1932

Abstract

Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124414
2015-01-06
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/55/1/annurev-pharmtox-010814-124414.html?itemId=/content/journals/10.1146/annurev-pharmtox-010814-124414&mimeType=html&fmt=ahah

Literature Cited

  1. Riedl SJ, Shi Y. 1.  2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5:897–907 [Google Scholar]
  2. Yan N, Shi Y. 2.  2005. Mechanisms of apoptosis through structural biology. Annu. Rev. Cell Dev. Biol. 21:35–56 [Google Scholar]
  3. Fuentes-Prior P, Salvesen GS. 3.  2004. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384:201–32 [Google Scholar]
  4. Fernandes-Alnemri T, Litwack G, Alnemri ES. 4.  1995. Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res. 55:2737–42 [Google Scholar]
  5. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA. 5.  et al. 1999. Ordering the cytochrome c–initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9–dependent manner. J. Cell Biol. 144:281–92 [Google Scholar]
  6. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H. 6.  et al. 1998. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med. 187:587–600 [Google Scholar]
  7. Allsopp TE, McLuckie J, Kerr LE, Macleod M, Sharkey J, Kelly JS. 7.  2000. Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death Differ. 7:984–93 [Google Scholar]
  8. Doostzadeh-Cizeron J, Yin S, Goodrich DW. 8.  2000. Apoptosis induced by the nuclear death domain protein p84N5 is associated with caspase-6 and NF-κB activation. J. Biol. Chem. 275:25336–41 [Google Scholar]
  9. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J. 9.  1999. Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. J. Biol. Chem. 274:23426–36 [Google Scholar]
  10. Klaiman G, Champagne N, LeBlanc AC. 10.  2009. Self-activation of Caspase-6 in vitro and in vivo: Caspase-6 activation does not induce cell death in HEK293T cells. Biochim. Biophys. Acta 1793:592–601 [Google Scholar]
  11. Wang XJ, Cao Q, Liu X, Wang KT, Mi W. 11.  et al. 2010. Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep. 11:841–47 [Google Scholar]
  12. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. 12.  1996. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271:16443–46 [Google Scholar]
  13. Levkau B, Scatena M, Giachelli CM, Ross R, Raines EW. 13.  1999. Apoptosis overrides survival signals through a caspase-mediated dominant-negative NF-κB loop. Nat. Cell Biol. 1:227–33 [Google Scholar]
  14. Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. 14.  2001. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol. 21:5591–604 [Google Scholar]
  15. Nyormoi O, Wang Z, Doan D, Ruiz M, McConkey D, Bar-Eli M. 15.  2001. Transcription factor AP-2α is preferentially cleaved by caspase 6 and degraded by proteasome during tumor necrosis factor α–induced apoptosis in breast cancer cells. Mol. Cell. Biol. 21:4856–67 [Google Scholar]
  16. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. 16.  2003. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J. 22:6537–49 [Google Scholar]
  17. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. 17.  2004. Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer's disease. Am. J. Pathol. 165:523–31 [Google Scholar]
  18. Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC. 18.  2007. Activation of caspase-6 in aging and mild cognitive impairment. Am. J. Pathol. 170:1200–9 [Google Scholar]
  19. Graham RK, Deng Y, Carroll J, Vaid K, Cowan C. 19.  et al. 2010. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J. Neurosci. 30:15019–29 [Google Scholar]
  20. Singh AB, Kaushal V, Megyesi JK, Shah SV, Kaushal GP. 20.  2002. Cloning and expression of rat caspase-6 and its localization in renal ischemia/reperfusion injury. Kidney Int. 62:106–15 [Google Scholar]
  21. Godefroy N, Foveau B, Albrecht S, Goodyer CG, LeBlanc AC. 21.  2013. Expression and activation of caspase-6 in human fetal and adult tissues. PLoS ONE 8:e79313 [Google Scholar]
