1932

Abstract

This article reviews recent developments in small-scale mechanical property testing with some emphasis on intermediate (meso) length scales in complex microstructures and coated systems. The introduction summarizes size effects discovered from a century ago up to the recent explosion in micropillar testing that established many length scale effects in yielding and fracture. The bulk of the article deals with plasticity and fracture in polyphasic and microstructurally graded systems, including biomaterials, composites, and thermal protection systems, highlighting the use of in situ methods where mechanical tests are coupled to synchrotron X-ray scattering, electron backscattering, radiation damage, and digital image correlation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-123640
2022-07-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-080819-123640.html?itemId=/content/journals/10.1146/annurev-matsci-080819-123640&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Taylor GF. 1924. A method of drawing metallic filaments and a discussion of their properties and uses. Phys. Rev. 23:655–60
    [Google Scholar]
  2. 2.
    Smithsonian Inst 1890. Annual Report of the Board of Regents of the Smithsonian Institution: The Operations, Expenditures, and Condition of the Institution Washington, DC: Gov. Print. Off. https://library.si.edu/digital-library/book/annualreportofbo1890smit
  3. 3.
    Brenner SS. 1956. Tensile strength of whiskers. J. Appl. Phys. 27:121484–91
    [Google Scholar]
  4. 4.
    Petch NJ. 1951. Fracture of metals. Nature 167:4252671
    [Google Scholar]
  5. 5.
    Orowan E. 1948. Classification and nomenclature of internal stresses. . In Symposium on Internal Stresses in Metals and Alloys47–59 London: Inst. Metals
    [Google Scholar]
  6. 6.
    Gao H, Chen S 2005. Flaw tolerance in a thin strip under tension. J. Appl. Mech. 72:5732–37
    [Google Scholar]
  7. 7.
    Carpinteri A. 1982. Notch sensitivity in fracture testing of aggregative materials. Eng. Fract. Mech. 16:4467–81
    [Google Scholar]
  8. 8.
    Yao H, Gao H. 2006. Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54:61120–46
    [Google Scholar]
  9. 9.
    Jagota A, Bennison SJ. 2002. Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42:61140–45
    [Google Scholar]
  10. 10.
    Bažant ZP. 1984. Size effect in blunt fracture: concrete, rock, metal. J. Eng. Mech. 110:4518–35
    [Google Scholar]
  11. 11.
    Capelli A, Reiweger I, Schweizer J. 2018. Acoustic emission signatures prior to snow failure. J. Glaciol. 64:246543–54
    [Google Scholar]
  12. 12.
    Dempsey JP, Adamson RM, Mulmule SV. 1999. Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. Int. J. Fract. 95:1–4347–66
    [Google Scholar]
  13. 13.
    Mulmule SV, Dempsey JP. 2000. LEFM size requirements for the fracture testing of sea ice. Int. J. Fract. 102:185–98
    [Google Scholar]
  14. 14.
    Korte S, Barnard JS, Stearn RJ, Clegg WJ. 2011. Deformation of silicon—insights from microcompression testing at 25–500°C. Int. J. Plast. 27:111853–66
    [Google Scholar]
  15. 15.
    Uchic MD, Shade PA, Dimiduk DM. 2009. Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39:361–86
    [Google Scholar]
  16. 16.
    Hemker KJ, Sharpe WN. 2007. Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37:92–126
    [Google Scholar]
  17. 17.
    Greer JR, De Hosson JTM. 2011. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56:6654–724
    [Google Scholar]
  18. 18.
    Dehm G, Jaya BN, Raghavan R, Kirchlechner C. 2018. Overview on micro- and nanomechanical testing: new insights in interface plasticity and fracture at small length scales. Acta Mater 142:248–82
    [Google Scholar]
  19. 19.
    Dunstan DJ, Bushby AJ. 2013. The scaling exponent in the size effect of small scale plastic deformation. Int. J. Plast. 40:152–62
    [Google Scholar]
  20. 20.
    Li Y, Bushby AJ, Dunstan DJ. 2016. The Hall–Petch effect as a manifestation of the general size effect. Proc. R. Soc. A 472:219020150890
    [Google Scholar]
  21. 21.
    Lee SW, Nix WD. 2012. Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Philos. Mag. 92:101238–60
    [Google Scholar]
  22. 22.
    Wang J, Misra A. 2011. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15:120–28
    [Google Scholar]
  23. 23.
    Gianola DS, Eberl C. 2009. Micro- and nanoscale tensile testing of materials. JOM 61:324–35
    [Google Scholar]
  24. 24.
    Pantano MF, Espinosa HD, Pagnotta L. 2012. Mechanical characterization of materials at small length scales. J. Mech. Sci. Technol. 26:2545–61
    [Google Scholar]
  25. 25.
    Kang W, Merrill M, Wheeler JM. 2017. In situ thermomechanical testing methods for micro/nano-scale materials. Nanoscale 9:82666–88
    [Google Scholar]
  26. 26.
    Minor AM, Dehm G. 2019. Advances in in situ nanomechanical testing. MRS Bull 44:6438–42
    [Google Scholar]
  27. 27.
    Pippan R, Wurster S, Kiener D. 2018. Fracture mechanics of micro samples: fundamental considerations. Mater. Des. 159:252–67
    [Google Scholar]
  28. 28.
    Gao H. 2006. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138:1–4101–37
    [Google Scholar]
  29. 29.
    Jaya BN, Jayaram V. 2016. Fracture testing at small-length scales: from plasticity in Si to brittleness in Pt. JOM 68:194–108
    [Google Scholar]
  30. 30.
    Ast J, Ghidelli M, Durst K, Göken M, Sebastiani M, Korsunsky AM. 2019. A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater. Des. 173:107762
    [Google Scholar]
  31. 31.
    Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR. 2007. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56:313–16
    [Google Scholar]
  32. 32.
    Hagen AB, Thaulow C. 2016. Low temperature in-situ micro-compression testing of iron pillars. Mater. Sci. Eng. A 678:355–64
    [Google Scholar]
  33. 33.
    Hagen AB, Snartland BD, Thaulow C. 2017. Temperature and orientation effects on the deformation mechanisms of α-Fe micropillars. Acta Mater 129:398–407
    [Google Scholar]
  34. 34.
    Nix WD, Greer JR, Feng G, Lilleodden ET. 2007. Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515:63152–57
    [Google Scholar]
  35. 35.
    Nowak JD, Shan Z, Warren OL. 2008. A new perspective on mechanical testing: in situ compression in the TEM. Microsc. Today 16:434–37
    [Google Scholar]
  36. 36.
    Mompiou F, Legros M, Sedlmayr A, Gianola DS, Caillard D, Kraft O. 2012. Source-based strengthening of sub-micrometer Al fibers. Acta Mater 60:3977–83
    [Google Scholar]
  37. 37.
    Zamanzade M, Velayarce JR, Abad OT, Motz C, Barnoush A. 2016. Mechanical behavior of iron aluminides: a comparison of nanoindentation, compression and bending of micropillars. Mater. Sci. Eng. A 652:370–76
    [Google Scholar]
  38. 38.
    Shin J, Cornelius TW, Labat S, Lauraux F, Richard M-I et al. 2018. In situ Bragg coherent X-ray diffraction during tensile testing of an individual Au nanowire. J. Appl. Crystallogr. 51:781–88
    [Google Scholar]
  39. 39.
    Soler R, Wheeler JM, Chang H-J, Segurado J, Michler J et al. 2014. Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Mater 81:50–57
    [Google Scholar]
  40. 40.
    Zou Y, Spolenak R. 2013. Size-dependent plasticity in micron- and submicron-sized ionic crystals. Philos. Mag. Lett. 93:7431–38
    [Google Scholar]
  41. 41.
    Chen M, Pethö L, Sologubenko AS, Ma H, Michler J et al. 2020. Achieving micron-scale plasticity and theoretical strength in silicon. Nat. Commun. 11:2681
    [Google Scholar]
  42. 42.
