1932

Abstract

Lithium garnet oxides are a family of fast-ion conductors with appreciable lithium ionic conductivity in the solid state, making them promising candidates as electrolytes for all-solid-state batteries. In their structures, lithium is partially (along with vacancy) distributed among more than one crystallographically distinct sites, just as with other fast-ion conductors. This disorder has a great influence on lithium's transport properties such as diffusivity and ionic conductivity. We review atomistic simulation studies in conjunction with complementary experimental investigations, which offer atomic-scale visualization of and insight into lithium transport phenomena in lithium garnet oxides.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-115334
2022-07-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-115334.html?itemId=/content/journals/10.1146/annurev-matsci-081720-115334&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Knauth P, Tuller HL. 2002. Solid-state ionics: roots, status, and future prospects. J. Am. Ceram. Soc. 85:1654–80
    [Google Scholar]
  2. 2.
    Kim S, Yamaguchi S, Elliott JA. 2009. Solid-state ionics in the 21st century: current status and future prospects. MRS Bull 34:900–6
    [Google Scholar]
  3. 3.
    Waser R, Aono M. 2007. Nanoionics-based resistive switching memories. Nat. Mater. 6:833–40
    [Google Scholar]
  4. 4.
    Faraday M. 1833. On conducting power generally. Experimental Researches in Electricity, Series IV119–26 London: R. Inst.
    [Google Scholar]
  5. 5.
    Faraday M. 1839. Effect of heat on conduction. Experimental Researches in Electricity, Series XII436–50 London: R. Inst.
    [Google Scholar]
  6. 6.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY. 1989. Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2–X(PO4)3, M = Al, Sc, Y, and La) systems. J. Electrochem. Soc 136:590
    [Google Scholar]
  7. 7.
    Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T et al. 1993. High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–93
    [Google Scholar]
  8. 8.
    Kanno R, Maruyama M. 2001. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148:A742–46
    [Google Scholar]
  9. 9.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R et al. 2011. A lithium superionic conductor. Nat. Mater. 10:682–86
    [Google Scholar]
  10. 10.
    Thangadurai V, Kaack H, Weppner WJF. 2003. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86:437–40
    [Google Scholar]
  11. 11.
    Murugan R, Thangadurai V, Weppner W. 2007. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46:7778–81
    [Google Scholar]
  12. 12.
    Thangadurai V, Narayanan S, Pinzaru D. 2014. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43:4714–27
    [Google Scholar]
  13. 13.
    Wang CW, Fu K, Kammampata SP, McOwen DW, Samson AJ et al. 2020. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120:4257–300
    [Google Scholar]
  14. 14.
    Cussen EJ. 2010. Structure and ionic conductivity in lithium garnets. J. Mater. Chem. 20:5167–73
    [Google Scholar]
  15. 15.
    Klenk MJ, Boeberitz SE, Dai J, Jalarvo NH, Peterson VK, Lai W. 2017. Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a combined quasi-elastic neutron scattering and molecular dynamics study. Solid State Ion. 312:1–7
    [Google Scholar]
  16. 16.
    Wang Y, Klenk M, Page K, Lai W 2014. Local structure and dynamics of lithium garnet ionic conductors: a model material Li5La3Ta2O12. Chem. Mater. 26:5613–24
    [Google Scholar]
  17. 17.
    Burbano M, Carlier D, Boucher F, Morgan BJ, Salanne M. 2016. Sparse cyclic excitations explain the low ionic conductivity of stoichiometric Li7La3Zr2O12. Phys. Rev. Lett. 116:135901
    [Google Scholar]
  18. 18.
    Klenk M, Lai W. 2015. Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O12. Phys. Chem. Chem. Phys. 17:8758–68
    [Google Scholar]
  19. 19.
    Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y, Akimoto J. 2011. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett. 40:60–62
    [Google Scholar]
  20. 20.
    Xie H, Alonso JA, Li YT, Fernandez-Diaz MT, Goodenough JB 2011. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem. Mater. 23:3587–89
    [Google Scholar]
  21. 21.