  22. Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. 22.  2009. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–89 [Google Scholar]
  23. Schoenmann Z, Assa-Kunik E, Tiomny S, Minis A, Haklai-Topper L. 23.  et al. 2010. Axonal degeneration is regulated by the apoptotic machinery or a NAD+-sensitive pathway in insects and mammals. J. Neurosci. 30:6375–86 [Google Scholar]
  24. Harrington EP, Zhao C, Fancy SP, Kaing S, Franklin RJ, Rowitch DH. 24.  2010. Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann. Neurol. 68:703–16 [Google Scholar]
  25. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K. 25.  et al. 2012. A caspase cascade regulating developmental axon degeneration. J. Neurosci. 32:17540–53 [Google Scholar]
  26. Park KJ, Grosso CA, Aubert I, Kaplan DR, Miller FD. 26.  2010. p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nat. Neurosci. 13:559–66 [Google Scholar]
  27. Vohra BP, Sasaki Y, Miller BR, Chang J, DiAntonio A, Milbrandt J. 27.  2010. Amyloid precursor protein cleavage-dependent and -independent axonal degeneration programs share a common nicotinamide mononucleotide adenylyltransferase 1-sensitive pathway. J. Neurosci. 30:13729–38 [Google Scholar]
  28. Akpan N, Serrano-Saiz E, Zacharia BE, Otten ML, Ducruet AF. 28.  et al. 2011. Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J. Neurosci. 31:8894–904 [Google Scholar]
  29. Uribe V, Wong BK, Graham RK, Cusack CL, Skotte NH. 29.  et al. 2012. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum. Mol. Genet. 21:1954–67 [Google Scholar]
  30. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N. 30.  et al. 2006. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–91 [Google Scholar]
  31. Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL. 31.  et al. 2004. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. Cell Death Differ. 11:424–38 [Google Scholar]
  32. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD. 32.  et al. 2009. Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132:919–32 [Google Scholar]
  33. Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM. 33.  et al. 2010. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron 65:178–90 [Google Scholar]
  34. Warby SC, Doty CN, Graham RK, Carroll JB, Yang YZ. 34.  et al. 2008. Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum. Mol. Genet. 17:2390–404 [Google Scholar]
  35. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y. 35.  et al. 1999. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97:395–406 [Google Scholar]
  36. Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P. 36.  et al. 2002. Caspase cleavage of members of the amyloid precursor family of proteins. J. Neurochem. 82:283–94 [Google Scholar]
  37. Lu DC, Rabizadeh S, Chandra S, Shayya RF, Ellerby LM. 37.  et al. 2000. A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor. Nat. Med. 6:397–404 [Google Scholar]
  38. Zhao M, Su J, Head E, Cotman CW. 38.  2003. Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer's disease. Neurobiol. Dis. 14:391–403 [Google Scholar]
  39. Saganich MJ, Schroeder BE, Galvan V, Bredesen DE, Koo EH, Heinemann SF. 39.  2006. Deficits in synaptic transmission and learning in amyloid precursor protein (APP) transgenic mice require C-terminal cleavage of APP. J. Neurosci. 26:13428–36 [Google Scholar]
  40. Nguyen TV, Galvan V, Huang W, Banwait S, Tang H. 40.  et al. 2008. Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664. J. Neurochem. 104:1065–80 [Google Scholar]
  41. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV. 41.  et al. 2006. Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc. Natl. Acad. Sci. USA 103:7130–35 [Google Scholar]
  42. Cao Q, Wang XJ, Liu CW, Liu DF, Li LF. 42.  et al. 2012. Inhibitory mechanism of caspase-6 phosphorylation revealed by crystal structures, molecular dynamics simulations, and biochemical assays. J. Biol. Chem. 287:15371–79 [Google Scholar]
  43. Velazquez-Delgado EM, Hardy JA. 43.  2012. Phosphorylation regulates assembly of the caspase-6 substrate-binding groove. Structure 20:742–51 [Google Scholar]