    Guo JJ, Reddy KM, Hirata A, Gazonas GA, McCauley JW, Chen MW. 2015. Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride. Acta Mater 88:252–59
    [Google Scholar]
  43. 43.
    Kuroyanagi S, Shinoda K, Yumoto A, Akedo J. 2020. Size-dependent quasi brittle–ductile transition of single crystalline α-alumina particles during microcompression tests. Acta Mater 195:588–96
    [Google Scholar]
  44. 44.
    Nakata Y, Kato Y, Hyodo M, Hyde AFL, Murata H. 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found 41:239–51
    [Google Scholar]
  45. 45.
    Kishida K, Maruyama T, Matsunoshita H, Fukuyama T, Inui H. 2018. Micropillar compression deformation of single crystals of Mo5SiB2 with the tetragonal D8l structure. Acta Mater 159:416–28
    [Google Scholar]
  46. 46.
    Luo W, Kirchlechner C, Zavašnik J, Lu W, Dehm G, Stein F. 2020. Crystal structure and composition dependence of mechanical properties of single-crystalline NbCo2 Laves phase. Acta Mater 184:151–63
    [Google Scholar]
  47. 47.
    Livingston JD, Chalmers B. 1957. Multiple slip in bicrystal deformation. Acta Metall 5:6322–27
    [Google Scholar]
  48. 48.
    Hook RE, Hirth JP. 1966. The deformation behavior of non-isoaxial bicrystals of Fe-3% Si Tech. Rep., Aerosp. Res. Lab., Wright-Patterson Air Force Base Greene Cty., OH: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/AD665583.xhtml
  49. 49.
    Hook RE, Hirth JP. 1967. The deformation behavior of isoaxial bicrystals of Fe-3%Si. Acta Metall 15:3535–51
    [Google Scholar]
  50. 50.
    Maghsoudi M, Ziehmer M, Lilleodden ET. 2020. Detwinning-mediated hardening in Mg: a microcompression study of a single twin boundary. Mater. Sci. Eng. A 772:2019138747
    [Google Scholar]
  51. 51.
    Li LL, Zhang ZH, Tan J, Jiang CB, Qu RT et al. 2015. Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars. Sci. Rep. 5:15631
    [Google Scholar]
  52. 52.
    Kini MK, Merola C, Breitbach B, Klapproth D, Phillippi B et al. 2020. Dislocation plasticity and detwinning under thermal stresses in nanotwinned Ag thin films. Acta Mater 198:61–71
    [Google Scholar]
  53. 53.
    Kini MK, Dehm G, Kirchlechner C. 2020. Size dependent strength, slip transfer and slip compatibility in nanotwinned silver. Acta Mater 184:120–31
    [Google Scholar]
  54. 54.
    Ramachandramoorthy R, Gao W, Bernal R, Espinosa H. 2016. High strain rate tensile testing of silver nanowires: rate-dependent brittle-to-ductile transition. Nano Lett 16:1255–63
    [Google Scholar]
  55. 55.
    Lefebvre S, Devincre B, Aubert P, Hoc T 2014. Size effect on the mechanical behaviour of polycrystalline copper microbeams. Philos. Mag. 94:212472–85
    [Google Scholar]
  56. 56.
    Gu XW, Loynachan CN, Wu Z, Zhang YW, Srolovitz DJ, Greer JR. 2012. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett 12:126385–92
    [Google Scholar]
  57. 57.
    Zhang JY, Liang X, Zhang P, Wu K, Liu G, Sun J. 2014a. Emergence of external size effects in the bulk-scale polycrystal to small-scale single-crystal transition: a maximum in the strength and strain-rate sensitivity of multicrystalline Cu micropillars. Acta Mater 66:302–16
    [Google Scholar]
  58. 58.
    Legros M, Gianola DS, Hemker KJ. 2008. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:143380–93
    [Google Scholar]
  59. 59.
    Chen J, Lu L, Lu K. 2006. Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54:1913–18
    [Google Scholar]
  60. 60.
    Jennings AT, Li J, Greer JR. 2011. Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Scr. Mater. 59:5627–37
    [Google Scholar]
  61. 61.
    Kiener D, Minor AM. 2011. Source-controlled yield and hardening of CU(1 0 0) studied by in situ transmission electron microscopy. Acta Mater. 59:1328–37
    [Google Scholar]
  62. 62.
    Jang D, Greer JR. 2011. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr. Mater. 64:77–80
    [Google Scholar]
  63. 63.
    Yang B, Motz C, Rester M, Dehm G. 2012. Yield stress influenced by the ratio of wire diameter to grain size—a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires. Philos. Mag. 92:25–273243–56
    [Google Scholar]
  64. 64.
    Fu S, Yu D, Chen Y, An K, Chen X 2020a. Size effect in stainless steel thin wires under tension. Mater. Sci. Eng. A 790:139686
    [Google Scholar]
  65. 65.
    Agepati S, Ghosh P, Chokshi AH. 2016. Microstructural evolution and strength variability in microwires. Mater. Sci. Eng. A 652:239–49
    [Google Scholar]
  66. 66.
    Warthi N, Ghosh P, Chokshi AH. 2013. Approaching theoretical strengths by synergistic internal and external size refinement. Scr. Mater. 68:5225–28
    [Google Scholar]
  67. 67.
    Chen X, Shen Y, Fu S, Yu D, Zhang Z, Cheng G. 2018. Size effects on uniaxial tension and multiaxial ratcheting of oligo-crystalline stainless steel thin wires. Int. J. Fatigue 116:163–71
    [Google Scholar]
  68. 68.
    Fukumaru T, Hidaka H, Tsuchiyama T, Takaki S. 2005. Effect of wire diameter and grain size on tensile properties of austenitic stainless steel wire. Tetsu-to-Hagane 91:828–33
    [Google Scholar]
  69. 69.
    Miyazaki S, Shibata K, Fujita H. 1979. Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metall. 27:855–62
    [Google Scholar]
  70. 70.
    Okamoto NL, Kashioka D, Hirato T, Inui H. 2014. Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper. Int. J. Plast. 56:173–83
    [Google Scholar]
  71. 71.
    Molotnikov A, Lapovok R, Davis CHJ, Cao W, Estrin Y. 2008. Size effect on the tensile strength of fine-grained copper. Scr. Mater. 59:1182–85
    [Google Scholar]
  72. 72.
    Estrin Y, Mecking H. 1984. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 32:57–70
    [Google Scholar]
  73. 73.
    Leung PSS, Ngan AHW. 2013. Size effect on the strength of micron-sized polycrystals—a dislocation dynamics simulation study. Scr. Mater. 69:235–38
    [Google Scholar]
  74. 74.
    Rao SI, Dimiduk DM, Tang M, Uchich MD, Parthasarathy TA, Woodward C. 2007. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87:4777–94
    [Google Scholar]
  75. 75.
    Peng C, Ganesan Y, Lu Y, Lou J. 2012. Size dependent mechanical properties of single crystalline nickel nanowires. J. Appl. Phys. 111:063524
    [Google Scholar]
  76. 76.
    Frick CP, Clark BG, Orso S, Schneider AS, Arzt E. 2008. Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars. Mater. Sci. Eng. A 489:319–29
    [Google Scholar]
  77. 77.
    Bailon JP, McQueen HJ. 1967. Resistance à la traction des trichites de nickel. Acta Metall. 15:580–83
    [Google Scholar]
  78. 78.
    Ghassemi-Armaki H, Leff AC, Taheri ML, Dahal J, Kamarajugadda M, Kumar KS. 2017. Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes. Acta Mater 136:134–47
    [Google Scholar]
  79. 79.
    Fritz R, Maier-Kiener V, Lutz D, Kiener D. 2016. Interplay between sample size and grain size: single crystalline versus ultrafine-grained chromium micropillars. Mater. Sci. Eng. A 674:626–33
    [Google Scholar]
  80. 80.
    Soler R, Evirgen A, Yao M, Kirchlechner C, Stein F et al. 2018. Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure. Acta Mater 156:86–96
    [Google Scholar]
  81. 81.