    O'Callaghan MP, Cussen EJ 2007. Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3-xTa2O12 (0 < x ≤ 1.6). Chem. Commun. 2007 2048–50
    [Google Scholar]
  22. 22.
    Wang YX, Huq A, Lai W 2014. Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 (x = 0–2) series. Solid State Ion 255:39–49
    [Google Scholar]
  23. 23.
    Chen F, Li JY, Huang ZF, Yang Y, Shen Q, Zhang LM. 2018. Origin of the phase transition in lithium garnets. J. Phys. Chem. C 122:1963–72
    [Google Scholar]
  24. 24.
    Meier K, Laino T, Curioni A. 2014. Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. J. Phys. Chem. C 118:6668–79
    [Google Scholar]
  25. 25.
    Thangadurai V, Adams S, Weppner W 2004. Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3M2O12 (M = Nb, Ta) oxides. Chem. Mater. 16:2998–3006
    [Google Scholar]
  26. 26.
    Hyooma H, Hayashi K 1988. Crystal structures of La3Li5M2O12 (M = Nb, Ta). Mater. Res. Bull. 23:1399–407
    [Google Scholar]
  27. 27.
    Wagner R, Redhammer GJ, Rettenwander D, Senyshyn A, Schmidt W et al. 2016. Crystal structure of garnet-related Li-ion conductor Li7–3xGaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification?. Chem. Mater. 28:1861–71
    [Google Scholar]
  28. 28.
    Kataoka K. 2020. Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications. J. Ceram. Soc. Jpn. 128:7–18
    [Google Scholar]
  29. 29.
    Kozinsky B, Akhade SA, Hirel P, Hashibon A, Elsasser C et al. 2016. Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes. Phys. Rev. Lett. 116:055901
    [Google Scholar]
  30. 30.
    Redhammer GJ, Meven M, Ganschow S, Tippelt G, Rettenwander D. 2021. Single-crystal neutron and X-ray diffraction study of garnet-type solid-state electrolyte Li6La3ZrTaO12: an in situ temperature-dependence investigation (2.5 ≤ T ≤ 873 K). Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 77:123–30
    [Google Scholar]
  31. 31.
    Dai J, Chen Q, Glossmann T, La W 2019. Comparison of interatomic potential models on the molecular dynamics simulation of fast-ion conductors: a case study of a Li garnet oxide Li7La3Zr2O12. Comput. Mater. Sci. 162:333–39
    [Google Scholar]
  32. 32.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE et al. 2008. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100:136406
    [Google Scholar]
  33. 33.
    Klenk MJ, Lai W. 2017. Effect of exchange-correlation functionals on the density functional theory simulation of phase transformation of fast-ion conductors: a case study in the Li garnet oxide Li7La3Zr2O12. Comput. Mater. Sci. 134:132–36
    [Google Scholar]
  34. 34.
    Kresse G, Hafner J. 1993. Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47:558–61
    [Google Scholar]
  35. 35.
    Kresse G, Hafner J. 1994. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49:14251–69
    [Google Scholar]
  36. 36.
    Kresse G, Furthmuller J. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54:11169–86
    [Google Scholar]
  37. 37.
    Kresse G, Furthmuller J. 1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6:15–50
    [Google Scholar]
  38. 38.
    Perdew JP, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  39. 39.
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  40. 40.
    Mattsson AE, Armiento R, Paier J, Kresse G, Wills JM, Mattsson TR. 2008. The AM05 density functional applied to solids. J. Chem. Phys. 128:084714
    [Google Scholar]
  41. 41.
    Sun JW, Haunschild R, Xiao B, Bulik IW, Scuseria GE, Perdew JP. 2013. Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence. J. Chem. Phys. 138:044113
    [Google Scholar]
  42. 42.
    Mottet M, Marcolongo A, Laino T, Tavernelli I. 2019. Doping in garnet-type electrolytes: kinetic and thermodynamic effects from molecular dynamics simulations. Phys. Rev. Mater. 3:035403
    [Google Scholar]
  43. 43.
