1932

Abstract

The development of inexpensive batteries based on magnesium (Mg) chemistry will contribute remarkably toward developing high-energy-density storage systems that can be used worldwide. Significant challenges remain in developing practical Mg batteries, the chief of which is designing materials that can provide facile transport of Mg. In this review, we cover the experimental and theoretical methods that can be used to quantify Mg mobility in a variety of host frameworks, the specific transport quantities that each technique is designed to measure or calculate, and some practical examples of their applications. We then list the unique challenges faced by different experimental and computational techniques in probing Mg ion transport in materials. This review concludes with an outlook on the directions that the scientific community could soon pursue as we strive to construct a pragmatic Mg battery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081420-041617
2022-07-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081420-041617.html?itemId=/content/journals/10.1146/annurev-matsci-081420-041617&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nykvist B, Nilsson M. 2015. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5:4329–32
    [Google Scholar]
  2. 2.
    Crabtree G. 2015. Perspective: the energy-storage revolution. Nature 526:7575S92
    [Google Scholar]
  3. 3.
    Yaghoobnejad Asl H, Manthiram A 2021. Toward sustainable batteries. Nat. Sustain. 4:5379–80
    [Google Scholar]
  4. 4.
    Bourzac K. 2015. Batteries: 4 big questions. Nature 526:7575S105
    [Google Scholar]
  5. 5.
    Jung R, Metzger M, Maglia F, Stinner C, Gasteiger HA. 2017. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164:7A1361–77
    [Google Scholar]
  6. 6.
    Olivetti EA, Ceder G, Gaustad GG, Fu X. 2017. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1:2229–43
    [Google Scholar]
  7. 7.
    Muldoon J, Bucur CB, Gregory T. 2014. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114:2311683–720
    [Google Scholar]
  8. 8.
    Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M et al. 2017. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117:54287–341
    [Google Scholar]
  9. 9.
    Arroyo-de Dompablo ME, Ponrouch A, Johansson P, Palacín MR. 2020. Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120:146331–57
    [Google Scholar]
  10. 10.
    Davidson R, Verma A, Santos D, Hao F, Fincher C et al. 2019. Formation of magnesium dendrites during electrodeposition. ACS Energy Lett 4:2375–76
    [Google Scholar]
  11. 11.
    Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N et al. 2016. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116:1140–62
    [Google Scholar]
  12. 12.
    Logan ER, Dahn JR. 2020. Electrolyte design for fast-charging Li-ion batteries. Trends Chem 2:4354–66
    [Google Scholar]
  13. 13.
    Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. 2016. Interface stability in solid-state batteries. Chem. Mater. 28:1266–73
    [Google Scholar]
  14. 14.
    Janek J, Zeier WG. 2016. A solid future for battery development. Nat. Energy 1:916141
    [Google Scholar]
  15. 15.
    Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. 2019. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18:121278–91
    [Google Scholar]
  16. 16.
    Xiao Y, Wang Y, Bo S-H, Kim JC, Miara LJ, Ceder G. 2020. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5:2105–26
    [Google Scholar]
  17. 17.
    Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M et al. 2012. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5:35941–50
    [Google Scholar]
  18. 18.
    Canepa P, Gautam GS, Malik R, Jayaraman S, Rong Z et al. 2015. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes. Chem. Mater. 27:93317–25
    [Google Scholar]
  19. 19.
    Canepa P, Jayaraman S, Cheng L, Rajput NN, Richards WD et al. 2015. Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries. Energy Environ. Sci. 8:123718–30
    [Google Scholar]
  20. 20.
    Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M et al. 2015. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27:176016–21
    [Google Scholar]
  21. 21.
    Gautam GS, Canepa P, Malik R, Liu M, Persson K, Ceder G. 2015. First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 51:7113619–22
    [Google Scholar]
  22. 22.
    Liu M, Rong Z, Malik R, Canepa P, Jain A et al. 2015. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8:3964–74
    [Google Scholar]
  23. 23.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H et al. 2000. Prototype systems for rechargeable magnesium batteries. Nature 407:6805724–27
    [Google Scholar]
  24. 24.
    Gershinsky G, Yoo HD, Gofer Y, Aurbach D. 2013. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29:3410964–72
    [Google Scholar]
  25. 25.
