16
    [Google Scholar]
  7. 7. 
    Owen JS 2015. The coordination chemistry of nanocrystal surfaces. Science 347:6222615–16
    [Google Scholar]
  8. 8. 
    Anderson NC, Hendricks MP, Choi JJ, Owen JS 2013. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135:4918536–48
    [Google Scholar]
  9. 9. 
    Gary DC, Petrone A, Li X, Cossairt BM 2016. Investigating the role of amine in InP nanocrystal synthesis: destabilizing cluster intermediates by Z-type ligand displacement. Chem. Commun. 53:1161–64
    [Google Scholar]
  10. 10. 
    Stein JL, Mader EA, Cossairt BM 2016. Luminescent InP quantum dots with tunable emission by post-synthetic modification with Lewis acids. J. Phys. Chem. Lett. 7:71315–20
    [Google Scholar]
  11. 11. 
    Hughes KE, Stein JL, Friedfeld MR, Cossairt BM, Gamelin DR 2019. Effects of surface chemistry on the photophysics of colloidal InP nanocrystals. ACS Nano 13:1214198–207
    [Google Scholar]
  12. 12. 
    Kirkwood N, Monchen JOV, Crisp RW, Grimaldi G, Bergstein HAC et al. A 2018. Finding and fixing traps in II-VI and III-V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 140:4615712–23
    [Google Scholar]
  13. 13. 
    Kim Y, Ham S, Jang H, Min JH, Chung H et al. 2019. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2:31496–504
    [Google Scholar]
  14. 14. 
    Won Y-H, Cho O, Kim T, Chung D-Y, Kim T et al. 2019. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575:7784634–38
    [Google Scholar]
  15. 15. 
    Glassy BA, Cossairt BM 2017. II3V2 (II: Zn, Cd; V: P, As) semiconductors: from bulk solids to colloidal nanocrystals. Small 13:401702038
    [Google Scholar]
  16. 16. 
    Luber EJ, Mobarok MH, Buriak JM 2013. Solution-processed zinc phosphide (α-Zn3P2) colloidal semiconducting nanocrystals for thin film photovoltaic applications. ACS Nano 7:98136–46
    [Google Scholar]
  17. 17. 
    Micic OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ 1994. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98:194966–69
    [Google Scholar]
  18. 18. 
    Murray CB, Norris DJ, Bawendi MG. 1993. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:198706–15
    [Google Scholar]
  19. 19. 
    Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K et al. 1996. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100:177212–19
    [Google Scholar]
  20. 20. 
    Tomaselli M, Yarger JL, Bruchez M, Havlin RH, deGraw D et al. 1999. NMR study of InP quantum dots: surface structure and size effects. J. Chem. Phys. 110:188861–64
    [Google Scholar]
  21. 21. 
    Becerra LR, Murray CB, Griffin RG, Bawendi MG. 1994. Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance. J. Chem. Phys. 100:43297–300
    [Google Scholar]
  22. 22. 
    Battaglia D, Peng X. 2002. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett 2:91027–30
    [Google Scholar]
  23. 23. 
    Gary DC, Terban M, Billinge SJL, Cossairt BM. 2015. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27:1432–41
    [Google Scholar]
  24. 24. 
    Gary DC, Flowers SE, Kaminsky W, Petrone A, Li X, Cossairt BM. 2016. Single crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 138:1510–13
    [Google Scholar]
  25. 25. 
    Leger JD, Friedfeld MR, Beck RA, Gaynor JD, Petrone A et al. 2019. Carboxylate anchors act as exciton reporters in 1.3 nm indium phosphide nanoclusters. J. Phys. Chem. Lett. 10:81833–39
    [Google Scholar]
  26. 26. 
    Friedfeld MR, Johnson DA, Cossairt BM. 2019. Conversion of InP clusters to quantum dots. Inorg. Chem. 58:1803–10
    [Google Scholar]
  27. 27. 