  44. Cao Q, Wang XJ, Li LF, Su XD. 44.  2014. The regulatory mechanism of the caspase 6 pro-domain revealed by crystal structure and biochemical assays. Acta Crystallogr. D Biol. Crystallogr. 70:58–67 [Google Scholar]
  45. Novak MJ, Tabrizi SJ. 45.  2010. Huntington's disease. BMJ 340:c3109 [Google Scholar]
  46. 46. The Huntington's Disease Collaborative Research Group 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–83 [Google Scholar]
  47. Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K. 47.  et al. 1993. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat. Genet. 5:259–65 [Google Scholar]
  48. De Rooij KE, Dorsman JC, Smoor MA, Den Dunnen JT, Van Ommen GJ. 48.  1996. Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum. Mol. Genet. 5:1093–99 [Google Scholar]
  49. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A. 49.  et al. 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–81 [Google Scholar]
  50. Saudou F, Devys D, Trottier Y, Imbert G, Stoeckel ME. 50.  et al. 1996. Polyglutamine expansions and neurodegenerative diseases. Cold Spring Harb. Symp. Quant. Biol. 61:639–47 [Google Scholar]
  51. Harjes P, Wanker EE. 51.  2003. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28:425–33 [Google Scholar]
  52. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D. 52.  et al. 2001. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293:493–98 [Google Scholar]
  53. Ehrnhoefer DE, Sutton L, Hayden MR. 53.  2011. Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 17:475–92 [Google Scholar]
  54. Menalled LB, Chesselet MF. 54.  2002. Mouse models of Huntington's disease. Trends Pharmacol. Sci. 23:32–39 [Google Scholar]
  55. Crook ZR, Housman D. 55.  2011. Huntington's disease: Can mice lead the way to treatment?. Neuron 69:423–35 [Google Scholar]
  56. Graham RK, Slow EJ, Deng Y, Bissada N, Lu G. 56.  et al. 2006. Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiol. Dis. 21:444–55 [Google Scholar]
  57. Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S. 57.  et al. 2000. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem. 275:19831–38 [Google Scholar]
  58. Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA. 58.  et al. 1998. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273:9158–67 [Google Scholar]
  59. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A. 59.  et al. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506 [Google Scholar]
  60. Hackam AS, Singaraja R, Wellington CL, Metzler M, McCutcheon K. 60.  et al. 1998. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J. Cell Biol. 141:1097–105 [Google Scholar]
  61. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S. 61.  et al. 2002. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J. Neurosci. 22:7862–72 [Google Scholar]
  62. Gafni J, Papanikolaou T, Degiacomo F, Holcomb J, Chen S. 62.  et al. 2012. Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J. Neurosci. 32:7454–65 [Google Scholar]
  63. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH. 63.  et al. 1997. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–48 [Google Scholar]
  64. Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S. 64.  et al. 1999. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19:2522–34 [Google Scholar]
  65. Van Raamsdonk JM, Murphy Z, Slow EJ, Leavitt BR, Hayden MR. 65.  2005. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14:3823–35 [Google Scholar]
  66. Saudou F, Finkbeiner S, Devys D, Greenberg ME. 66.  1998. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66 [Google Scholar]
  67. Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ. 67.  et al. 1999. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19:964–73 [Google Scholar]
  68. Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C. 68.  et al. 2008. Automated deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage 39:32–39 [Google Scholar]