    Sai Gautam G, Canepa P, Abdellahi A, Urban A, Malik R, Ceder G 2015. The intercalation phase diagram of Mg in V2O5 from first-principles. Chem. Mater. 27:103733–42
    [Google Scholar]
  26. 26.
    Attias R, Salama M, Hirsch B, Pant R, Gofer Y, Aurbach D. 2019. Anion effects on cathode electrochemical activity in rechargeable magnesium batteries: a case study of V2O5. ACS Energy Lett 4:1209–14
    [Google Scholar]
  27. 27.
    Yoo HD, Jokisaari JR, Yu Y-S, Kwon BJ, Hu L et al. 2019. Intercalation of magnesium into a layered vanadium oxide with high capacity. ACS Energy Lett 4:71528–34
    [Google Scholar]
  28. 28.
    Sun X, Bonnick P, Duffort V, Liu M, Rong Z et al. 2016. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9:72273–77
    [Google Scholar]
  29. 29.
    Sun X, Bonnick P, Nazar LF. 2016. Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett 1:1297–301
    [Google Scholar]
  30. 30.
    Bonnick P, Sun X, Lau K-C, Liao C, Nazar LF. 2017. Monovalent versus divalent cation diffusion in thiospinel Ti2S4. J. Phys. Chem. Lett. 8:102253–57
    [Google Scholar]
  31. 31.
    Emly A, Van der Ven A. 2015. Mg intercalation in layered and spinel host crystal structures for Mg batteries. Inorg. Chem. 54:94394–402
    [Google Scholar]
  32. 32.
    Kolli SK, Van der Ven A. 2018. First-principles study of spinel MgTiS2 as a cathode material. Chem. Mater. 30:72436–42
    [Google Scholar]
  33. 33.
    Chen T, Sai Gautam G, Huang W, Ceder G 2018. First-principles study of the voltage profile and mobility of Mg intercalation in a chromium oxide spinel. Chem. Mater. 30:1153–62
    [Google Scholar]
  34. 34.
    Hannah DC, Sai Gautam G, Canepa P, Rong Z, Ceder G 2017. Magnesium ion mobility in post-spinels accessible at ambient pressure. Chem. Commun. 53:375171–74
    [Google Scholar]
  35. 35.
    Arthur TS, Zhang R, Ling C, Glans P-A, Fan X et al. 2014. Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. ACS Appl. Mater. Interfaces 6:107004–8
    [Google Scholar]
  36. 36.
    Zhang R, Yu X, Nam K-W, Ling C, Arthur TS et al. 2012. α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23:110–13
    [Google Scholar]
  37. 37.
    Kim C, Phillips PJ, Key B, Yi T, Nordlund D et al. 2015. Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv. Mater. 27:223377–84
    [Google Scholar]
  38. 38.
    Sai Gautam G, Canepa P, Urban A, Bo S-H, Ceder G 2017. Influence of inversion on Mg mobility and electrochemistry in spinels. Chem. Mater. 29:187918–30
    [Google Scholar]
  39. 39.
    Bayliss RD, Key B, Sai Gautam G, Canepa P, Kwon BJ et al. 2020. Probing Mg migration in spinel oxides. Chem. Mater. 32:2663–70
    [Google Scholar]
  40. 40.
    Forero-Saboya J, Davoisne C, Dedryvère R, Yousef I, Canepa P, Ponrouch A. 2020. Understanding the nature of the passivation layer enabling reversible calcium plating. Energy Environ. Sci. 13:103423–31
    [Google Scholar]
  41. 41.
    Sai Gautam G, Canepa P, Richards WD, Malik R, Ceder G 2016. Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5. Nano Lett 16:42426–31
    [Google Scholar]
  42. 42.
    Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. 2016. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1:1016119
    [Google Scholar]
  43. 43.
    Chen T, Sai Gautam G, Canepa P 2019. Ionic transport in potential coating materials for Mg batteries. Chem. Mater. 31:198087–99
    [Google Scholar]
  44. 44.
    Chen T, Ceder G, Sai Gautam G, Canepa P 2019. Evaluation of Mg compounds as coating materials in Mg batteries. Front. Chem. 7:24
    [Google Scholar]
  45. 45.