    Adams S, Rao RP. 2012. Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25). J. Mater. Chem. 22:1426–34
    [Google Scholar]
  44. 44.
    Shan TR, Devine BD, Kemper TW, Sinnott SB, Phillpot SR. 2010. Charge-optimized many-body potential for the hafnium/hafnium oxide system. Phys. Rev. B 81:125328
    [Google Scholar]
  45. 45.
    Jalem R, Rushton MJD, Manalastas W, Nakayama M, Kasuga T et al. 2015. Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chem. Mater 27:2821–31
    [Google Scholar]
  46. 46.
    Klenk MJ, Lai W 2016. Finite-size effects on the molecular dynamics simulation of fast-ion conductors: a case study of lithium garnet oxide Li7La3Zr2O12. Solid State Ion. 289:143–49
    [Google Scholar]
  47. 47.
    Shiiba H, Zettsu N, Yamashita M, Onodera H, Jalem R et al. 2018. Molecular dynamics studies on the lithium ion conduction behaviors depending on tilted grain boundaries with various symmetries in garnet-type Li7La3Zr2O12. J. Phys. Chem. C 122:21755–62
    [Google Scholar]
  48. 48.
    Gale JD, Rohl AL. 2003. The General Utility Lattice Program (GULP). Mol. Simul. 29:291–341
    [Google Scholar]
  49. 49.
    Plimpton S. 1995. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117:1–19
    [Google Scholar]
  50. 50.
    Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J. 2014. cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4:15–25
    [Google Scholar]
  51. 51.
    Kuhne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P et al. 2020. CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152:194103
    [Google Scholar]
  52. 52.
    Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng YX et al. 2016. The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2:15011
    [Google Scholar]
  53. 53.
    Deng Z, Wang ZB, Chu IH, Luo J, Ong SP. 2016. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163:A67–74
    [Google Scholar]
  54. 54.
    Dick BG Jr., Overhauser AW. 1958. Theory of the dielectric constants of alkali halide crystals. Phys. Rev. 112:90–103
    [Google Scholar]
  55. 55.
    Lindan PJD, Gillan MJ. 1993. Shell-model molecular-dynamics simulation of superionic conduction in CaF2. J. Phys. Condens. Matter 5:1019–30
    [Google Scholar]
  56. 56.
    Mitchell PJ, Fincham D. 1993. Shell-model simulations by adiabatic dynamics. J. Phys. Condens. Matter 5:1031–38
    [Google Scholar]
  57. 57.
    Behler J. 2011. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134:074106
    [Google Scholar]
  58. 58.
    Stewart JJP. 2007. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13:1173–213
    [Google Scholar]
  59. 59.
    Grimme S, Bannwarth C, Shushkov P. 2017. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13:1989–2009
    [Google Scholar]
  60. 60.
    Van den Bossche M, Gronbeck H, Hammer B. 2018. Tight-binding approximation-enhanced global optimization. J. Chem. Theory Comput. 14:2797–807
    [Google Scholar]
  61. 61.
    Morgan D, Jacobs R. 2020. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 50:71–103
    [Google Scholar]
  62. 62.
    Kuhn A, Narayanan S, Spencer L, Goward G, Thangadurai V, Wilkening M. 2011. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B 83:094302
    [Google Scholar]
  63. 63.
    Matsui M, Takahashi K, Sakamoto K, Hirano A, Takeda Y et al. 2014. Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12. Dalton Trans 43:1019–24
    [Google Scholar]
  64. 64.
    Larraz G, Orera A, Sanjuan ML. 2013. Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J. Mater. Chem. A 1:11419–28
    [Google Scholar]
  65. 65.
    Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T et al. 2011. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 50:1089–97
    [Google Scholar]
  66. 66.
    Bernstein N, Johannes MD, Hoang K. 2012. Origin of the structural phase transition in Li7La3Zr2O12. Phys. Rev. Lett. 109:205702
    [Google Scholar]
  67. 67.
    Morgan BJ. 2017. Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study. R. Soc. Open Sci. 4:170824
    [Google Scholar]
  68. 68.