    Ritchhart A, Cossairt BM. 2019. Quantifying ligand exchange on InP using an atomically precise cluster platform. Inorg. Chem. 58:42840–47
    [Google Scholar]
  28. 28. 
    Zhao Q, Kulik HJ. 2018. Electronic structure origins of surface-dependent growth in III-V quantum dots. Chem. Mater. 30:207154–65
    [Google Scholar]
  29. 29. 
    Cros-Gagneux A, Delpech F, Nayral C, Cornejo A, Coppel Y, Chaudret B. 2010. Surface chemistry of InP quantum dots: a comprehensive study. J. Am. Chem. Soc. 132:5118147–57
    [Google Scholar]
  30. 30. 
    Stein JL, Holden WM, Venkatesh A, Mundy ME, Rossini AJ et al. 2018. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ x-ray emission spectroscopy. Chem. Mater. 30:186377–88
    [Google Scholar]
  31. 31. 
    Protière M, Reiss P. 2007. Amine-induced growth of an In2O3 shell on colloidal InP nanocrystals. Chem. Commun. 23:2417–19
    [Google Scholar]
  32. 32. 
    Baquero EA, Virieux H, Swain RA, Gillet A, Cros-Gagneux A et al. 2017. Synthesis of oxide-free InP quantum dots: surface control and H2-assisted growth. Chem. Mater. 29:229623–27
    [Google Scholar]
  33. 33. 
    Hanrahan MP, Fought EL, Windus TL, Wheeler LM, Anderson NC et al. 2017. Characterization of silicon nanocrystal surfaces by multidimensional solid-state NMR spectroscopy. Chem. Mater. 29:2410339–51
    [Google Scholar]
  34. 34. 
    Wheeler LM, Anderson NC, Palomaki PKB, Blackburn JL, Johnson JC, Neale NR. 2015. Silyl radical abstraction in the functionalization of plasma-synthesized silicon nanocrystals. Chem. Mater. 27:196869–78
    [Google Scholar]
  35. 35. 
    Hessel CM, Reid D, Panthani MG, Rasch MR, Goodfellow BW et al. 2012. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24:2393–401
    [Google Scholar]
  36. 36. 
    Song W-S, Lee H-S, Lee JC, Jang DS, Choi Y et al. 2013. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 15:61750
    [Google Scholar]
  37. 37. 
    Tessier MD, Dupont D, De Nolf K, De Roo J, Hens Z. 2015. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 27:134893–98
    [Google Scholar]
  38. 38. 
    Mundy ME, Ung D, Lai NL, Jahrman EP, Seidler GT, Cossairt BM. 2018. Aminophosphines as versatile precursors for the synthesis of metal phosphide nanocrystals. Chem. Mater. 30:155373–79
    [Google Scholar]
  39. 39. 
    Tessier MD, De Nolf K, Dupont D, Sinnaeve D, De Roo J, Hens Z. 2016. Aminophosphines: a double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 138:185923–29
    [Google Scholar]
  40. 40. 
    Laufersky G, Bradley S, Frécaut E, Lein M, Nann T. 2018. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses. Nanoscale 10:188752–62
    [Google Scholar]
  41. 41. 
    Kim K, Yoo D, Choi H, Tamang S, Ko J-H et al. 2016. Halide-amine Co-passivated indium phosphide colloidal quantum dots in tetrahedral shape. Angew. Chem. Int. Ed. 55:113714–18
    [Google Scholar]
  42. 42. 
    Micic OI, Sprague J, Lu Z, Nozik AJ. 1996. Highly efficient band edge emission from InP quantum dots. Appl. Phys. Lett. 68:3150–52
    [Google Scholar]
  43. 43. 
    Talapin DV, Gaponik N, Borchert H, Rogach AL, Haase M, Weller H. 2002. Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminesence efficiency. J. Phys. Chem. B 106:12659–63
    [Google Scholar]
  44. 44. 
    Mnoyan AN, Kirakosyan AGH, Kim H, Jang HS, Jeon DY. 2015. Electrostatic stabilized InP colloidal quantum dots with high photoluminescence efficiency. Langmuir 31:257117–21
    [Google Scholar]
  45. 45. 
