1932

Abstract

This article reviews recent basic research on two categories of metal-based nanolaminates: those composed of metal/metal constituents and those composed of metal/ceramic constituents. We focus primarily on studies that aim to understand—via experiments, modeling, or both—the biphase interface structure and its role in changing the mechanisms that govern strength and deformability at a fundamental level. We anticipate that, by providing a broad perspective on the latest advances in nanolaminates, this review will aid design of new metallic materials with unprecedented combinations of mechanical and physical properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081320-031236
2022-07-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081320-031236.html?itemId=/content/journals/10.1146/annurev-matsci-081320-031236&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mara NA, Beyerlein IJ. 2015. Interface-dominant multilayers fabricated by severe plastic deformation: stability under extreme conditions. Curr. Opin. Solid State Mater. Sci. 19:265–76
    [Google Scholar]
  2. 2.
    Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga B. 2013. Radiation damage tolerant nanomaterials. Mater. Today 16:443–49
    [Google Scholar]
  3. 3.
    Misra A, Hirth J, Kung H. 2002. Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82:2935–51
    [Google Scholar]
  4. 4.
    Fan Z, Xue S, Wang J, Yu K, Wang H, Zhang X. 2016. Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater 120:327–36
    [Google Scholar]
  5. 5.
    Bhattacharyya D, Mara NA, Dickerson P, Hoagland R, Misra A. 2010. A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al–TiN multilayered composites. Philos. Mag. 90:1711–24
    [Google Scholar]
  6. 6.
    Li N, Yadav SK, Wang J, Liu X-Y, Misra A. 2015. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers. Sci. Rep. 5:18554
    [Google Scholar]
  7. 7.
    Beyerlein IJ, Demkowicz MJ, Misra A, Uberuaga B. 2015. Defect-interface interactions. Prog. Mater. Sci. 74:125–210
    [Google Scholar]
  8. 8.
    Beyerlein IJ, Zhang X, Misra A. 2014. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44:329–63
    [Google Scholar]
  9. 9.
    Misra A, Thilly L. 2010. Structural metals at extremes. MRS Bull 35:965–77
    [Google Scholar]
  10. 10.
    Subedi S, Beyerlein IJ, LeSar R, Rollett AD. 2018. Strength of nanoscale metallic multilayers. Scr. Mater. 145:132–36
    [Google Scholar]
  11. 11.
    Nizolek T, Beyerlein IJ, Mara NA, Avallone JT, Pollock TM. 2016. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates. Appl. Phys. Lett. 108:051903
    [Google Scholar]
  12. 12.
    Wang J, Beyerlein IJ, Mara NA, Bhattacharyya D. 2011. Interface-facilitated deformation twinning in copper within submicron Ag–Cu multilayered composites. Scr. Mater. 64:1083–86
    [Google Scholar]
  13. 13.
    Shao S, Wang J, Beyerlein IJ, Misra A. 2015. Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces. Acta Mater 98:206–20
    [Google Scholar]
  14. 14.
    Zheng S, Wang J, Carpenter J, Mook W, Dickerson P et al. 2014. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater 79:282–91
    [Google Scholar]
  15. 15.
    Pathak S, Velisavljevic N, Baldwin JK, Jain M, Zheng S et al. 2017. Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci. Rep. 7:8264
    [Google Scholar]
  16. 16.
    Ardeljan M, Knezevic M, Jain M, Pathak S, Kumar A et al. 2018. Room temperature deformation mechanisms of Mg/Nb nanolayered composites. J. Mater. Res. 33:1311–32
    [Google Scholar]
  17. 17.
    Zheng S, Shao S, Zhang J, Wang Y, Demkowicz MJ et al. 2015. Adhesion of voids to bimetal interfaces with non-uniform energies. Sci. Rep. 5:15428
    [Google Scholar]
  18. 18.
    Scharnweber J, Chekhonin P, Oertel CG, Romberg J, Freudenberger J et al. 2019. Microstructure, texture, and mechanical properties of laminar metal composites produced by accumulative roll bonding. Adv. Eng. Mater. 21:1800210
    [Google Scholar]
  19. 19.
    Schunk C, Nitschky M, Höppel HW, Göken M. 2019. Superior mechanical properties of aluminum–titanium laminates in terms of local hardness and strength. Adv. Eng. Mater. 21:1800546
    [Google Scholar]
  20. 20.
    Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J et al. 2013. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4:1696
    [Google Scholar]
  21. 21.
    Kang K, Wang J, Zheng SJ, Beyerlein IJ. 2012. Minimum energy structures of faceted, incoherent interfaces. J. Appl. Phys. 112:073501
    [Google Scholar]
  22. 22.