    Gan KF, Ngan AHW. 2018. The unusual size effect of eutectic Sn/Pb alloys in the micro regime: experiments and modeling. Acta Mater 151:282–92
    [Google Scholar]
  82. 82.
    Howard C, Frazer D, Lupinacci A, Parker S, Valiev RZ et al 2016. Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper. Mater. Sci. Eng. A 649:104–13
    [Google Scholar]
  83. 83.
    Zhao Y, Singaravelu ASS, Ma X, Zhang Q, Liu X, Chawla N. 2020. Micromechanical properties and deformation behavior of Al3BC/6061 Al composites via micropillar compression. Mater. Sci. Eng. A 773:2019138852
    [Google Scholar]
  84. 84.
    Kumar A. 2017. Micromechanical Study on the Deformation Behaviour of Directionally Solidified NiAl–Cr Eutectic Composites Karlsruhe, Ger: KIT Sci.
  85. 85.
    Kiener D, Grosinger W, Dehm G, Pippan R. 2008. A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater 56:3580–92
    [Google Scholar]
  86. 86.
    Zheng C, Li L, Wang Y, Yang W, Sun Z 2015. Micromechanical behavior of eutectoid steel quantified by an analytical model calibrated by in situ synchrotron-based X-ray diffraction. Mater. Sci. Eng. A 631:181–88
    [Google Scholar]
  87. 87.
    Cui Y, Li C, Zhang C, Li R, Ren Y et al. 2020. Effect of initial microstructure on the micromechanical behavior of Ti-55531 titanium alloy investigated by in-situ high-energy X-ray diffraction. Mater. Sci. Eng. A 772:2019138806
    [Google Scholar]
  88. 88.
    Wang D, Fan Q, Shi R, Zhou Y, Gong H et al. 2020. In-situ investigation via high energy X-ray diffraction of stress-induced (0002)α→(110)β transformation in a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy. Mater. Sci. Eng. A 779:139154
    [Google Scholar]
  89. 89.
    Naser H, De Geuser F, Mantel M, Véron M, Deschamps A. 2020. Macro and micro mechanical in-situ characterization using synchrotron diffraction of architectured micro-composite duplex stainless steels. Mater. Sci. Eng. A 793:139852
    [Google Scholar]
  90. 90.
    Yilmaz H, Williams CJ, Derby B 2020. Size effects on strength and plasticity of ferrite and austenite pillars in a duplex stainless steel. Mater. Sci. Eng. A 793:139883
    [Google Scholar]
  91. 91.
    Cakmak E, Gussev MN, Sridharan N, Seren MH, An K et al. 2020. Micromechanical and microstructure analysis of strain-induced phenomena in ultrasonic additively-manufactured Al-6061 alloy. Mater. Sci. Eng. A 770:138533
    [Google Scholar]
  92. 92.
    Rahman KM, Jones NG, Dye D. 2015. Micromechanics of twinning in a TWIP steel. Mater. Sci. Eng. A 635:133–42
    [Google Scholar]
  93. 93.
    Zhang M, Tan Q, Ding J, Chen H, Guo F et al. 2018. In situ high-energy X-ray diffraction investigation of the micromechanical behavior of Fe-0.1C-10Mn-0/2Al steel at room and elevated temperatures. Mater. Sci. Eng. A 729:444–51
    [Google Scholar]
  94. 94.
    Tian Y, Lin S, Ko JYP, Lienert U, Borgenstam A, Hedström P. 2018. Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steels. Mater. Sci. Eng. A 734:281–90
    [Google Scholar]
  95. 95.
    Guillen DP, Pagan DC, Getto EM, Wharry JP. 2018. In situ tensile study of PM-HIP and wrought 316 L stainless steel and Inconel 625 alloys with high energy diffraction microscopy. Mater. Sci. Eng. A 738:380–88
    [Google Scholar]
  96. 96.
    Haboub A, Bale HA, Nasiatka JR, Cox BN, Marshall DB et al. 2014. Tensile testing of materials at high temperatures above 1700°C with in situ synchrotron X-ray micro-tomography. Rev. Sci. Instrum. 85:8083702
    [Google Scholar]
  97. 97.
    Vonk NH, Dekkers ECA, van Maris MPFHL, Hoefnagels JPM. 2019. A multi-loading, climate-controlled, stationary ROI device for in-situ X-ray CT hygro-thermo-mechanical testing. Exp. Mech. 59:3295–308
    [Google Scholar]
  98. 98.
    Nair SD, Nygren KE, Pagan DC. 2019. Micromechanical response of crystalline phases in alternate cementitious materials using 3-dimensional X-ray techniques. Sci. Rep. 9:18456
    [Google Scholar]
  99. 99.
    Ghosh P, Van Petegem S, Van Swygenhoven H, Chokshi AH. 2017. An in-situ synchrotron study on microplastic flow of electrodeposited nanocrystalline nickel. Mater. Sci. Eng. A 701:101–10
    [Google Scholar]
  100. 100.
    Kumar A, Dutta A, Makineni SK, Herbig M, Petrov RH, Sietsma J. 2019. In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Mater. Sci. Eng. A 757:107–16
    [Google Scholar]
  101. 101.
    Tonizzo Q, Caillard D, Perlade A, Mazière M, Gourgues-Lorenzon AF. 2019. Multiscale examination of deformation and fracture mechanisms of a duplex advanced high strength steel: effect of testing temperature and of micromechanical interactions between microstructural constituents. Mater. Sci. Eng. A 764:138196
    [Google Scholar]
  102. 102.
    Chen P, Ghassemi-Armaki H, Kumar S, Bower A, Bhat S, Sadagopan S. 2014. Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater 65:133–49
    [Google Scholar]
  103. 103.
    Alaie A, Ziaei RS, Kadkhodapour J, Jafari M, Asadabad MA, Schmauder S. 2015. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation. Mater. Sci. Eng. A 638:251–61
    [Google Scholar]
  104. 104.
    Tan X, Ponge D, Lu W, Xu Y, He H et al. 2020. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels. Acta Mater 186:374–88
    [Google Scholar]
  105. 105.
    Souza Filho IR, Dutta A, Almeida DR Jr., Lu W, Sandim MJR et al. 2020. The impact of grain-scale strain localization on strain hardening of a high-Mn steel: real-time tracking of the transition from the γ → ε → α′ transformation to twinning. Acta Mater 197:123–36
    [Google Scholar]
  106. 106.
    Tian C, Ponge D, Christiansen L, Kirchlechner C. 2020. On the mechanical heterogeneity in dual phase steel grades: activation of slip systems and deformation of martensite in DP800. Acta Mater 183:274–84
    [Google Scholar]
  107. 107.
    Jones RD, Di Gioacchino F, Lim H, Edwards TEG, Schwalbe C et al. 2018. Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys. Sci. Rep. 8:8698
    [Google Scholar]
  108. 108.
    Knowles AJ, Jun T-S, Bhowmik A, Jones NG, Britton TB et al. 2017. A new β titanium alloy system reinforced with superlattice intermetallic precipitates. Scr. Mater. 140:71–75
    [Google Scholar]
  109. 109.
    Zhang Z, Jun TS, Britton TB, Dunne FPE. 2016. Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity. J. Mech. Phys. Solids 95:393–410
    [Google Scholar]
  110. 110.
    Paudel YR, Indeck J, Hazeli K, Priddy MW, Inal K et al. 2020. Characterization and modeling of {102} twin banding in magnesium. Acta Mater 183:438–51
    [Google Scholar]
  111. 111.
    Kaira CS, Singh SS, Kirubanandham A, Chawla N. 2016. Microscale deformation behavior of bicrystal boundaries in pure tin (Sn) using micropillar compression. Acta Mater 120:56–67
    [Google Scholar]
  112. 112.
    Fu H, Dönges B, Krupp U, Pietsch I, Fritzen C-P et al. 2020b. Microcrack initiation mechanism of a duplex stainless steel under very high cycle fatigue loading condition: the significance of load partitioning and micro residual stresses. Acta Mater 199:278–87
    [Google Scholar]
  113. 113.