    Kim T-G, Zherebetskyy D, Bekenstein Y, Oh MH, Wang L-W et al. 2018. Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications. ACS Nano 12:1111529–40
    [Google Scholar]
  46. 46. 
    Siramdas R, McLaurin EJ. 2017. InP nanocrystals with color-tunable luminescence by microwave-assisted ionic-liquid etching. Chem. Mater. 29:52101–9
    [Google Scholar]
  47. 47. 
    Rowland CE, Liu W, Hannah DC, Chan MKY, Talapin DV, Schaller RD. 2014. Thermal stability of colloidal InP nanocrystals: Small inorganic ligands boost high-temperature photoluminescence. ACS Nano 8:1977–85
    [Google Scholar]
  48. 48. 
    Calvin JJ, Swabeck JK, Sedlak AB, Kim Y, Jang E, Alivisatos AP. 2020. Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 142:4418897–906
    [Google Scholar]
  49. 49. 
    Mićić OI, Smith BB, Nozik AJ. 2000. Core−shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: experiment and theory. J. Phys. Chem. B 104:5112149–56
    [Google Scholar]
  50. 50. 
    Haubold S, Haase M, Kornowski A, Weller H. 2001. Strongly luminescent InP/ZnS core-shell nanoparticles. ChemPhysChem 2:5331–34
    [Google Scholar]
  51. 51. 
    Borchert H, Haubold S, Haase M, Weller H, McGinley C et al. 2002. Investigation of ZnS passivated InP nanocrystals by XPS. Nano Lett 2:2151–54
    [Google Scholar]
  52. 52. 
    Lim J, Bae WK, Lee D, Nam MK, Jung J et al. 2011. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem. Mater. 23:204459–63
    [Google Scholar]
  53. 53. 
    Kim S, Kim T, Kang M, Kwak SK, Yoo TW et al. 2012. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134:83804–9
    [Google Scholar]
  54. 54. 
    Mulder JT, Kirkwood N, De Trizio L, Li C, Bals S et al. 2020. Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications. ACS Appl. Nano Mater. 3:43859–67
    [Google Scholar]
  55. 55. 
    Janke EM, Williams NE, She C, Zherebetskyy D, Hudson MH et al. 2018. Origin of broad emission spectra in InP quantum dots: contributions from structural and electronic disorder. J. Am. Chem. Soc. 140:4615791–803
    [Google Scholar]
  56. 56. 
    Park J, Kim S, Kim S, Yu ST, Lee B, Kim S-W. 2010. Fabrication of highly luminescent InP/Cd and InP/CdS quantum dots. J. Lumin. 130:101825–28
    [Google Scholar]
  57. 57. 
    Dennis AM, Mangum BD, Piryatinski A, Park Y-S, Hannah DC et al. 2012. Suppressed blinking and Auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots. Nano Lett 12:115545–51
    [Google Scholar]
  58. 58. 
    Rafipoor M, Dupont D, Tornatzky H, Tessier MD, Maultzsch J et al. 2018. Strain engineering in InP/(Zn,Cd)Se core/shell quantum dots. Chem. Mater. 30:134393–400
    [Google Scholar]
  59. 59. 
    Sadeghi S, Bahmani Jalali H, Melikov R, Ganesh Kumar B, Mohammadi Aria M et al. 2018. Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators. ACS Appl. Mater. Interfaces 10:1512975–82
    [Google Scholar]
  60. 60. 
    Karatum O, Jalali HB, Sadeghi S, Melikov R, Srivastava SB, Nizamoglu S. 2019. Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photonics 6:4939–46
    [Google Scholar]
  61. 61. 
    Swabeck JK, Fischer S, Bronstein ND, Alivisatos AP. 2018. Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting. J. Am. Chem. Soc. 140:299120–26
    [Google Scholar]
  62. 62. 
    Xie R, Peng X. 2009. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 131:3010645–51
    [Google Scholar]
  63. 63. 