  69. Tebbenkamp AT, Green C, Xu G, Denovan-Wright EM, Rising AC. 69.  et al. 2011. Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum. Mol. Genet. 20:2770–82 [Google Scholar]
  70. Waldron-Roby E, Ratovitski T, Wang X, Jiang M, Watkin E. 70.  et al. 2012. Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J. Neurosci. 32:183–93 [Google Scholar]
  71. Warby SC, Doty CN, Graham RK, Shively J, Singaraja RR, Hayden MR. 71.  2009. Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol. Cell. Neurosci. 40:121–27 [Google Scholar]
  72. Preisinger E, Jordan BM, Kazantsev A, Housman D. 72.  1999. Evidence for a recruitment and sequestration mechanism in Huntington's disease. Philos. Trans. R. Soc. Lond. B 354:1029–34 [Google Scholar]
  73. Tanzi RE, Bertram L. 73.  2005. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120:545–55 [Google Scholar]
  74. Goedert M, Spillantini MG. 74.  2006. A century of Alzheimer's disease. Science 314:777–81 [Google Scholar]
  75. Scheff SW, Price DA. 75.  2003. Synaptic pathology in Alzheimer's disease: a review of ultrastructural studies. Neurobiol. Aging 24:1029–46 [Google Scholar]
  76. Mattson MP. 76.  2004. Pathways towards and away from Alzheimer's disease. Nature 430:631–39 [Google Scholar]
  77. LeBlanc AC. 77.  2005. The role of apoptotic pathways in Alzheimer's disease neurodegeneration and cell death. Curr. Alzheimer Res. 2:389–402 [Google Scholar]
  78. Sheng M, Sabatini BL, Sudhof TC. 78.  2012. Synapses and Alzheimer's disease. Cold Spring Harb. Perspect. Biol. 4:a005777 [Google Scholar]
  79. Mudher A, Lovestone S. 79.  2002. Alzheimer's disease—do tauists and baptists finally shake hands?. Trends Neurosci. 25:22–26 [Google Scholar]
  80. LeBlanc AC. 80.  2013. Caspase-6 as a novel early target in the treatment of Alzheimer's disease. Eur. J. Neurosci. 37:2005–18 [Google Scholar]
  81. Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T. 81.  1997. Changes of p53 in the brains of patients with Alzheimer's disease. Biochem. Biophys. Res. Commun. 232:418–21 [Google Scholar]
  82. MacLachlan TK, El-Deiry WS. 82.  2002. Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc. Natl. Acad. Sci. USA 99:9492–97 [Google Scholar]
  83. Pompl PN, Yemul S, Xiang Z, Ho L, Haroutunian V. 83.  et al. 2003. Caspase gene expression in the brain as a function of the clinical progression of Alzheimer disease. Arch. Neurol. 60:369–76 [Google Scholar]
  84. Ramcharitar J, Albrecht S, Afonso VM, Kaushal V, Bennett DA, LeBlanc AC. 84.  2013. Cerebrospinal fluid tau cleaved by caspase-6 reflects brain levels and cognition in aging and Alzheimer disease. J. Neuropathol. Exp. Neurol. 72:824–32 [Google Scholar]
  85. Albrecht S, Bogdanovic N, Ghetti B, Winblad B, LeBlanc AC. 85.  2009. Caspase-6 activation in familial Alzheimer disease brains carrying amyloid precursor protein or presenilin I or presenilin II mutations. J. Neuropathol. Exp. Neurol. 68:1282–93 [Google Scholar]
  86. Klaiman G, Petzke TL, Hammond J, LeBlanc AC. 86.  2008. Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol. Cell. Proteomics 7:1541–55 [Google Scholar]
  87. Adrain C, Murphy BM, Martin SJ. 87.  2005. Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J. Biol. Chem. 280:4663–73 [Google Scholar]
  88. Harigaya Y, Shoji M, Shirao T, Hirai S. 88.  1996. Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer's disease. J. Neurosci. Res. 43:87–92 [Google Scholar]
  89. Halawani D, Tessier S, Anzellotti D, Bennett DA, Latterich M, LeBlanc AC. 89.  2010. Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer's disease: a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation. J. Neurosci. 30:6132–42 [Google Scholar]
  90. Gralle M, Ferreira ST. 90.  2007. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog. Neurobiol. 82:11–32 [Google Scholar]
  91. Bredesen DE. 91.  2009. Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence. Mol. Neurodegener. 4:27 [Google Scholar]