    Lu W, Wang J, Sai Gautam G, Canepa P 2021. Searching ternary oxides and chalcogenides as positive electrodes for calcium batteries. Chem. Mater. 33:145809–21
    [Google Scholar]
  46. 46.
    Canepa P, Bo S-H, Sai Gautam G, Key B, Richards WD et al. 2017. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8:11759
    [Google Scholar]
  47. 47.
    Canepa P, Sai Gautam G, Broberg D, Bo S-H, Ceder G 2017. Role of point defects in spinel Mg chalcogenide conductors. Chem. Mater. 29:229657–67
    [Google Scholar]
  48. 48.
    Wang L-P, Zhao-Karger Z, Klein F, Chable J, Braun T et al. 2019. MgSc2Se4—a magnesium solid ionic conductor for all-solid-state Mg batteries?. ChemSusChem 12:102286–93
    [Google Scholar]
  49. 49.
    Gorai P, Famprikis T, Gill BS, Stevanovic V, Canepa P. 2021. The devil is in the defects: electronic conductivity in solid electrolytes. Chem. Mater. 33:187484–98
    [Google Scholar]
  50. 50.
    Fick DA. 1855. V. On liquid diffusion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 10:6330–39
    [Google Scholar]
  51. 51.
    Fick A. 1855. Ueber Diffusion. Ann. Phys. 170:159–86
    [Google Scholar]
  52. 52.
    Balluffi RW, Allen SM, Carter WC. 2005. Atomic models for diffusion. Kinetics of Materials145–61 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  53. 53.
    Van der Ven A, Ceder G, Asta M, Tepesch PD. 2001. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64:18184307
    [Google Scholar]
  54. 54.
    Holstein T. 1959. Studies of polaron motion. Ann. Phys. 8:3343–89
    [Google Scholar]
  55. 55.
    Reticcioli M, Diebold U, Kresse G, Franchini C 2019. Small polarons in transition metal oxides. Handbook of Materials Modeling W Andreoni, S Yip 1–39 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  56. 56.
    Maxisch T, Zhou F, Ceder G. 2006. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 73:10104301
    [Google Scholar]
  57. 57.
    Van der Ven A, Aydinol MK, Ceder G, Kresse G, Hafner J. 1998. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58:62975–87
    [Google Scholar]
  58. 58.
    Amores M, Ashton TE, Baker PJ, Cussen EJ, Corr SA. 2016. Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy. J. Mater. Chem. A 4:51729–36
    [Google Scholar]
  59. 59.
    Månsson M, Sugiyama J. 2013. Muon-spin relaxation study on Li- and Na-diffusion in solids. Phys. Scr. 88:6068509
    [Google Scholar]
  60. 60.
    McClelland I, Booth SG, El-Shinawi H, Johnston BIJ, Clough J et al. 2021. In situ diffusion measurements of a NASICON-structured all-solid-state battery using muon spin relaxation. ACS Appl. Energy Mater. 4:21527–36
    [Google Scholar]
  61. 61.
    Powell AS, Lord JS, Gregory DH, Titman JJ. 2009. Muon spin relaxation studies of lithium nitridometallate battery materials: muon trapping and lithium ion diffusion. J. Phys. Chem. C 113:4820758–63
    [Google Scholar]
  62. 62.
    Bée M. 2003. Localized and long-range diffusion in condensed matter: state of the art of QENS studies and future prospects. Chem. Phys. 292:2–3121–41
    [Google Scholar]
  63. 63.
    Nozaki H, Harada M, Ohta S, Watanabe I, Miyake Y et al. 2014. Li diffusive behavior of garnet-type oxides studied by muon-spin relaxation and QENS. Solid State Ion 262:585–88
    [Google Scholar]
  64. 64.
    Kulkarni NS, Bruce Warmack RJ, Radhakrishnan B, Hunter JL, Sohn Y et al. 2014. Overview of SIMS-based experimental studies of tracer diffusion in solids and application to Mg self-diffusion. J. Phase Equilib. Diffus. 35:6762–78
    [Google Scholar]
  65. 65.
    Kuwata N, Hasegawa G, Maeda D, Ishigaki N, Miyazaki T, Kawamura J. 2020. Tracer diffusion coefficients of Li ions in LixMn2O4 thin films observed by isotope exchange secondary ion mass spectrometry. J. Phys. Chem. C 124:4222981–92
    [Google Scholar]
  66. 66.