    Hughes KE, Hartstein KH, Gamelin DR. 2018. Photodoping and transient spectroscopies of copper-doped CdSe/CdS nanocrystals. ACS Nano 12:1718–28
    [Google Scholar]
  64. 64. 
    Mundy ME, Eagle FW, Hughes KE, Gamelin DR, Cossairt BM. 2020. Synthesis and spectroscopy of emissive, surface-modified, copper-doped indium phosphide nanocrystals. ACS Mater. Lett. 2:6576–81
    [Google Scholar]
  65. 65. 
    Kagan CR, Lifshitz E, Sargent EH, Talapin DV. 2016. Building devices from colloidal quantum dots. Science 353:6302aac5523
    [Google Scholar]
  66. 66. 
    Zaban A, Mićić OI, Gregg BA, Nozik AJ. 1998. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14:123153–56
    [Google Scholar]
  67. 67. 
    Yin J, Kumar M, Lei Q, Ma L, Raavi SSK et al. 2015. Small-size effects on electron transfer in P3HT/InP quantum dots. J. Phys. Chem. C. 119:4726783–92
    [Google Scholar]
  68. 68. 
    Dung MX, Tung DD, Jeong H-D. 2013. Condensable InP quantum dots solid. Curr. Appl. Phys. 13:61075–81
    [Google Scholar]
  69. 69. 
    Huang J, Liu W, Dolzhnikov DS, Protesescu L, Kovalenko MV et al. 2014. Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO43−, MoO42−) and polyoxometalate ligands. ACS Nano 8:99388–402
    [Google Scholar]
  70. 70. 
    Dirin DN, Dreyfuss S, Bodnarchuk MI, Nedelcu G, Papagiorgis P et al. 2014. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136:186550–53
    [Google Scholar]
  71. 71. 
    Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ et al. 2009. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3:3502–10
    [Google Scholar]
  72. 72. 
    Litvinov IK, Belyaeva TN, Salova AV, Aksenov ND, Leontieva EA et al. 2018. Quantum dots based on indium phosphide (InP): the effect of chemical modifications of the organic shell on interaction with cultured cells of various origins. Cell Tissue Biol. 12:2135–45
    [Google Scholar]
  73. 73. 
    Tamang S, Beaune G, Texier I, Reiss P. 2011. Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. ACS Nano 5:129392–402
    [Google Scholar]
  74. 74. 
    Serrano IC, Stoica G, Palomares E. 2016. Increasing cell viability using Cd-free—InP/ZnS@silica@layered double hydroxide—materials for biological labeling. RSC Adv 6:3731210–13
    [Google Scholar]
  75. 75. 
    Chan M-H, Lai C-Y, Chan Y-C, Hsiao M, Chung R-J et al. 2019. Development of upconversion nanoparticle-conjugated indium phosphide quantum dot for matrix metalloproteinase-2 cancer transformation sensing. Nanomedicine 14:141791–804
    [Google Scholar]
  76. 76. 
    Wegner KD, Dussert F, Truffier-Boutry D, Benayad A, Beal D et al. 2019. Influence of the core/shell structure of indium phosphide based quantum dots on their photostability and cytotoxicity. Front. Chem. 7:466
    [Google Scholar]
  77. 77. 
    Seo H, Bang M, Kim Y, Son C, Jeon HB, Kim S-W. 2020. Unprecedented surface stabilized InP quantum dots with bidentate ligands. RSC Adv 10:1911517–23
    [Google Scholar]
  78. 78. 
    Yoo J-Y, Park SA, Jung WH, Lee CW, Kim JS et al. 2020. Effect of dithiocarbamate chelate ligands on the optical properties of InP/ZnS quantum dots and their display devices. Mater. Chem. Phys. 253:123415
    [Google Scholar]
  79. 79. 
    Matchett MA, Viano AM, Adolphi NL, Stoddard RD, Buhro WE et al. 1992. Sol-gel-like route to crystalline cadmium phosphide nanoclusters. Chem. Mater. 4:3508–11
    [Google Scholar]
  80. 80. 