  92. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T. 92.  et al. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B: functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272:17907–11 [Google Scholar]
  93. Pellegrini L, Passer BJ, Tabaton M, Ganjei JK, D'Adamio L. 93.  1999. Alternative, non-secretase processing of Alzheimer's β-amyloid precursor protein during apoptosis by caspase-6 and -8. J. Biol. Chem. 274:21011–16 [Google Scholar]
  94. Bredesen DE, John V, Galvan V. 94.  2010. Importance of the caspase cleavage site in amyloid-β protein precursor. J. Alzheimer's Dis. 22:57–63 [Google Scholar]
  95. Banwait S, Galvan V, Zhang J, Gorostiza OF, Ataie M. 95.  et al. 2008. C-terminal cleavage of the amyloid-β protein precursor at Asp664: a switch associated with Alzheimer's disease. J. Alzheimer's Dis. 13:1–16 [Google Scholar]
  96. Hell K, Saleh M, Crescenzo GD, O'Connor-McCourt MD, Nicholson DW. 96.  2003. Substrate cleavage by caspases generates protein fragments with Smac/Diablo-like activities. Cell Death Differ. 10:1234–39 [Google Scholar]
  97. Park SA, Shaked GM, Bredesen DE, Koo EH. 97.  2009. Mechanism of cytotoxicity mediated by the C31 fragment of the amyloid precursor protein. Biochem. Biophys. Res. Commun. 388:450–55 [Google Scholar]
  98. Galvan V, Zhang J, Gorostiza OF, Banwait S, Huang W. 98.  et al. 2008. Long-term prevention of Alzheimer's disease-like behavioral deficits in PDAPP mice carrying a mutation in Asp664. Behav. Brain Res. 191:246–55 [Google Scholar]
  99. Zhang J, Gorostiza OF, Tang H, Bredesen DE, Galvan V. 99.  2010. Reversal of learning deficits in hAPP transgenic mice carrying a mutation at Asp664: a role for early experience. Behav. Brain Res. 206:202–7 [Google Scholar]
  100. Rohn TT, Kokoulina P, Eaton CR, Poon WW. 100.  2009. Caspase activation in transgenic mice with Alzheimer-like pathology: results from a pilot study utilizing the caspase inhibitor, Q-VD-OPh. Int. J. Clin. Exp. Med. 2:300–8 [Google Scholar]
  101. McPhie DL, Coopersmith R, Hines-Peralta A, Chen Y, Ivins KJ. 101.  et al. 2003. DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J. Neurosci. 23:6914–27 [Google Scholar]
  102. Zhao L, Ma QL, Calon F, Harris-White ME, Yang F. 102.  et al. 2006. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat. Neurosci. 9:234–42 [Google Scholar]
  103. Salvesen GS, Duckett CS. 103.  2002. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3:401–10 [Google Scholar]
  104. Van de Craen M, Declercq W, Van den brande I, Fiers W, Vandenabeele P. 104.  1999. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 6:1117–24 [Google Scholar]
  105. Cowling V, Downward J. 105.  2002. Caspase-6 is the direct activator of caspase-8 in the cytochrome c–induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9:1046–56 [Google Scholar]
  106. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. 106.  2001. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107:399–407 [Google Scholar]
  107. Stanger K, Steffek M, Zhou L, Pozniak CD, Quan C. 107.  et al. 2012. Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Nat. Chem. Biol. 8:655–60 [Google Scholar]
  108. Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Miyamoto S. 108.  et al. 2004. Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene 23:7067–75 [Google Scholar]
  109. Suzuki A, Lu J, Kusakai G, Kishimoto A, Ogura T, Esumi H. 109.  2004. ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol. Cell. Biol. 24:3526–35 [Google Scholar]
  110. Humbert S, Bryson EA, Cordelieres FP, Connors NC, Datta SR. 110.  et al. 2002. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves Huntingtin phosphorylation by Akt. Dev. Cell 2:831–37 [Google Scholar]
  111. Warby SC, Chan EY, Metzler M, Gan L, Singaraja RR. 111.  et al. 2005. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum. Mol. Genet. 14:1569–77 [Google Scholar]
  112. Baumgartner R, Meder G, Briand C, Decock A, D'Arcy A. 112.  et al. 2009. The crystal structure of caspase-6, a selective effector of axonal degeneration. Biochem. J. 423:429–39 [Google Scholar]