    Alizadeh R, Llorca J. 2020. Interactions between basal dislocations and β1′ precipitates in Mg-4Zn alloy: mechanisms and strengthening. Acta Mater 186:475–86
    [Google Scholar]
  114. 114.
    Wang CY, Cepeda-Jiménez CM, Pérez-Prado MT. 2020. Dislocation–particle interactions in magnesium alloys. Acta Mater 194:190–206
    [Google Scholar]
  115. 115.
    Jiang J, Dunne FPE, Britton TB. 2017. Toward predictive understanding of fatigue crack nucleation in Ni-based superalloys. JOM 69:5863–71
    [Google Scholar]
  116. 116.
    Bourdin F, Stinville J-C, Echlin MP, Callahan PG, Lenthe WC et al. 2018. Measurements of plastic localization by Heaviside–digital image correlation. Acta Mater 157:307–25
    [Google Scholar]
  117. 117.
    Gustafson S, Ludwig W, Shade P, Naragani D, Pagan D et al. 2020. Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations. Nat. Commun. 11:3189
    [Google Scholar]
  118. 118.
    Wang YD, Tian H, Stoica AD, Wang XL, Liaw PK, Richardson JW. 2003. The development of grain-orientation-dependent residual stresses in a cyclically deformed alloy. Nat. Mater. 2:2101–6
    [Google Scholar]
  119. 119.
    Samaee V, Sandfield S, Idrissi H, Groten J, Pardoen T et al. 2020. Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars. Mater. Sci. Eng. A 769:2019138295
    [Google Scholar]
  120. 120.
    Read DT. 1998. Tension-tension fatigue of copper thin films. Int. J. Fatigue 20:3203–9
    [Google Scholar]
  121. 121.
    Schwaiger R, Kraft O. 2003. Size effects in the fatigue behavior of thin Ag films. Acta Mater 51:1195–206
    [Google Scholar]
  122. 122.
    Meirom RA, Clark TE, Muhlstein CL. 2012. The role of specimen thickness in the fracture toughness and fatigue crack growth resistance of nanocrystalline platinum films. Acta Mater 60:31408–17
    [Google Scholar]
  123. 123.
    Merle B, Höppel HW 2018. Microscale high-cycle fatigue testing by dynamic micropillar compression using continuous stiffness measurement. Exp. Mech. 58:3465–74
    [Google Scholar]
  124. 124.
    Krauß S, Schieß T, Göken M, Merle B 2020. Revealing the local fatigue behavior of bimodal copper laminates by micropillar fatigue tests. Mater. Sci. Eng. A 788:139502
    [Google Scholar]
  125. 125.
    Wu X, Jiang P, Chen L, Yuan F, Zhu YT. 2014. Extraordinary strain hardening by gradient structure. PNAS 111:207197–201
    [Google Scholar]
  126. 126.
    Li J, Lu W, Gibson J, Zhang S, Chen Y et al. 2018. Eliminating deformation incompatibility in composites by gradient nanolayer architectures. Sci. Rep. 8:16216
    [Google Scholar]
  127. 127.
    Tsuji N, Ito Y, Saito Y, Minamino Y. 2002. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47:12893–99
    [Google Scholar]
  128. 128.
    Huang X, Kamikawa N, Hansen N. 2008. Increasing the ductility of nanostructured Al and Fe by deformation. Mater. Sci. Eng. A 493:1–2184–89
    [Google Scholar]
  129. 129.
    Purcek G, Saray O, Karaman I, Maier HJ. 2012. High strength and high ductility of ultrafine-grained interstitial-free steel produced by ECAE and annealing. Metall. Mater. Trans. A 43:1884–94
    [Google Scholar]
  130. 130.
    Lapovok R, Orlov D, Timokhina IB, Pougis A, Toth LS et al. 2012. Asymmetric rolling of interstitial-free steel using one idle roll. Metall. Mater. Trans. A 43:1328–40
    [Google Scholar]
  131. 131.
    Hazra SS, Pereloma EV, Gazder AA. 2011. Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel. Acta Mater. 59:104015–29
    [Google Scholar]
  132. 132.
    Chen W, Zhang J, Cao S, Pan Y, Huang M et al. 2016. Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: precipitates shearing vs precipitates disordering. Acta Mater 117:68–80
    [Google Scholar]
  133. 133.
    Jun TS, Zhang Z, Sernicola G, Dunne FPE, Britton TB. 2016. Local strain rate sensitivity of single α phase within a dual-phase Ti alloy. Acta Mater 107:298–309
    [Google Scholar]
  134. 134.
    Jun T-S, Maeder X, Bhowmik A, Guilloneau G, Michler J et al. 2019. The role of β-titanium ligaments in the deformation of dual phase titanium alloys. Mater. Sci. Eng. A 746:394–405
    [Google Scholar]
  135. 135.
    Edwards TEJ, Di Gioacchino F, Mohanty G, Wehrs J, Michler J, Clegg WJ. 2018. Longitudinal twinning in a TiAl alloy at high temperature by in situ microcompression. Acta Mater 148:202–15
    [Google Scholar]
  136. 136.
    Weekes HE, Vorontsov VA, Dolbnya IP, Plummer JD, Giuliani F et al. 2015. In situ micropillar deformation of hydrides in Zircaloy-4. Acta Mater 92:81–96
    [Google Scholar]
  137. 137.
    San Juan J, ML, Schuh CA 2012. Superelastic cycling of Cu-Al-Ni shape memory alloy micropillars. Acta Mater 60:104093–106
    [Google Scholar]
  138. 138.
    Juan JS, ML, Schuh CA. 2009. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4:7415–19
    [Google Scholar]
  139. 139.
    Gómez-Cortés JF, ML, Ruíz-Larrea I, Breczewski T, López-Echarri A et al. 2019. Ultrahigh superelastic damping at the nano-scale: a robust phenomenon to improve smart MEMS devices. Acta Mater 166:346–56
    [Google Scholar]
  140. 140.
    Xu C, Ahmad Z, Aryanfar A, Viswanathan V, Greer JR. 2017. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. PNAS 114:157–61
    [Google Scholar]
  141. 141.
    Fincher CD, Ojeda D, Zhang Y, Pharr GM, Pharr M. 2020. Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater 186:215–22
    [Google Scholar]
  142. 142.
    Herbert EG, Hackney SA, Thole V, Dudney NJ, Sudharshan Phani P. 2018. Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33:101347–60
    [Google Scholar]
  143. 143.
    Wang Y, Cheng Y-T. 2017. A nanoindentation study of the viscoplastic behavior of pure lithium. Scr. Mater. 130:191–95
    [Google Scholar]
  144. 144.
    Tariq S, Ammigan K, Hurh P, Schultz R, Liu P, Shang J. 2003. Li material testing - Fermilab antiproton source lithium collection lens. Proceedings of the 2003 Particle Accelerator Conference, Vol. 31452–54 Piscataway, NJ: IEEE
    [Google Scholar]
  145. 145.
    Schultz RP. 2002. Lithium: measurement of Young's modulus and yield strength. Tech. Rep. FERMILAB-TM-2191 Fermi Natl. Lab. Batavia, IL: https://www.osti.gov/biblio/804180
  146. 146.
    Masias A, Felten N, Garcia-Mendez R, Wolfenstine J, Sakamoto J. 2019. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54:2585–600
    [Google Scholar]
  147. 147.
    LePage WS, Chen Y, Kazyak E, Chen K-H, Sanchez AJ et al. 2019. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166:2A89–97
    [Google Scholar]
  148. 148.
    Hull D, Rosenberg HM. 1959. The deformation of lithium, sodium and potassium at low temperatures: tensile and resistivity experiments. Philos. Mag. 4:39303–15
    [Google Scholar]
  149. 149.
    Everaerts J, Song X, Nagarajan B, Korsunsky AM. 2018. Evaluation of macro- and microscopic residual stresses in laser shock-peened titanium alloy by FIB-DIC ring-core milling with different core diameters. Surf. Coat. Technol. 349:719–24
    [Google Scholar]
  150. 150.