    Buhro WE. 1994. Metallo-organic routes to phosphide semiconductors. Polyhedron 13:81131–48
    [Google Scholar]
  81. 81. 
    Haase M, Weller H, Henglein A. 1988. Photochemistry of colloidal semiconductors 28. Photo-electron emission from cadmium phosphide particles in aqueous solution. Ber. Bunsenges. Phys. Chem. 92:101103–7
    [Google Scholar]
  82. 82. 
    Mobarok MH, Buriak JM. 2014. Elucidating the surface chemistry of zinc phosphide nanoparticles through ligand exchange. Chem. Mater. 26:154653–61
    [Google Scholar]
  83. 83. 
    Glassy BA, Cossairt BM. 2016. Resolving the chemistry of Zn3P2 nanocrystal growth. Chem. Mater. 28:176374–80
    [Google Scholar]
  84. 84. 
    Glassy BA, Cossairt BM. 2015. Ternary synthesis of colloidal Zn3P2 quantum dots. Chem. Commun. 51:5283–86
    [Google Scholar]
  85. 85. 
    Baquero EA, Ojo W-S, Coppel Y, Chaudret B, Urbaszek B et al. 2016. Identifying short surface ligands on metal phosphide quantum dots. Phys. Chem. Chem. Phys. 18:2617330–34
    [Google Scholar]
  86. 86. 
    Hanrahan MP, Chen Y, Blome-Fernández R, Stein JL, Pach GF et al. 2019. Probing the surface structure of semiconductor nanoparticles by DNP SENS with dielectric support materials. J. Am. Chem. Soc. 141:3915532–46
    [Google Scholar]
  87. 87. 
    Swain RA, McVey BFP, Virieux H, Ferrari F, Tison Y et al. 2020. Sustainable quantum dot chemistry: effects of precursor, solvent, and surface chemistry on the synthesis of Zn3P2 nanocrystals. Chem. Commun. 56:223321–24
    [Google Scholar]
  88. 88. 
    Dzade NY. 2020. First-principles insights into the interface chemistry between 4-aminothiophenol and zinc phosphide (Zn3P2) nanoparticles. ACS Omega 5:21025–32
    [Google Scholar]
  89. 89. 
    Senevirathne K, Burns AW, Bussell ME, Brock SL. 2007. Synthesis and characterization of discrete nickel phosphide nanoparticles: effect of surface ligation chemistry on catalytic hydrodesulfurization of thiophene. Adv. Funct. Mater. 17:183933–39
    [Google Scholar]
  90. 90. 
    Layan Savithra GH, Muthuswamy E, Bowker RH, Carrillo BA, Bussell ME, Brock SL 2013. Rational design of nickel phosphide hydrodesulfurization catalysts: controlling particle size and preventing sintering. Chem. Mater. 25:6825–33
    [Google Scholar]
  91. 91. 
    Ung D, Cossairt BM. 2019. Effect of surface ligands on CoP for the hydrogen evolution reaction. ACS Appl. Energy Mater. 2:31642–45
    [Google Scholar]
  92. 92. 
    Shi Y, Zhang B. 2016. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45:61529–41
    [Google Scholar]
  93. 93. 
    Pan Y, Liu Y, Zhao J, Yang K, Liang J et al. 2014. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A 3:41656–65
    [Google Scholar]
  94. 94. 
    Liu J, Wang Z, David J, Llorca J, Li J et al. 2018. Colloidal Ni2−xCoxP nanocrystals for the hydrogen evolution reaction. J. Mater. Chem. A 6:2411453–62
    [Google Scholar]
  95. 95. 
    Landers AT, Fields M, Torelli DA, Xiao J, Hellstern TR et al. 2018. The predominance of hydrogen evolution on transition metal sulfides and phosphides under CO2 reduction conditions: an experimental and theoretical study. ACS Energy Lett 3:61450–57
    [Google Scholar]
  96. 96. 
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK. 2006. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5:11909–13
    [Google Scholar]
  97. 97. 