    Wang J, Zhang R, Zhou C, Beyerlein IJ, Misra A. 2013. Characterizing interface dislocations by atomically informed Frank-Bilby theory. J. Mater. Res. 28:1646–57
    [Google Scholar]
  23. 23.
    Hirth J, Pond R, Hoagland R, Liu X-Y, Wang J 2013. Interface defects, reference spaces and the Frank–Bilby equation. Prog. Mater. Sci. 58:749–823
    [Google Scholar]
  24. 24.
    Beyerlein IJ, Wang J, Zhang R. 2013. Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater 61:7488–99
    [Google Scholar]
  25. 25.
    Tian Y, Zhang Z. 2012. Bulk eutectic Cu–Ag alloys with abundant twin boundaries. Scr. Mater. 66:65–68
    [Google Scholar]
  26. 26.
    Liu J, Zeng Y, Meng L. 2008. Interface structure and energy in Cu–71.8 wt.% Ag. J. Alloys Compd. 464:168–73
    [Google Scholar]
  27. 27.
    Demkowicz M, Hoagland R, Hirth J. 2008. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100:136102
    [Google Scholar]
  28. 28.
    Beyerlein IJ, Mayeur JR, McCabe RJ, Zheng SJ, Carpenter JS, Mara NA. 2014. Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation. Acta Mater 72:137–47
    [Google Scholar]
  29. 29.
    Beyerlein IJ, Mayeur JR, Zheng S, Mara NA, Wang J, Misra A. 2014. Emergence of stable interfaces under extreme plastic deformation. PNAS 111:4386–90
    [Google Scholar]
  30. 30.
    Mara NA, Beyerlein IJ. 2014. Effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49:6497–516
    [Google Scholar]
  31. 31.
    Kumar A, Beyerlein IJ, Wang J. 2014. First-principles study of the structure of Mg/Nb multilayers. Appl. Phys. Lett. 105:071602
    [Google Scholar]
  32. 32.
    Wang J, Knezevic M, Jain M, Pathak S, Beyerlein IJ. 2021. Role of interface-affected dislocation motion on the strength of Mg/Nb nanolayered composites inferred by dual-mode confined layer slip crystal plasticity. J. Mech. Phys. Solids 152:104421
    [Google Scholar]
  33. 33.
    Nizolek TJ, Begley MR, McCabe RJ, Avallone JT, Mara NA et al. 2017. Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites. Acta Mater 133:303–15
    [Google Scholar]
  34. 34.
    Ardeljan M, Savage DJ, Kumar A, Beyerlein IJ, Knezevic M. 2016. The plasticity of highly oriented nano-layered Zr/Nb composites. Acta Mater 115:189–203
    [Google Scholar]
  35. 35.
    Martínez E, Caro A, Beyerlein IJ 2014. Atomistic modeling of defect-induced plasticity in CuNb nanocomposites. Phys. Rev. B 90:054103
    [Google Scholar]
  36. 36.
    Huang S, Beyerlein IJ, Zhou C. 2017. Nanograin size effects on the strength of biphase nanolayered composites. Sci. Rep. 7:11251
    [Google Scholar]
  37. 37.
    Embury J, Hirth J. 1994. On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall. Mater. 42:2051–56
    [Google Scholar]
  38. 38.
    Misra A, Hirth J, Hoagland R. 2005. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–24
    [Google Scholar]
  39. 39.
    Monclús MA, Zheng SJ, Mayeur JR, Beyerlein IJ, Mara NA et al. 2013. Optimum high temperature strength of two-dimensional nanocomposites. APL Mater. 1:052103
    [Google Scholar]
  40. 40.
    Snel J, Monclús MA, Castillo-Rodriguez M, Mara NA, Beyerlein IJ et al. 2017. Deformation mechanism map of Cu/Nb nanoscale metallic multilayers as a function of temperature and layer thickness. JOM 69:2214–26
    [Google Scholar]
  41. 41.
    Li N, Wang J, Misra A, Huang JY. 2012. Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18:1155–62
    [Google Scholar]
  42. 42.
    Jian W-R, Su Y, Xu S, Ji W, Beyerlein IJ 2021. Effect of interface structure on dislocation glide behavior in nanolaminates. J. Mater. Res. 36:2802–15
    [Google Scholar]
  43. 43.
    Hunter A, Leu B, Beyerlein IJ. 2018. A review of slip transfer: applications of mesoscale techniques. J. Mater. Sci. 53:5584–603
    [Google Scholar]
  44. 44.
    Zhang RF, Germann TC, Liu X-Y, Wang J, Beyerlein IJ 2014. Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater 79:74–83
    [Google Scholar]
  45. 45.
    Zeng Y, Hunter A, Beyerlein IJ, Koslowski M. 2016. A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces. Int. J. Plast. 79:293–313
    [Google Scholar]
  46. 46.
    Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara NA. 2013. Twinnability of bimetal interfaces in nanostructured composites. Mater. Res. Lett. 1:89–95
    [Google Scholar]
  47. 47.
    Wang J, Misra A. 2011. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15:20–28
    [Google Scholar]
  48. 48.
    Demkowicz MJ, Thilly L. 2011. Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation. Acta Mater 59:7744–56
    [Google Scholar]
  49. 49.
    Wang J, Kang K, Zhang RF, Zheng SJ, Beyerlein IJ, Mara NA. 2012. Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64:1208–17
    [Google Scholar]
  50. 50.
    Zhang RF, Germann TC, Wang J, Liu X-Y, Beyerlein IJ. 2013. Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: non-equilibrium molecular dynamics simulations. Scr. Mater. 68:114–17
    [Google Scholar]
  51. 51.
    Henager C Jr., Hoagland RG. 2004. A rebound mechanism for misfit dislocation creation in metallic nanolayers. Scr. Mater. 50:701–5
    [Google Scholar]
  52. 52.
    Mayeur JR, Beyerlein IJ, Bronkhorst CA, Mourad HM. 2015. Incorporating interface affected zones into crystal plasticity. Int. J. Plast. 65:206–25
    [Google Scholar]
  53. 53.
    Han WZ, Carpenter JS, Wang J, Beyerlein IJ, Mara NA. 2012. Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl. Phys. Lett. 100:011911
    [Google Scholar]
  54. 54.
    Mara NA, Bhattacharyya D, Hirth JP, Dickerson P, Misra A. 2010. Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97:021909
    [Google Scholar]
  55. 55.
    Nizolek T, Mara NA, Beyerlein IJ, Avallone JT, Pollock TM. 2015. Enhanced plasticity via kinking in cubic metallic nanolaminates. Adv. Eng. Mater. 17:781–85
    [Google Scholar]
  56. 56.
    Li N, Wang H, Misra A, Wang J. 2014. In situ nanoindentation study of plastic co-deformation in Al-TiN nanocomposites. Sci. Rep. 4:6633
    [Google Scholar]
  57. 57.
    Bhattacharyya D, Mara NA, Dickerson P, Hoagland RG, Misra A. 2011. Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater 59:3804–16
    [Google Scholar]
  58. 58.
    Wang J, Misra A. 2014. Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 18:19–28
    [Google Scholar]
  59. 59.
    Christensen N, Gorczyca I. 1993. Calculated structural phase transitions of aluminum nitride under pressure. Phys. Rev. B 47:4307
    [Google Scholar]
  60. 60.
    Talwar D, Sofranko D, Mooney C, Tallo S. 2002. Elastic, structural, bonding, and defect properties of zinc-blende BN, AlN, GaN, InN and their alloys. Mater. Sci. Eng. B 90:269–77
    [Google Scholar]
  61. 61.
    Li Z, Yadav S, Chen Y, Li N, Liu X-Y et al. 2017. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN. Mater. Res. Lett. 5:426–32
    [Google Scholar]
  62. 62.
    Chen Y, Li N, Hoagland R, Liu X-Y, Baldwin J et al. 2020. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater 199:593–601
    [Google Scholar]
  63. 63.
    Cheng JY, Xu S, Chen Y, Li Z, Baldwin JK et al. 2022. Simultaneous high-strength and deformable nanolaminates with thick biphase interfaces. Nano Lett 22:1897–904
    [Google Scholar]
  64. 64.
    Zhang J-W, Beyerlein IJ, Han W-Z. 2019. Hierarchical 3D nanolayered duplex-phase Zr with high strength, strain hardening, and ductility. Phys. Rev. Lett. 122:255501
    [Google Scholar]
  65. 65.
    Zhang J-W, Leu B, Kumar MA, Beyerlein IJ, Han W-Z. 2020. Twin hopping in nanolayered Zr–2.5 Nb. Mater. Res. Lett. 8:307–13
    [Google Scholar]
  66. 66.
    Li L-L, Su Y, Beyerlein IJ, Han W-Z. 2020. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe-Al alloys. Sci. Adv. 6:eabb6658
    [Google Scholar]
  67. 67.
    Misra A, Göken M, Mara NA, Beyerlein IJ. 2021. Hierarchical and heterogeneous multiphase metallic nanomaterials and laminates. MRS Bull 46:236–43
    [Google Scholar]
  68. 68.
    Lu L, Wu X, Beyerlein IJ. 2020. Preface to the viewpoint set on: heterogeneous gradient and laminated materials. Scr. Mater. 187:307–8
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081320-031236
Loading
/content/journals/10.1146/annurev-matsci-081320-031236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error