    Arora K, Kishida K, Tanaka K, Inui H. 2017. Effects of lattice misfit on plastic deformation behavior of single-crystalline micropillars of Ni-based superalloys. Acta Mater 138:119–30
    [Google Scholar]
  151. 151.
    Wang J, Molina-Aldareguía JM, Llorca J. 2020. Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys. Acta Mater 188:215–27
    [Google Scholar]
  152. 152.
    Kishida K, Kim JG, Nagae T, Inui H. 2020. Experimental evaluation of critical resolved shear stress for the first-order pyramidal c + a slip in commercially pure Ti by micropillar compression method. Acta Mater 196:168–74
    [Google Scholar]
  153. 153.
    Hosemann P. 2018. Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap. Scr. Mater. 143:161–68
    [Google Scholar]
  154. 154.
    Hosemann P. 2018. Developing ultra-small scale mechanical testing methods and microstructural investigation procedures for irradiated materials fuel cycle research and development. Tech. Rep.13–5161 US Dep. Energy Washington, DC:
    [Google Scholar]
  155. 155.
    Prasitthipayong A, Frazer D, Kareer A, Abad MD, Garner A et al. 2018. Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors. Nucl. Mater. Energy 16:34–45
    [Google Scholar]
  156. 156.
    Yano KH, Swenson MJ, Wu Y, Wharry JP. 2017. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy. J. Nucl. Mater. 483:107–20
    [Google Scholar]
  157. 157.
    Gasparrini C, Xu A, Short K, Wei T, Davis J et al. 2020. Micromechanical testing of unirradiated and helium ion irradiated SA508 reactor pressure vessel steels: nanoindentation versus in-situ microtensile testing. Mater. Sci. Eng. A 796:139942
    [Google Scholar]
  158. 158.
    Reichardt A, Ionescu M, Edwards L, Harrison RP, Hosemann P et al. 2015. In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film. Acta Mater 100:147–54
    [Google Scholar]
  159. 159.
    Fan C, Li Q, Ding J, Liang Y, Shang Z et al. 2019. Helium irradiation induced ultra-high strength nanotwinned Cu with nanovoids. Acta Mater 177:107–20
    [Google Scholar]
  160. 160.
    Reichardt A, Lupinacci A, Frazer D, Bailey N, Vo H et al. 2017. Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS. J. Nucl. Mater. 486:323–31
    [Google Scholar]
  161. 161.
    Colldeweih AW, Baris A, Spätig P, Abolhassani S. 2019. Evaluation of mechanical properties of irradiated zirconium alloys in the vicinity of the metal–oxide interface. Mater. Sci. Eng. A 742:842–50
    [Google Scholar]
  162. 162.
    Fujii K, Fukuya K. 2011. Development of micro tensile testing method in an FIB system for evaluating grain boundary strength. Mater. Trans. 52:120–24
    [Google Scholar]
  163. 163.
    Miura T, Fujii K, Fukuya K. 2015. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel. J. Nucl. Mater. 457:279–90
    [Google Scholar]
  164. 164.
    Kabel J, Hosemann P, Zayachuk Y, Armstrong DEJ, Koyanagi T et al. 2018. Ceramic composites: a review of toughening mechanisms and demonstration of micropillar compression for interface property extraction. J. Mater. Res. 33:4424–39
    [Google Scholar]
  165. 165.
    Kabel J, Yang Y, Balooch M, Howard C, Koyanagi T et al. 2017. Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms. Composites B 131:173–83
    [Google Scholar]
  166. 166.
    Pan D, Chen MW, Wright PK, Hemker KJ. 2003. Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling. Acta Mater 51:82205–17
    [Google Scholar]
  167. 167.
    Yue Y, Zheng K. 2014. Strong strain rate effect on the plasticity of amorphous silica nanowires. Appl. Phys. Lett. 104:231906
    [Google Scholar]
  168. 168.
    Zheng K, Wang C, Cheng Y-Q, Xue Y, Han X et al. 2010. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1:24
    [Google Scholar]
  169. 169.
    Mačković M, Przybyla T, Dieker C, Herre P, Romeis S et al. 2017. A novel approach for preparation and in situ tensile testing of silica glass membranes in the transmission electron microscope. Front. Mater. 4:10
    [Google Scholar]
  170. 170.
    Mačković M, Niekiel F, Wondraczek L, Bitzek E, Spiecker E. 2016. In situ mechanical quenching of nanoscale silica spheres in the transmission electron microscope. Scr. Mater. 121:70–74
    [Google Scholar]
  171. 171.
    Efthymiadis P, Dashwood RJ, Shollock B, Curry L, Ghadbeigi H et al. 2016. Multiscale characterisation of the mechanical properties of austenitic stainless steel joints. Mater. Sci. Eng. A 676:324–35
    [Google Scholar]
  172. 172.
    Borrero-Lopez O, Hoffman M. 2014. Measurement of fracture strength in brittle thin films. Surf. Coat. Technol. 254:1–10
    [Google Scholar]
  173. 173.
    Saxena AK, Brinckmann S, Völker B, Dehm G, Kirchlechner C. 2020. Experimental conditions affecting the measured fracture toughness at the microscale: notch geometry and crack extension measurement. Mater. Des. 191:108582
    [Google Scholar]
  174. 174.
    Takashima K, Higo Y. 2005. Fatigue and fracture of a Ni-P amorphous alloy thin film on the micrometer scale. Fatigue Fract. Eng. Mater. Struct. 28:8703–10
    [Google Scholar]
  175. 175.
    Schwiedrzik JJ, Ast J, Pethö L, Maeder X, Michler J. 2018. A new push–pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue Fract. Eng. Mater. Struct. 41:5991–1001
    [Google Scholar]
  176. 176.
    Östlund F, Howie PR, Ghisleni R, Korte S, Leifer K et al. 2011. Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philos. Mag. 91:7–91190–99
    [Google Scholar]
  177. 177.
    Jaya BN, Wheeler JM, Wehrs J, Best JP, Soler R et al. 2016. Microscale fracture behavior of single crystal silicon beams at elevated temperatures. Nano Lett 16:127597–603
    [Google Scholar]
  178. 178.
    DelRio FW, Cook RF, Boyce BL. 2015. Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2:021303
    [Google Scholar]
  179. 179.
    Son D, Kim JJ, Lim TW, Kwon D. 2004. Evaluation of fracture properties of silicon by combining resonance frequency and microtensile methods. Thin Solid Films 468:1/2167–73
    [Google Scholar]
  180. 180.
    Gerberich WW, Mook WM, Carter CB, Ballarini R. 2007. A crack extension force correlation for hard materials. Int. J. Fract. 148:2109–14
    [Google Scholar]
  181. 181.
    Mook WM, Nowak JD, Perrey CR, Carter CB, Mukherjee R et al. 2007. Compressive stress effects on nanoparticle modulus and fracture. Phys. Rev. B 75:214112
    [Google Scholar]
  182. 182.
    Beaber AR, Nowak JD, Ugurlu O, Mook WM, Girshick SL et al. 2011. Smaller is tougher. Philos. Mag. 91:7–91179–89
    [Google Scholar]
  183. 183.
    Östlund F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang Y et al. 2009. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19:152439–44
    [Google Scholar]
  184. 184.
    Gerberich WW, Mook WM, Cordill MJ, Jungk JM, Boyce B et al. 2006. Nanoprobing fracture length scales. Int. J. Fract. 138:1–475–100
    [Google Scholar]
  185. 185.
    Yoshida K, Wakai F, Nishiyama N, Sekine R, Shinoda Y et al. 2015. Large increase in fracture resistance of stishovite with crack extension less than one micrometer. Sci. Rep. 5:10993
    [Google Scholar]
  186. 186.
    Sernicola G, Giovannini T, Patel P, Kermode JR, Balint DS et al. 2017. In situ stable crack growth at the micron scale. Nat. Commun. 8:108
    [Google Scholar]
  187. 187.