    Li Z, Dou X, Zhao Y, Wu C. 2016. Enhanced oxygen evolution reaction of metallic nickel phosphide nanosheets by surface modification. Inorg. Chem. Front. 3:81021–27
    [Google Scholar]
  98. 98. 
    Man H-W, Tsang C-S, Li MM-J, Mo J, Huang B et al. 2018. Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). Chem. Commun. 54:628630–33
    [Google Scholar]
  99. 99. 
    Stern L-A, Feng L, Song F, Hu X. 2015. Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8:82347–51
    [Google Scholar]
  100. 100. 
    Mitsudome T, Sheng M, Nakata A, Yamasaki J, Mizugaki T, Jitsukawa K. 2020. A cobalt phosphide catalyst for the hydrogenation of nitriles. Chem. Sci. 11:266682–89
    [Google Scholar]
  101. 101. 
    Brock SL, Perera SC, Stamm KL. 2004. Chemical routes for production of transition-metal phosphides on the nanoscale: implications for advanced magnetic and catalytic materials. Chem. Eur. J. 10:3364–71
    [Google Scholar]
  102. 102. 
    Chen J-H, Tai M-F, Chi K-M. 2004. Catalytic synthesis, characterization and magnetic properties of iron phosphide nanowires. J. Mater. Chem. 14:3296–98
    [Google Scholar]
  103. 103. 
    Park J, Koo B, Hwang Y, Bae C, An K et al. 2004. Novel synthesis of magnetic Fe2P nanorods from thermal decomposition of continuously delivered precursors using a syringe pump. Angew. Chem. Int. Ed. 43:172282–85
    [Google Scholar]
  104. 104. 
    Roske CW, Popczun EJ, Seger B, Read CG, Pedersen T et al. 2015. Comparison of the performance of CoP-coated and Pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g). J. Phys. Chem. Lett. 6:91679–83
    [Google Scholar]
  105. 105. 
    Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ et al. 2014. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8:1111101–7
    [Google Scholar]
  106. 106. 
    Cao S, Chen Y, Wang C-J, He P, Fu W-F. 2014. Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem. Commun. 50:7210427–29
    [Google Scholar]
  107. 107. 
    Carenco S, Surcin C, Morcrette M, Larcher D, Mézailles N et al. 2012. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating. Chem. Mater. 24:4688–97
    [Google Scholar]
  108. 108. 
    Aso K, Hayashi A, Tatsumisago M. 2011. Phase-selective synthesis of nickel phosphide in high-boiling solvent for all-solid-state lithium secondary batteries. Inorg. Chem. 50:2110820–24
    [Google Scholar]
  109. 109. 
    Liu P, Rodriguez JA. 2005. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127:4214871–78
    [Google Scholar]
  110. 110. 
    He Y, Laursen S. 2018. The surface and catalytic chemistry of the first row transition metal phosphides in deoxygenation. Catal. Sci. Technol. 8:205302–14
    [Google Scholar]
  111. 111. 
    He Y, Laursen S. 2017. Trends in the surface and catalytic chemistry of transition-metal ceramics in the deoxygenation of a woody biomass pyrolysis model compound. ACS Catal 7:53169–80
    [Google Scholar]
  112. 112. 
    Scaranto J, Idriss H. 2019. DFT studies of bulk and surfaces of the electrocatalyst cobalt phosphide CoP2. Chem. Phys. Lett. X 2:100008
    [Google Scholar]
  113. 113. 
    Hansen MH, Stern L-A, Feng L, Rossmeisl J, Hu X. 2015. Widely available active sites on Ni2P for electrochemical hydrogen evolution—insights from first principles calculations. Phys. Chem. Chem. Phys. 17:1610823–29
    [Google Scholar]
  114. 114. 
    Perera SC, Fodor PS, Tsoi GM, Wenger LE, Brock SL. 2003. Application of de-silylation strategies to the preparation of transition metal pnictide nanocrystals: the case of FeP. Chem. Mater. 15:214034–38
    [Google Scholar]
  115. 115. 