    Masuda H, Ishida N, Ogata Y, Ito D, Fujita D. 2018. In situ visualization of Li concentration in all-solid-state lithium ion batteries using time-of-flight secondary ion mass spectrometry. J. Power Sourc. 400:527–32
    [Google Scholar]
  67. 67.
    Macdonald JR, Johnson WB 2005. Fundamentals of impedance spectroscopy. Impedance Spectroscopy E Barsoukov, JR Macdonald 1–26 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  68. 68.
    Halim ZA, Adnan SBRS, Mohamed NS. 2016. Effect of sintering temperature on the structural, electrical and electrochemical properties of novel Mg0.5Si2 (PO4)3 ceramic electrolytes. Ceram. Int. 42:34452–61
    [Google Scholar]
  69. 69.
    Masquelier C, Croguennec L. 2013. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113:86552–91
    [Google Scholar]
  70. 70.
    Anuar NK, Adnan SBRS, Mohamed NS. 2014. Characterization of Mg0.5Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries. Ceram. Int. 40:813719–27
    [Google Scholar]
  71. 71.
    Fleig J. 2003. Microelectrodes in solid state ionics. Solid State Ion. 161:3–4279–89
    [Google Scholar]
  72. 72.
    Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S et al. 2016. A microcontact impedance study on NASICON-type Li1+xAlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) single crystals. J. Mater. Chem. A 4:41506–13
    [Google Scholar]
  73. 73.
    Jamnik J, Maier J. 2001. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3:91668–78
    [Google Scholar]
  74. 74.
    Bachman JC, Muy S, Grimaud A, Chang H, Pour N et al. 2016. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116:1140–62
    [Google Scholar]
  75. 75.
    Gao Y, Nolan AM, Du P, Wu Y, Yang C et al. 2020. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120:135954–6008
    [Google Scholar]
  76. 76.
    Anuar NK, Adnan SBRS, Jaafar MH, Mohamed NS. 2016. Studies on structural and electrical properties of Mg0.5+y (Zr2-yFey)2(PO4)3 ceramic electrolytes. Ionics 22:71125–33
    [Google Scholar]
  77. 77.
    Anuar NK, Mohamed NS. 2016. Structural and electrical properties of novel Mg0.9+0.5y Zn0.4AlyZr1.6−y (PO4)3 ceramic electrolytes synthesized via nitrate sol-gel method. J. Sol-Gel Sci. Technol. 80:2249–58
    [Google Scholar]
  78. 78.
    Deng Z, Sai Gautam G, Kolli SK, Chotard J-N, Cheetham AK et al. 2020. Phase behavior in rhombohedral NaSiCON electrolytes and electrodes. Chem. Mater. 32:187908–20
    [Google Scholar]
  79. 79.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R et al. 2011. A lithium superionic conductor. Nat. Mater. 10:9682–86
    [Google Scholar]
  80. 80.
    Hamao N, Kataoka K, Kijima N, Akimoto J. 2016. Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li7−xLa3Zr2−xTaxO12 (0 ≤ x ≤ 0.6). J. Ceram. Soc. Jpn. 124:6678–83
    [Google Scholar]
  81. 81.
    Bloembergen N, Purcell EM, Pound RV. 1948. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73:7679–712
    [Google Scholar]
  82. 82.
    Posch P, Lunghammer S, Berendts S, Ganschow S, Redhammer GJ et al. 2020. Ion dynamics in Al-stabilized Li7La3Zr2O12 single crystals – macroscopic transport and the elementary steps of ion hopping. Energy Storage Mater 24:220–28
    [Google Scholar]
  83. 83.
    Bottke P, Rettenwander D, Schmidt W, Amthauer G, Wilkening M. 2015. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12. Chem. Mater. 27:196571–82
    [Google Scholar]
  84. 84.
    Epp V, Gün Ö, Deiseroth H-J, Wilkening M. 2013. Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J. Phys. Chem. Lett. 4:132118–23
    [Google Scholar]
  85. 85.
    Burankova T, Roedern E, Maniadaki AE, Hagemann H, Rentsch D et al. 2018. Dynamics of the coordination complexes in a solid-state Mg electrolyte. J. Phys. Chem. Lett. 9:226450–55
    [Google Scholar]
  86. 86.