    Xu M, Park MS, Lee JM, Kim TY, Park YS, Ma E 2012. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M = Te, Nb, Zr). Phys. Rev. B 85:052301
    [Google Scholar]
  69. 69.
    He XF, Zhu YZ, Mo YF. 2017. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8:15893
    [Google Scholar]
  70. 70.
    Narayanan S, Thangadurai V. 2011. Effect of Y substitution for Nb in Li5La3Nb2O12 on Li ion conductivity of garnet-type solid electrolytes. J. Power Sources 196:8085–90
    [Google Scholar]
  71. 71.
    Awaka J, Kijima N, Kataoka K, Hayakawa H, Ohshima K, Akimoto J. 2010. Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure. J. Solid State Chem. 183:180–85
    [Google Scholar]
  72. 72.
    Bonilla MR, Daza FAG, Carrasco J, Akhmatskaya E. 2019. Exploring Li-ion conductivity in cubic, tetragonal and mixed-phase Al-substituted Li7La3Zr2O12 using atomistic simulations and effective medium theory. Acta Mater 175:426–35
    [Google Scholar]
  73. 73.
    Daza FAG, Bonilla MR, Llordes A, Carrasco J, Aldimatskaya E 2019. Atomistic insight into ion transport and conductivity in Ga/Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl. Mater. Interfaces 11:753–65
    [Google Scholar]
  74. 74.
    Vanhove L. 1954. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95:249–62
    [Google Scholar]
  75. 75.
    Jobic H, Theodorou DN. 2007. Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites. Microporous Mesoporous Mater 102:21–50
    [Google Scholar]
  76. 76.
    Green MS. 1954. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22:398–413
    [Google Scholar]
  77. 77.
    Kubo R. 1957. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12:570–86
    [Google Scholar]
  78. 78.
    Helfand E. 1960. Transport coefficients from dissipation in a canonical ensemble. Phys. Rev. 119:1–9
    [Google Scholar]
  79. 79.
    Williams G, Watts DC. 1970. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66:80–85
    [Google Scholar]
  80. 80.
    Chudley CT, Elliott RJ. 1961. Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. Lond. 77:353–61
    [Google Scholar]
  81. 81.
    Hall PL, Ross DK. 1981. Incoherent neutron-scattering functions for random jump diffusion in bounded and infinite media. Mol. Phys. 42:673–82
    [Google Scholar]
  82. 82.
    Singwi KS, Sjolander A. 1960. Diffusive motions in water and cold neutron scattering. Phys. Rev. 119:863–71
    [Google Scholar]
  83. 83.
    Hansen JP, McDonald IR. 2013. Theory of Simple Liquids Oxford, UK: Academic
  84. 84.
    Viscardy S, Gaspard P. 2003. Viscosity in molecular dynamics with periodic boundary conditions. Phys. Rev. E 68:041204
    [Google Scholar]
  85. 85.
    Kinaci A, Haskins JB, Cagin T. 2012. On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics. J. Chem. Phys. 137:014106
    [Google Scholar]
  86. 86.
    Erpenbeck JJ. 1995. Einstein-Kubo-Helfand and McQuarrie relations for transport-coefficients. Phys. Rev. E 51:4296–308
    [Google Scholar]
  87. 87.
    Vargas-Barbosa NM, Roling B. 2020. Dynamic ion correlations in solid and liquid electrolytes: How do they affect charge and mass transport?. ChemElectroChem 7:367–85
    [Google Scholar]
  88. 88.
    Murch GE. 1982. The haven ratio in fast ionic conductors. Solid State Ion 7:177–98
    [Google Scholar]
  89. 89.
    Smith W, Forester TR. 1996. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14:136–41
    [Google Scholar]
  90. 90.
    Kirkwood JG. 1946. The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14:180–201
    [Google Scholar]
  91. 91.
    Espanol P, Zuniga I. 1993. Force autocorrelation function in Brownian motion theory. J. Chem. Phys. 98:574–80
    [Google Scholar]
  92. 92.