    Kendall K. 1978. Complexities of compression failure. Proc. R. Soc. A 361:1705245–63
    [Google Scholar]
  188. 188.
    Karihaloo BL. 1979. Note on complexities of compression failure. Proc. R. Soc. A 368:1735483–93
    [Google Scholar]
  189. 189.
    Liu S, Wheeler JM, Howie PR, Zeng XT, Michler J, Clegg WJ. 2013. Measuring the fracture resistance of hard coatings. Appl. Phys. Lett. 102:171907
    [Google Scholar]
  190. 190.
    Zeilinger A, Daniel R, Stefenelli M, Sartory B, Chitu L et al. 2015. Mechanical property enhancement in laminates through control of morphology and crystal orientation. J. Phys. D 48:295303
    [Google Scholar]
  191. 191.
    Zhang P, Ma L, Fan F, Zeng Z, Peng C et al. 2014b. Fracture toughness of graphene. Nat. Commun. 5:3782
    [Google Scholar]
  192. 192.
    Matoy K, Schönherr H, Detzel T, Schöberl T, Pippan R et al. 2009. A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518:1247–56
    [Google Scholar]
  193. 193.
    Massl S, Thomma W, Keckes J, Pippan R. 2009. Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique. Acta Mater 57:61768–76
    [Google Scholar]
  194. 194.
    Abad MD, Parker S, Frazer D, Rebelo de Figuereido M, Lupinacci A et al. 2015. Evaluation of the mechanical properties of naturally grown multilayered oxides formed on HCM12A using small scale mechanical testing. Oxid. Met. 84:1/2211–31
    [Google Scholar]
  195. 195.
    Best JP, Zechner J, Wheeler JM, Schoeppner R, Morstein M, Michler J. 2016. Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philos. Mag. 96:32–343552–69
    [Google Scholar]
  196. 196.
    Daniel R, Meindlhumer M, Zalesak J, Sartory B, Zeilinger A et al. 2016. Fracture toughness enhancement of brittle nanostructured materials by spatial heterogeneity: a micromechanical proof for CrN/Cr and TiN/SiOx multilayers. Mater. Des. 104:227–34
    [Google Scholar]
  197. 197.
    Kolednik O, Predan J, Fischer FD, Fratzl P. 2011. Bioinspired design criteria for damage-resistant materials with periodically varying microstructure. Adv. Funct. Mater. 21:193634–41
    [Google Scholar]
  198. 198.
    Buchinger J, Löfler L, Ast J, Wagner A, Chen Z et al. 2020. Fracture properties of thin film TiN at elevated temperatures. Mater. Des. 194:108885
    [Google Scholar]
  199. 199.
    Monclús MA, Yang L, López-Cabañas I, Castillo-Rodríguez M, Zaman A et al. 2020. High temperature mechanical properties and microstructure of hard TaSiN coatings. Mater. Sci. Eng. A 797:139976
    [Google Scholar]
  200. 200.
    Hahn R, Koutná N, Wójcik T, Davydok A, Kolozsvári S et al. 2020. Mechanistic study of superlattice-enabled high toughness and hardness in MoN/TaN coatings. Commun. Mater. 1:62
    [Google Scholar]
  201. 201.
    Fünfschilling S, Fett T, Hoffmann MJ, Oberacker R, Jelitto H et al. 2009. Bridging stresses from R-curves of silicon nitrides. J. Mater. Sci. 44:3900–4
    [Google Scholar]
  202. 202.
    Wurster S, Motz C, Pippan R. 2012. Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens. Philos. Mag. 92:141803–25
    [Google Scholar]
  203. 203.
    Ast J, Polyakov MN, Mohanty G, Michler J, Maeder X. 2018. Interplay of stresses, plasticity at crack tips and small sample dimensions revealed by in-situ microcantilever tests in tungsten. Mater. Sci. Eng. A 710:400–12
    [Google Scholar]
  204. 204.
    Ast J, Przybilla T, Maier V, Durst K, Göken M. 2014. Microcantilever bending experiments in NiAl—evaluation, size effects, and crack tip plasticity. J. Mater. Res. 29:182129–40
    [Google Scholar]
  205. 205.
    Iqbal F, Ast J, Göken M, Durst K. 2012. In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater 60:31193–200
    [Google Scholar]
  206. 206.
    Snartland BD, Thaulow C. 2020. Fracture toughness testing at the micro-scale—the effect of the unloading compliance method. Eng. Fract. Mech. 235:107135
    [Google Scholar]
  207. 207.
    Kupka D, Lilleodden ET. 2012. Mechanical testing of solid–solid interfaces at the microscale. Exp. Mech. 52:6649–58
    [Google Scholar]
  208. 208.
    Tarleton E, Balint DS, Gong J, Wilkinson AJ. 2015. A discrete dislocation plasticity study of the micro-cantilever size effect. Acta Mater 88:271–82
    [Google Scholar]
  209. 209.
    Gruber PA, Arzt E, Spolenak R. 2009. Brittle-to-ductile transition in ultrathin Ta/Cu film systems. J. Mater. Res. 24:61906–18
    [Google Scholar]
  210. 210.
    Preiß EI, Merle B, Göken M. 2017. Understanding the extremely low fracture toughness of freestanding gold thin films by in-situ bulge testing in an AFM. Mater. Sci. Eng. A 691:218–25
    [Google Scholar]
  211. 211.
    Hosokawa H, Desai AV, Haque MA. 2008. Plane stress fracture toughness of freestanding nanoscale thin films. Thin Solid Films 516:186444–47
    [Google Scholar]
  212. 212.
    Matoy K, Detzel T, Müller M, Motz C, Dehm G. 2009. Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf. Coat. Technol. 204:6/7878–81
    [Google Scholar]
  213. 213.
    Müller T, Bachmaier A, Konetschnik R, Schöberl T, Pippan R. 2018. Mechanical properties of electrodeposited amorphous/crystalline multilayer structures in the Fe-P system. Mater. Sci. Eng. A 715:83–91
    [Google Scholar]
  214. 214.
    Glushko O, Mühlbacher M, Gammer C, Cordill MJ, Mitterer C, Eckert J. 2019. Exceptional fracture resistance of ultrathin metallic glass films due to an intrinsic size effect. Sci. Rep. 9:8281
    [Google Scholar]
  215. 215.
    Wang Q, Yang Y, Jiang H, Liu CT, Ruan HH, Lu J. 2014. Superior tensile ductility in bulk metallic glass with gradient amorphous structure. Sci. Rep. 4:4757
    [Google Scholar]
  216. 216.
    Charalambides PG, Cao HC, Lund J, Evans AG. 1990. Development of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces. Mech. Mater. 8:4269–83
    [Google Scholar]
  217. 217.
    Gandhi DD, Lane M, Zhou Y, Singh P, Nayak S et al. 2007. Annealing-induced interfacial toughening using a molecular nanolayer. Nature 447:7142299–302
    [Google Scholar]
  218. 218.
    Dauskardt RH, Lane M, Ma Q, Krishna N 1998. Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61:1141–62
    [Google Scholar]
  219. 219.
    Barthelat F, Rim JE, Espinosa HD. 2009. A review on the structure and mechanical properties of mollusk shells—perspectives on synthetic biomimetic materials. See Ref. 22017–44
    [Google Scholar]
  220. 220.
    Bhushan B, Fuchs Heds. 2009. Applied Scanning Probe Methods, Vol. 13 Biomimetics and Industrial Applications. Berlin: Springer
  221. 221.
    Chen L, Ballarini R, Kahn H, Heuer AH. 2007. Bioinspired micro-composite structure. J. Mater. Res. 22:1124–31
    [Google Scholar]
  222. 222.
    Rabiei R, Bekah S, Barthelat F. 2010. Failure mode transition in nacre and bone-like materials. Acta Biomater 6:4081–89
    [Google Scholar]
  223. 223.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, bio-inspired hybrid materials. Science 322:59071516–20
    [Google Scholar]
  224. 224.