    Heere M, Hansen A-L, Payandeh S, Aslan N, Gizer G et al. 2020. Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors. Sci. Rep. 10:19080
    [Google Scholar]
  87. 87.
    Sears VF. 1992. Neutron scattering lengths and cross sections. Neutron News 3:326–37
    [Google Scholar]
  88. 88.
    Skripov AV, Soloninin AV, Ley MB, Jensen TR, Filinchuk Y. 2013. Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl. J. Phys. Chem. C 117:2914965–72
    [Google Scholar]
  89. 89.
    Weppner W, Huggins RA. 1977. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124:101569–78
    [Google Scholar]
  90. 90.
    Bonnick P, Blanc L, Vajargah SH, Lee C-W, Sun X et al. 2018. Insights into Mg2+ intercalation in a zero-strain material: thiospinel MgxZr2S4. Chem. Mater. 30:144683–93
    [Google Scholar]
  91. 91.
    Arbi K, Hoelzel M, Kuhn A, García-Alvarado F, Sanz J. 2013. Structural factors that enhance lithium mobility in fast-ion Li1+xTi2-xAlx(PO4)3 (0 ≤ x ≤ 0.4) conductors investigated by neutron diffraction in the temperature range 100–500 K. Inorg. Chem. 52:169290–96
    [Google Scholar]
  92. 92.
    Pérez-Estébanez M, Isasi-Marín J, Többens DM, Rivera-Calzada A, León C. 2014. A systematic study of Nasicon-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion 266:1–8
    [Google Scholar]
  93. 93.
    Bo S-H, Grey CP, Khalifah PG. 2015. Defect-tolerant diffusion channels for Mg2+ ions in ribbon-type borates: structural insights into potential battery cathodes MgVBO4 and MgxFe2−xB2O5. Chem. Mater. 27:134630–39
    [Google Scholar]
  94. 94.
    Yin L, Kwon BJ, Choi Y, Bartel CJ, Yang M et al. 2021. Operando X-ray diffraction studies of the Mg-ion migration mechanisms in spinel cathodes for rechargeable Mg-ion batteries. J. Am. Chem. Soc. 143:2810649–58
    [Google Scholar]
  95. 95.
    Jónsson H, Mills G, Jacobsen KW 1998. Nudged elastic band method for finding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase Simulations BJ Berne, G Ciccotti, DF Coker 385–404 Singapore: World Sci.
    [Google Scholar]
  96. 96.
    Henkelman G, Uberuaga BP, Jónsson H. 2000. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113:229901–4
    [Google Scholar]
  97. 97.
    Van der Ven A, Ceder G, Asta M, Tepesch PD. 2001. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64:18184307
    [Google Scholar]
  98. 98.
    Van der Ven A, Bhattacharya J, Belak AA. 2013. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46:51216–25
    [Google Scholar]
  99. 99.
    He X, Zhu Y, Epstein A, Mo Y. 2018. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. NPJ Comput. Mater. 4:118
    [Google Scholar]
  100. 100.
    Frenkel D, Smit B. 2002. Understanding Molecular Simulation San Diego, CA: Acad. Press
  101. 101.
    Car R, Parrinello M. 1985. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55:222471–74
    [Google Scholar]
  102. 102.
    Mo Y, Ong SP, Ceder G. 2012. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24:115–17
    [Google Scholar]
  103. 103.
    He X, Zhu Y, Mo Y. 2017. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8:115893
    [Google Scholar]
  104. 104.
    Materzanini G, Kahle L, Marcolongo A, Marzari N. 2021. High Li-ion conductivity in tetragonal LGPO: a comparative first-principles study against known LISICON and LGPS phases. Phys. Rev. Mater. 5:3035408
    [Google Scholar]
  105. 105.
    Lewis GV, Catlow CRA. 1985. Potential models for ionic oxides. J. Phys. C 18:61149–61
    [Google Scholar]
  106. 106.
    Ercolessi F, Adams JB. 1994. Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26:8583–88
    [Google Scholar]
  107. 107.
    Wang C, Aoyagi K, Wisesa P, Mueller T. 2020. Lithium ion conduction in cathode coating materials from on-the-fly machine learning. Chem. Mater. 32:93741–52
    [Google Scholar]
  108. 108.