    Jalem R, Nakayama M, Manalastas W, Kilner JA, Grimes RW et al. 2015. Insights into the lithium-ion conduction mechanism of garnet-type cubic Li5La3Ta2O12 by ab-initio calculations. J. Phys. Chem. C 119:20783–91
    [Google Scholar]
  93. 93.
    Han JT, Zhu JL, Li YT, Yu XH, Wang SM et al. 2012. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. Chem. Commun. 48:9840–42
    [Google Scholar]
  94. 94.
    Jalem R, Yamamoto Y, Shiiba H, Nakayama M, Munakata H et al. 2013. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25:425–30
    [Google Scholar]
  95. 95.
    Chen C, Lu ZH, Ciucci F. 2017. Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12. Sci. Rep 7:40769
    [Google Scholar]
  96. 96.
    Posch P, Lunghammer S, Berendts S, Ganschow S, Redhammer GJ et al. 2020. Ion dynamics in Al-stabilized Li7La3Zr2O12 single crystals – macroscopic transport and the elementary steps of ion hopping. Energy Storage Mater 24:220–28
    [Google Scholar]
  97. 97.
    Trachenko K, Brazhkin VV. 2016. Collective modes and thermodynamics of the liquid state. Rep. Prog. Phys. 79:016502
    [Google Scholar]
  98. 98.
    Ngai KL. 2000. Short-time and long-time relaxation dynamics of glass-forming substances: a coupling model perspective. J. Phys. Condens. Matter 12:6437–51
    [Google Scholar]
  99. 99.
    Kahle L, Musaelian A, Marzari N, Kozinsky B. 2019. Unsupervised landmark analysis for jump detection in molecular dynamics simulations. Phys. Rev. Mater. 3:055404
    [Google Scholar]
  100. 100.
    Hayamizu K, Terada Y, Kataoka K, Akimoto J, Haishi T. 2019. Relationship between Li+ diffusion and ion conduction for single-crystal and powder garnet-type electrolytes studied by 7Li PGSE NMR spectroscopy. Phys. Chem. Chem. Phys. 21:23589–97
    [Google Scholar]
  101. 101.
    Hayamizu K, Terada Y, Kataoka K, Akimoto J. 2019. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO–Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. J. Chem. Phys. 150:194502
    [Google Scholar]
  102. 102.
    Stanje B, Rettenwander D, Breuer S, Uitz M, Berendts S et al. 2017. Solid electrolytes: extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals. Ann. Phys. 529:1700140
    [Google Scholar]
  103. 103.
    Kataoka K, Akimoto J. 2020. Large single-crystal growth of tetragonal garnet-type Li7La3Zr2O12 by melting method. Solid State Ion 349:115312
    [Google Scholar]
  104. 104.
    Kataoka K, Akimoto J. 2020. Orthorhombic crystal system for a garnet-type lithium-ion conductor. Inorg. Chem. 59:14376–81
    [Google Scholar]
  105. 105.
    Kataoka K, Akimoto J. 2019. Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7-xLa3Zr2-xTaxO12 using single-crystal. J. Ceram. Soc. Jpn. 127:521–26
    [Google Scholar]
  106. 106.
    Kataoka K, Nagata H, Akimoto J. 2018. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Sci. Rep. 8:9965
    [Google Scholar]
  107. 107.
    Miara LJ, Ong SP, Mo YF, Richards WD, Park Y et al. 2013. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation. Chem. Mater 25:3048–55
    [Google Scholar]
  108. 108.
    Awaka J, Kijima N, Hayakawa H, Akimoto J. 2009. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 182:2046–52
    [Google Scholar]
  109. 109.
    Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P et al. 2014. DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet. Chem. Mater. 26:2617–23
    [Google Scholar]
  110. 110.
    Yu S, Siegel DJ. 2017. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29:9639–47
    [Google Scholar]
  111. 111.
    Tenhaeff WE, Rangasamy E, Wang YY, Sokolov AP, Wolfenstine J et al. 2014. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 1:375–78
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-115334
Loading
/content/journals/10.1146/annurev-matsci-081720-115334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error