    Allison PG, Moser RD, Schirer JP, Martens RL, Jordon JB, Chandler MQ. 2014. In-situ nanomechanical studies of deformation and damage mechanisms in nanocomposites monitored using scanning electron microscopy. Mater. Lett. 131:313–16
    [Google Scholar]
  225. 225.
    Sen D, Buehler MJ. 2011. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci. Rep. 1:35
    [Google Scholar]
  226. 226.
    Feilden E, Giovannini T, Ni N, Ferraro C, Saiz E et al. 2017. Micromechanical strength of individual Al2O3 platelets. Scr. Mater. 131:55–58
    [Google Scholar]
  227. 227.
    Schwiedrzik J, Taylor A, Casari D, Wolfram U, Zysset P, Michler J. 2017. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomater 60:302–14
    [Google Scholar]
  228. 228.
    Schwiedrzik J, Raghavan R, Rüggeberg M, Hansen S, Wehrs J et al. 2016. Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philos. Mag. 96:32–343461–78
    [Google Scholar]
  229. 229.
    Tertuliano OA, Greer JR. 2016. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15:111195–202
    [Google Scholar]
  230. 230.
    Schwiedrzik J, Raghavan R, Bürki A, LeNader V, Wolfram U et al. 2014. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat. Mater. 13:7740–47
    [Google Scholar]
  231. 231.
    Zayachuk Y, Karamched P, Deck C, Hosemann P, Armstrong DEJ. 2019. Linking microstructure and local mechanical properties in SiC–SiC fiber composite using micromechanical testing. Acta Mater 168:178–89
    [Google Scholar]
  232. 232.
    Mirkhalaf M, Zhou T, Barthelat F. 2018. Simultaneous improvements of strength and toughness in topologically interlocked ceramics. PNAS 115:379128–33
    [Google Scholar]
  233. 233.
    Lal D, Kumar P, Sampath S, Jayaram V. 2020. Low-temperature stiffening of air plasma-sprayed 7 wt% Y2O3-stabilized ZrO2. J. Am. Ceram. Soc. 103:32076–89
    [Google Scholar]
  234. 234.
    Kameda J, Bloomer TE, Sugita Y, Ito A, Sakurai S. 1997. Mechanical properties of aluminized CoCrAlY coatings in advanced gas turbine blades. Mater. Sci. Eng. A 234–36:489–92
    [Google Scholar]
  235. 235.
    Kameda J, Bloomer IE, Sugita Y, Ito A, Sakurai S. 1997. High temperature environmental attack and mechanical degradation of coatings in gas turbine blades. Mater. Sci. Eng. A 229:1/242–54
    [Google Scholar]
  236. 236.
    Eskner M, Sandström R. 2003. Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique. Surf. Coat. Technol. 165:171–80
    [Google Scholar]
  237. 237.
    Alam MZ, Chatterjee D, Muraleedharan K, Nandy TK, Kamat SV et al. 2011. Effect of strain rate on ductile-to-brittle transition temperature of a free-standing Pt-aluminide bond coat. Metall. Mater. Trans. A 42:61431–34
    [Google Scholar]
  238. 238.
    Alam MZ, Chatterjee D, Kamat SV, Jayaram V, Das DK. 2010. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method. Mater. Sci. Eng. A 527:267147–50
    [Google Scholar]
  239. 239.
    Alam MZ, Kamat SV, Jayaram V, Karamched PS, Ghosal P, Das DK. 2014. Dynamic recovery and recrystallization during high-temperature tensile deformation of a free-standing Pt-aluminide bond coat. Mater. Sci. Eng. A 604:18–22
    [Google Scholar]
  240. 240.
    Alam MZ, Kamat SV, Jayaram V, Das DK. 2014. Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading. Acta Mater 67:278–96
    [Google Scholar]
  241. 241.
    Alam MZ, Srivathsa B, Kamat SV, Jayaram V, Das DK. 2011. Microtensile testing of a free-standing Pt-aluminide bond coat. Mater. Des. 32:31242–52
    [Google Scholar]
  242. 242.
    Alam MZ, Kamat SV, Jayaram V, Das DK. 2013. Tensile behavior of a free-standing Pt-aluminide (PtAl) bond coat. Acta Mater 61:41093–105
    [Google Scholar]
  243. 243.
    Texier D, Monceau D, Crabos F, Andrieu E. 2017. Tensile properties of a non-line-of-sight processed β-γ-γ′ MCrAlY coating at high temperature. Surf. Coat. Technol. 326:28–36
    [Google Scholar]
  244. 244.
    Jaya BN, Jayaram V. 2014. Crack stability in edge-notched clamped beam specimens: modeling and experiments. Int. J. Fract. 188:2213–28
    [Google Scholar]
  245. 245.
    Jaya BN, Bhowmick S, Asif SAS, Warren OL, Jayaram V. 2015. Optimization of clamped beam geometry for fracture toughness testing of micron-scale samples. Philos. Mag. 95:16–181945–66
    [Google Scholar]
  246. 246.
    Jaya NB, Jayaram V, Biswas SK. 2012. A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests. Philos. Mag. 92:25–273326–45
    [Google Scholar]
  247. 247.
    Alam MZ, Srivathsa B, Kamat SV, Jayaram V, Hazari N, Das DK. 2010. Mechanism of failure in a free-standing Pt-aluminide bond coat during tensile testing at room temperature. Mater. Sci. Eng. A 527:3842–48
    [Google Scholar]
  248. 248.
    Nagamani Jaya B, Bhowmick S, Asif SAS, Jayaram V 2015. In-situ study of microscale fracture of diffusion aluminide bond coats: effect of platinum. J. Mater. Res. 30:213343–53
    [Google Scholar]
  249. 249.
    Webler R, Krottenthaler M, Neumeier S, Durst K, Göken M. 2012. Local fracture toughness and residual stress measurements on NiAl bond coats by micro cantilever and FIB based bar milling tests. Superalloys 2012:93–102
    [Google Scholar]
  250. 250.
    Théry PY, Poulain M, Dupeux M, Braccini M. 2007. Adhesion energy of a YPSZ EB-PVD layer in two thermal barrier coating systems. Surf. Coat. Technol. 202:4–7648–52
    [Google Scholar]
  251. 251.
    Eberl C, Wang X, Gianola DS, Nguyen TD, He MY et al. 2011. In situ measurement of the toughness of the interface between a thermal barrier coating and a Ni alloy. J. Am. Ceram. Soc. 94:Suppl. 1120–27
    [Google Scholar]
  252. 252.
    Eberl C, Gianola DS, Hemker KJ. 2010. Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50:185–97
    [Google Scholar]
  253. 253.
    Zhao PF, Sun CA, Zhu XY, Shang FL, Li CJ. 2010. Fracture toughness measurements of plasma-sprayed thermal barrier coatings using a modified four-point bending method. Surf. Coat. Technol. 204:244066–74
    [Google Scholar]
  254. 254.
    Mao WG, Dai CY, Yang L, Zhou YC 2008. Interfacial fracture characteristic and crack propagation of thermal barrier coatings under tensile conditions at elevated temperatures. Int. J. Fract. 151:2107–20
    [Google Scholar]
  255. 255.
    Zhou YC, Hashida T, Jian CY. 2003. Determination of interface fracture toughness in thermal barrier coating system by blister tests. J. Eng. Mater. Technol. 125:2176–82
    [Google Scholar]
  256. 256.
    Eberl C, Gianola DS, Wang X, He MY, Evans AG, Hemker KJ. 2011. A method for in situ measurement of the elastic behavior of a columnar thermal barrier coating. Acta Mater 59:93612–20
    [Google Scholar]
  257. 257.
    Arai M, Okajima Y, Kishimoto K. 2007. Mixed-mode interfacial fracture toughness for thermal barrier coating. Eng. Fract. Mech. 74:132055–69
    [Google Scholar]
  258. 258.
    Chen Y, Zhang X, Zhao X, Markocsan N, Nylén P, Xiao P. 2019. Measurements of elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating using micro-cantilever bending. Surf. Coat. Technol. 374:201812–20
    [Google Scholar]
  259. 259.