    Artrith N, Urban A. 2016. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput. Mater. Sci. 114:135–50
    [Google Scholar]
  109. 109.
    Artrith N, Behler J. 2012. High-dimensional neural network potentials for metal surfaces: a prototype study for copper. Phys. Rev. B 85:4045439
    [Google Scholar]
  110. 110.
    Artrith N, Urban A, Ceder G. 2017. Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys. Rev. B 96:1014112
    [Google Scholar]
  111. 111.
    Shapeev AV. 2016. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14:31153–73
    [Google Scholar]
  112. 112.
    Zuo Y, Chen C, Li X, Deng Z, Chen Y et al. 2020. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124:4731–45
    [Google Scholar]
  113. 113.
    Bartók AP, Payne MC, Kondor R, Csányi G. 2010. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104:13136403
    [Google Scholar]
  114. 114.
    Thompson AP, Swiler LP, Trott CR, Foiles SM, Tucker GJ. 2015. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285:316–30
    [Google Scholar]
  115. 115.
    Behler J, Parrinello M. 2007. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98:14146401
    [Google Scholar]
  116. 116.
    Rong Z, Kitchaev D, Canepa P, Huang W, Ceder G. 2016. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. J. Chem. Phys. 145:7074112
    [Google Scholar]
  117. 117.
    Bölle FT, Mathiesen NR, Nielsen AJ, Vegge T, Garcia-Lastra JM, Castelli IE. 2020. Autonomous discovery of materials for intercalation electrodes. Batter. Supercaps 3:6488–98
    [Google Scholar]
  118. 118.
    Chang JH, Jørgensen PB, Loftager S, Bhowmik A, Lastra JMG, Vegge T. 2021. On-the-fly assessment of diffusion barriers of disordered transition metal oxyfluorides using local descriptors. Electrochim. Acta 388:138551
    [Google Scholar]
  119. 119.
    Bortz AB, Kalos MH, Lebowitz JL. 1975. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17:110–18
    [Google Scholar]
  120. 120.
    Van der Ven A, Thomas JC, Puchala B, Natarajan AR. 2018. First-principles statistical mechanics of multicomponent crystals. Annu. Rev. Mater. Res. 48:27–55
    [Google Scholar]
  121. 121.
    Sanchez JM, Ducastelle F, Gratias D. 1984. Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Appl. 128:1–2334–50
    [Google Scholar]
  122. 122.
    Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M et al. 2015. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27:176016–21
    [Google Scholar]
  123. 123.
    Canepa P, Bo S-H, Sai Gautam G, Key B, Richards WD et al. 2017. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8:11759
    [Google Scholar]
  124. 124.
    Koettgen J, Bartel CJ, Ceder G. 2020. Computational investigation of chalcogenide spinel conductors for all-solid-state Mg batteries. Chem. Commun. 56:131952–55
    [Google Scholar]
  125. 125.
    Dillenz M, Sotoudeh M, Euchner H, Groß A. 2020. Screening of charge carrier migration in the MgSc2Se4 spinel structure. Front. Energy Res. 8:584654
    [Google Scholar]
  126. 126.
    Han F, Westover AS, Yue J, Fan X, Wang F et al. 2019. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4:3187–96
    [Google Scholar]
  127. 127.
    Huggins RA. 2002. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics 8:3–4300–13
    [Google Scholar]
  128. 128.
    Ohno S, Bernges T, Buchheim J, Duchardt M, Hatz A-K et al. 2020. How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study. ACS Energy Lett 5:3910–15
    [Google Scholar]
  129. 129.
    Gao Y, Li N, Wu Y, Yang W, Bo S 2021. Rethinking the design of ionic conductors using Meyer–Neldel–conductivity plot. Adv. Energy Mater. 11:132100325
    [Google Scholar]
  130. 130.
    Metselaar R, Oversluizen G. 1984. The Meyer-Neldel rule in semiconductors. J. Solid State Chem. 55:3320–26
    [Google Scholar]
  131. 131.
    Wilkening M, Heitjans P. 2012. From micro to macro: access to long-range Li+ diffusion parameters in solids via microscopic 6, 7Li spin-alignment echo NMR spectroscopy. ChemPhysChem 13:153–65
    [Google Scholar]
  132. 132.