  113. Heise CE, Murray J, Augustyn KE, Bravo B, Chugha P. 113.  et al. 2012. Mechanistic and structural understanding of uncompetitive inhibitors of caspase-6. PLoS ONE 7:e50864 [Google Scholar]
  114. Muller I, Lamers MB, Ritchie AJ, Dominguez C, Munoz-Sanjuan I, Kiselyov A. 114.  2011. Structure of human caspase-6 in complex with Z-VAD-FMK: new peptide binding mode observed for the non-canonical caspase conformation. Bioorg. Med. Chem. Lett. 21:5244–47 [Google Scholar]
  115. Muller I, Lamers MB, Ritchie AJ, Park H, Dominguez C. 115.  et al. 2011. A new apo-caspase-6 crystal form reveals the active conformation of the apoenzyme. J. Mol. Biol. 410:307–15 [Google Scholar]
  116. Vaidya S, Velazquez-Delgado EM, Abbruzzese G, Hardy JA. 116.  2011. Substrate-induced conformational changes occur in all cleaved forms of caspase-6. J. Mol. Biol. 406:75–91 [Google Scholar]
  117. Xu G, Cirilli M, Huang Y, Rich RL, Myszka DG, Wu H. 117.  2001. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 410:494–97 [Google Scholar]
  118. Lee AW, Champagne N, Wang X, Su XD, Goodyer C, LeBlanc AC. 118.  2010. Alternatively spliced caspase-6B isoform inhibits the activation of caspase-6A. J. Biol. Chem. 285:31974–84 [Google Scholar]
  119. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA. 119.  1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273:32608–13 [Google Scholar]
  120. Erlanson DA, Wells JA, Braisted AC. 120.  2004. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 33:199–223 [Google Scholar]
  121. James KE, Asgian JL, Li ZZ, Ekici OD, Rubin JR. 121.  et al. 2004. Design, synthesis, and evaluation of aza-peptide epoxides as selective and potent inhibitors of caspases-1, -3, -6, and -8. J. Med. Chem. 47:1553–74 [Google Scholar]
  122. Nedev HN, Klaiman G, LeBlanc A, Saragovi HU. 122.  2005. Synthesis and evaluation of novel dipeptidyl benzoyloxymethyl ketones as caspase inhibitors. Biochem. Biophys. Res. Commun. 336:397–400 [Google Scholar]
  123. Ekici OD, Li ZZ, Campbell AJ, James KE, Asgian JL. 123.  et al. 2006. Design, synthesis, and evaluation of aza-peptide Michael acceptors as selective and potent inhibitors of caspases-2, -3, -6, -7, -8, -9, and -10. J. Med. Chem. 49:5728–49 [Google Scholar]
  124. Henzing AJ, Dodson H, Reid JM, Kaufmann SH, Baxter RL, Earnshaw WC. 124.  2006. Synthesis of novel caspase inhibitors for characterization of the active caspase proteome in vitro and in vivo. J. Med. Chem. 49:7636–45 [Google Scholar]
  125. McStay GP, Salvesen GS, Green DR. 125.  2008. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 15:322–31 [Google Scholar]
  126. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 126.  2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3–26 [Google Scholar]
  127. Chu W, Rothfuss J, Chu Y, Zhou D, Mach RH. 127.  2009. Synthesis and in vitro evaluation of sulfonamide isatin Michael acceptors as small molecule inhibitors of caspase-6. J. Med. Chem. 52:2188–91 [Google Scholar]
  128. Murray J, Renslo AR. 128.  2013. Modulating caspase activity: beyond the active site. Curr. Opin. Struct. Biol. 23:812–19 [Google Scholar]
  129. Murray J, Giannetti AM, Steffek M, Gibbons P, Hearn BR. 129.  et al. 2014. Tailoring small molecules for an allosteric site on procaspase-6. ChemMedChem 9:173–77 [Google Scholar]
  130. Velazquez-Delgado EM, Hardy JA. 130.  2012. Zinc-mediated allosteric inhibition of caspase-6. J. Biol. Chem. 287:36000–11 [Google Scholar]
  131. Huber KL, Hardy JA. 131.  2012. Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci. 21:1056–65 [Google Scholar]
  132. Hou X, Liu JE, Liu W, Liu CY, Liu ZY, Sun ZY. 132.  2011. A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation. Oncogene 30:2933–42 [Google Scholar]
  133. Pehlivan SB. 133.  2013. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm. Res. 30:2499–511 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124414
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124414
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error