    Perera SC, Tsoi G, Wenger LE, Brock SL. 2003. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: a new, versatile route to nanoscale transition metal phosphides. J. Am. Chem. Soc. 125:4613960–61
    [Google Scholar]
  116. 116. 
    Qian C, Kim F, Ma L, Tsui F, Yang P, Liu J 2004. Solution-phase synthesis of single-crystalline iron phosphide nanorods/nanowires. J. Am. Chem. Soc. 126:41195–98
    [Google Scholar]
  117. 117. 
    Park J, Koo B, Yoon KY, Hwang Y, Kang M et al. 2005. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal−phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127:238433–40
    [Google Scholar]
  118. 118. 
    Henkes AE, Schaak RE. 2008. Template-assisted synthesis of shape-controlled Rh2P nanocrystals. Inorg. Chem. 47:2671–77
    [Google Scholar]
  119. 119. 
    Carenco S, Liu Z, Salmeron M. 2017. The birth of nickel phosphide catalysts: monitoring phosphorus insertion into nickel. ChemCatChem 9:122318–23
    [Google Scholar]
  120. 120. 
    Muthuswamy E, Savithra GHL, Brock SL. 2011. Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles. ACS Nano 5:32402–11
    [Google Scholar]
  121. 121. 
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM et al. 2013. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135:259267–70
    [Google Scholar]
  122. 122. 
    Chiang R-K, Chiang R-T. 2007. Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorg. Chem. 46:2369–71
    [Google Scholar]
  123. 123. 
    Delley MF, Wu Z, Mundy ME, Ung D, Cossairt BM et al. 2019. Hydrogen on cobalt phosphide. J. Am. Chem. Soc. 141:3815390–402
    [Google Scholar]
  124. 124. 
    Tappan BA, Chen K, Lu H, Sharada SM, Brutchey RL. 2020. Synthesis and electrocatalytic HER studies of carbene-ligated Cu3−xP nanocrystals. ACS Appl. Mater. Interfaces 12:1416394–401
    [Google Scholar]
  125. 125. 
    Li Y, Malik MA, O'Brien P. 2005. Synthesis of single-crystalline CoP nanowires by a one-pot metal−organic route. J. Am. Chem. Soc. 127:4616020–21
    [Google Scholar]
  126. 126. 
    Moreau LM, Ha D-H, Zhang H, Hovden R, Muller DA, Robinson RD. 2013. Defining crystalline/amorphous phases of nanoparticles through X-ray absorption spectroscopy and X-ray diffraction: the case of nickel phosphide. Chem. Mater. 25:122394–403
    [Google Scholar]
  127. 127. 
    Hitihami-Mudiyanselage A, Senevirathne K, Brock SL. 2014. Bottom-up assembly of Ni2P nanoparticles into three-dimensional architectures: an alternative mechanism for phosphide gelation. Chem. Mater. 26:216251–56
    [Google Scholar]
  128. 128. 
    Henkes AE, Vasquez Y, Schaak RE. 2007. Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc. 129:71896–97
    [Google Scholar]
  129. 129. 
    Ha D-H, Moreau LM, Bealing CR, Zhang H, Hennig RG, Robinson RD. 2011. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles. J. Mater. Chem. 21:3111498–510
    [Google Scholar]
  130. 130. 
    Callejas JF, Read CG, Roske CW, Lewis NS, Schaak RE. 2016. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 28:176017–44
    [Google Scholar]
  131. 131. 
    Ung D, Murphy IA, Cossairt BM. 2020. Designing nanoparticle interfaces for inner-sphere catalysis. Dalton Trans 49:164995–5005
    [Google Scholar]
  132. 132. 
    Zhang Y, Li N, Zhang Z, Li S, Cui M et al. 2020. Programmable synthesis of multimetallic phosphide nanorods mediated by core/shell structure formation and conversion. J. Am. Chem. Soc. 142:188490–97
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-011036
Loading
/content/journals/10.1146/annurev-matsci-080819-011036
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error