    Holmes L, Peng L, Heinmaa I, O'Dell LA, Smith ME et al. 2008. Variable-temperature 17O NMR study of oxygen motion in the anionic conductor Bi26Mo10O69. Chem. Mater. 20:113638–48
    [Google Scholar]
  133. 133.
    Halat DM, Dunstan MT, Gaultois MW, Britto S, Grey CP. 2018. Study of defect chemistry in the system La2-xSrxNiO4+δ by 17O solid-state NMR spectroscopy and Ni K-edge XANES. Chem. Mater. 30:144556–70
    [Google Scholar]
  134. 134.
    Kim G, Griffin JM, Blanc F, Haile SM, Grey CP. 2015. Characterization of the dynamics in the protonic conductor CsH2PO4 by 17O solid-state NMR spectroscopy and first-principles calculations: correlating phosphate and protonic motion. J. Am. Chem. Soc. 137:113867–76
    [Google Scholar]
  135. 135.
    Kim G, Blanc F, Hu Y-Y, Grey CP. 2013. Understanding the conduction mechanism of the protonic conductor CsH2PO4 by solid-state NMR spectroscopy. J. Phys. Chem. C 117:136504–15
    [Google Scholar]
  136. 136.
    Stone NJ. 2016. Table of nuclear electric quadrupole moments. At. Data Nucl. Data Tables 111–112:1–28
    [Google Scholar]
  137. 137.
    Dupree R, Smith ME. 1988. Solid-state magnesium-25 n.m.r. spectroscopy. J. Chem. Soc. Chem. Commun. 22:1483–85
    [Google Scholar]
  138. 138.
    Freitas JCC, Smith ME. 2012. Recent advances in solid-state 25Mg NMR spectroscopy. Annual Reports on NMR Spectroscopy, Vol. 7525–114 Oxford, UK: Acad. Press
    [Google Scholar]
  139. 139.
    Barnes TA, Wan LF, Kent PRC, Prendergast D. 2018. Hybrid DFT investigation of the energetics of Mg ion diffusion in α-MoO3. Phys. Chem. Chem. Phys. 20:3824877–84
    [Google Scholar]
  140. 140.
    McColl K, Corà F. 2019. Mg2+ storage and mobility in anatase TiO2: the role of frustrated coordination. J. Mater. Chem. A 7:83704–13
    [Google Scholar]
  141. 141.
    McColl K, Corà F. 2019. Phase stability of intercalated V2O5 battery cathodes elucidated through the Goldschmidt tolerance factor. Phys. Chem. Chem. Phys. 21:157732–44
    [Google Scholar]
  142. 142.
    Dawson JA, Canepa P, Famprikis T, Masquelier C, Islam MS. 2018. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 140:1362–68
    [Google Scholar]
  143. 143.
    Dawson JA, Canepa P, Clarke MJ, Famprikis T, Ghosh D, Islam MS. 2019. Toward understanding the different influences of grain boundaries on ion transport in sulfide and oxide solid electrolytes. Chem. Mater. 31:145296–304
    [Google Scholar]
  144. 144.
    Butler KT, Sai Gautam G, Canepa P 2019. Designing interfaces in energy materials applications with first-principles calculations. NPJ Comput. Mater. 5:119
    [Google Scholar]
  145. 145.
    Mueller T, Hernandez A, Wang C. 2020. Machine learning for interatomic potential models. J. Chem. Phys. 152:5050902
    [Google Scholar]
  146. 146.
    Caro MA. 2019. Optimizing many-body atomic descriptors for enhanced computational performance of machine learning based interatomic potentials. Phys. Rev. B 100:2024112
    [Google Scholar]
  147. 147.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD et al. 2013. The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:1011002
    [Google Scholar]
  148. 148.
    Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. 2013. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65:111501–9
    [Google Scholar]
  149. 149.
    Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW et al. 2015. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1:115010
    [Google Scholar]
  150. 150.
    Jaschin PW, Gao Y, Li Y, Bo S-H. 2020. A materials perspective on magnesium-ion-based solid-state electrolytes. J. Mater. Chem. A 8:62875–97
    [Google Scholar]
  151. 151.
    Mohtadi R, Matsui M, Arthur TS, Hwang S-J. 2012. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51:399780–83
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081420-041617
Loading
/content/journals/10.1146/annurev-matsci-081420-041617
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error