    Robertson AL, White KW. 2017. Microscale fracture mechanisms of a Cr3C2-NiCr HVOF coating. Mater. Sci. Eng. A 688:201662–69
    [Google Scholar]
  260. 260.
    Lal D, Kumar P, Sampath S, Jayaram V. 2020. Hysteretic and time dependent deformation of plasma sprayed zirconia ceramics. Acta Mater 194:394–402
    [Google Scholar]
  261. 261.
    Lal D, Kumar P, Bathe R, Sampath S, Jayaram V. 2021. Effect of microstructure on fracture behavior of freestanding plasma sprayed 7 wt.% Y2O3 stabilized ZrO2. J. Eur. Ceram. Soc. 41:74294–301
    [Google Scholar]
  262. 262.
    Astiz MA. 1986. An incompatible singular elastic element for two- and three-dimensional crack problems. Int. J. Fract. 31:2105–24
    [Google Scholar]
  263. 263.
    Sahasrabuddhe H, Mishra AK, Zubair A, Jaya BN. 2022. Defining role of wire aspect ratio on fracture toughness determination of brittle materials in cylindrical configuration. J. Mater. Res. 37:990–1002
    [Google Scholar]
  264. 264.
    Ogihara S, Imafuku Y, Yamamoto R, Kogo Y. 2009. Application of FIB technique to introduction of a notch into a carbon fiber for direct measurement of fracture toughness. J. Phys. Conf. Ser. 191:012009
    [Google Scholar]
  265. 265.
    Jaya BN, Goto S, Richter G, Kirchlechner C, Dehm G. 2017. Fracture behavior of nanostructured heavily cold drawn pearlitic steel wires before and after annealing. Mater. Sci. Eng. A 707:164–71
    [Google Scholar]
  266. 266.
    Hijazi F, Kar J, Pavan AHV, Singh K, Kumar P, Jayaram V. 2019. Application of bending creep for examining effect of service conditions on creep response of steel. Mater. Sci. Eng. A 766:138398
    [Google Scholar]
  267. 267.
    Zhuang FK, Tu ST, Zhou GY, Wang QQ. 2015. A small cantilever beam test for determination of creep properties of materials. Fatigue Fract. Eng. Mater. Struct. 38:3257–67
    [Google Scholar]
  268. 268.
    Xu BX, Yue ZF, Eggeler G. 2007. A numerical procedure for retrieving material creep properties from bending creep tests. Acta Mater 55:186275–83
    [Google Scholar]
  269. 269.
    Jalali SIA, Kumar P, Jayaram V. 2020. Customized high-temperature bending with DIC for high-throughput determination of creep parameters: technique, instrumentation, and optimization. JOM 72:124522–38
    [Google Scholar]
  270. 270.
    Jalali SIA, Kumar P, Jayaram V. 2020. High throughput determination of creep parameters using cantilever bending. Part I. Steady-state. J. Mater. Res. 35:4353–61
    [Google Scholar]
  271. 271.
    Jalali SIA, Kumar P, Jayaram V. 2020. High throughput determination of creep parameters using cantilever bending. Part II. Primary and steady-state through uniaxial equivalency. J. Mater. Res. 35:4362–71
    [Google Scholar]
  272. 272.
    Jalali SIA, Jayaram V, Kumar P. 2021. Creep micromechanics in meso-length scale samples. Acta Mater. 205:116535
    [Google Scholar]
  273. 273.
    Jalali SIA. 2020. Evaluation of power-law creep in bending PhD Thesis Indian Inst. Sci. Bangalore: http://etd.iisc.ac.in/handle/2005/4547
  274. 274.
    Best JP, Zechner J, Shorubalko I, Oboňa JV, Wehrs J et al. 2016. A comparison of three different notching ions for small-scale fracture toughness measurement. Scr. Mater. 112:71–74
    [Google Scholar]
  275. 275.
    Mueller MG, Pejchal V, Žagar G, Singh A, Cantoni M, Mortensen A. 2015. Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater 86:385–95
    [Google Scholar]
  276. 276.
    Brinckmann S, Matoy K, Kirchlechner C, Dehm G. 2017. On the influence of microcantilever pre-crack geometries on the apparent fracture toughness of brittle materials. Acta Mater 136:281–87
    [Google Scholar]
  277. 277.
    Volinsky AA, Moody NR, Gerberich WW. 2002. Interfacial toughness measurements for thin films on substrates. Acta Mater 50:3441–66
    [Google Scholar]
  278. 278.
    Gruenewald P, Schaefer F, Thielen M, Marx M, Motz C. 2018. Small scale fracture mechanics of ductile materials: advantage of fatigue precracks and comparison of J-integral evaluations. Materialia 4:104–8
    [Google Scholar]
  279. 279.
    Sorensen D, Pischlar J, Stevick S, Hintsala E, Stauffer D et al. 2019. Investigation of a dissimilar Vitreloy 105 to grade 2 titanium laser weld. Mater. Sci. Eng. A 742:33–43
    [Google Scholar]
  280. 280.
    Best JP, Ast J, Li B, Stolpe M, Busch M et al. 2020. Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass. Mater. Sci. Eng. A 770:2019138535
    [Google Scholar]
  281. 281.
    Maire E, Le Bourlot C, Adrien J, Mortensen A, Mokso R. 2016. 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fract. 200:1/23–12
    [Google Scholar]
  282. 282.
    Lu X, Wang D, Li Z, Deng Y, Barnoush A. 2019. Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test. Mater. Sci. Eng. A 762:138114
    [Google Scholar]
  283. 283.
    Deng Y, Barnoush A. 2018. Hydrogen embrittlement revealed via novel in situ fracture experiments using notched micro-cantilever specimens. Acta Mater 142:236–47
    [Google Scholar]
  284. 284.
    Deng Y, Rogne BRS, Barnoush A. 2019. In-situ microscale examination of hydrogen effect on fracture toughness: a case study on B2 and D03 ordered iron aluminides intermetallic alloys. Eng. Fract. Mech. 217:106551
    [Google Scholar]
  285. 285.
    Hajilou T, Taji I, Christien F, He S, Scheiber D et al. 2020. Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: in situ electrochemical micro-cantilever bending versus DFT. Mater. Sci. Eng. A 794:139967
    [Google Scholar]
  286. 286.
    Takahashi Y, Kondo H, Asano R, Arai S, Higuchi K et al. 2016. Direct evaluation of grain boundary hydrogen embrittlement: a micro-mechanical approach. Mater. Sci. Eng. A 661:211–16
    [Google Scholar]
  287. 287.
    Singh SS, Williams JJ, Hruby P, Xiao X, De Carlo F, Chawla N. 2014. In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography. Integr. Mater. Manuf. Innov. 3:1109–22
    [Google Scholar]
  288. 288.
    Ding R, Chiu Y, Chu M, Paddea S, Su G. 2020. A study of fracture behaviour of γ lamella using the notched TiAl micro-cantilever. Philos. Mag. 100:8982–97
    [Google Scholar]
  289. 289.
    Kumar A, Saxena AK, Kirchlechner C, Herbig M, Brinckmann S et al. 2019. In situ study on fracture behaviour of white etching layers formed on rails. Acta Mater. 180:60–72
    [Google Scholar]
  290. 290.
    Roscioli G, Taheri-Mousavi SM, Tasan CC. 2020. How hair deforms steel. Science 369:6504689–94
    [Google Scholar]
  291. 291.
    Schwark T, Kraft O, Schwaiger R. 2017. The boundaries of soft magnetic composites reveal their complexity in compression and bending tests at the micro-scale. Mater. Sci. Eng. A 684:270–74
    [Google Scholar]
  292. 292.
    Bufford DC, Stauffer D, Mook WM, Asif SAS, Boyce BL, Hattar K. 2016. High cycle fatigue in the transmission electron microscope. Nano Lett 16:84946–53
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-123640
Loading
/content/journals/10.1146/annurev-matsci-080819-123640
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error