1932

Abstract

Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host–pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-010820-012749
2020-08-25
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/phyto/58/1/annurev-phyto-010820-012749.html?itemId=/content/journals/10.1146/annurev-phyto-010820-012749&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alizon S, Hurford A, Mideo N, Van Baalen M 2009. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22:245–59
    [Google Scholar]
  2. 2.
    Alizon S, Michalakis Y. 2015. Adaptive virulence evolution: the good old fitness-based approach. Trends Ecol. Evol. 30:248–54
    [Google Scholar]
  3. 3.
    Anderson EJ, Kline AS, Morelock TE, McNew RW 1996. Tolerance to Blackeye cowpea mosaic potyvirus not correlated with decreased virus accumulation or protection from cowpea stunt disease. Plant Dis 80:847–52
    [Google Scholar]
  4. 4.
    Ansari MA, Patel BA, Mhase NL, Patel DJ, Douaik A, Sharma SB 2004. Tolerance of chickpea (Cicer arietinum L.) lines to root-knot nematode, Meloidogyne javanica (Treub) Chitwood. Genet. Resour. Crop Evol. 51:449–53
    [Google Scholar]
  5. 5.
    Ayala L, Henry M, van Ginkel M, Singh R, Keller B, Khairallah M 2002. Identification of QTLs for BYDV tolerance in bread wheat. Euphytica 128:249–59
    [Google Scholar]
  6. 6.
    Ayres PG, Press CM, Spencer-Phillips PTN 1996. Effects of pathogens and parasitic plants on source-sink relationships. Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships E Zamski, AA Schaffer 479–99 New York: M. Dekker Inc.
    [Google Scholar]
  7. 7.
    Bateman DF. 1978. The dynamic nature of disease. Plant Disease and Advanced Treatise, Vol. III. How Plants Suffer from Disease JG Horsfall, EB Cowling 53–83 New York: Academic
    [Google Scholar]
  8. 8.
    Baucom RS, de Roode JC 2011. Ecological immunology and tolerance in plants and animals. Funct. Ecol. 25:18–28
    [Google Scholar]
  9. 9.
    Ben-Kalio VD, Clarke DD. 1979. Studies on tolerance in wild plants: effects of Erysiphe fischeri on the growth and development of Senecio vulgaris. Physiol. . Plant Pathol 14:203–11
    [Google Scholar]
  10. 10.
    Best A, White A, Boots M 2008. Maintenance of host variation in tolerance to pathogens and parasites. PNAS 105:20786–91
    [Google Scholar]
  11. 11.
    Best A, White A, Boots M 2010. Resistance is futile but tolerance explains why parasites do not castrate their hosts. Evolution 64:348–57
    [Google Scholar]
  12. 12.
    Bingham IJ, Walters DR, Foulkes MJ, Paveley ND 2009. Crop traits and the tolerance of wheat and barley to foliar disease. Ann. Appl. Biol. 154:159–73
    [Google Scholar]
  13. 13.
    Block A, Schmelz E, O'Donnell PJ, Jones JB, Klee HJ 2005. Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiol 138:1481–90
    [Google Scholar]
  14. 14.
    Bos L, Parlevliet JE. 1995. Concepts and terminology on plant/pest relationships: toward consensus in plant pathology and crop protection. Annu. Rev. Phytopathol. 33:69–102
    [Google Scholar]
  15. 15.
    Burdon J, Laine A-L. 2019. Evolutionary Dynamics of Plant-Pathogen Interactions Cambridge, UK: Cambridge Univ. Press
  16. 16.
    Caldwell RH, Schaffer JF, Compton LE, Patterson FL 1958. Tolerance to cereal leaf rusts. Science 128:714–15
    [Google Scholar]
  17. 17.
    Campbell CL, Madden LV. 1990. Introduction to Plant Disease Epidemiology New York: Wiley & Sons
  18. 18.
    Carr DE, Murphy JF, Eubanks MD 2003. The susceptibility and response of inbred and outbred Mimulus guttatus to infection by Cucumber mosaic virus. Evol. Ecol. 17:85–103
    [Google Scholar]
  19. 19.
    Carr DE, Murphy JF, Eubanks MD 2006. Genetic variation and covariation for resistance and tolerance to Cucumber mosaic virus in Mimulus guttatus (Phrymaceae): a test for costs and constraints. Heredity 96:29–38
    [Google Scholar]
  20. 20.
    Castro AC, Simón MR. 2016. Effect of tolerance to Septoria tritici blotch on grain yield, yield components and grain quality in Argentinean wheat cultivars. Crop Prot 90:66–76
    [Google Scholar]
  21. 21.
    Clark RV, Johnston HW. 1973. Tolerance of oats to the Septoria disease. Can. J. Plant Sci. 53:471–75
    [Google Scholar]
  22. 22.
    Clarke DD. 1986. Tolerance of parasites and disease in plants and its significance in host-parasite interactions. Adv. Plant Pathol. 5:161–98
    [Google Scholar]
  23. 23.
    Cobb N. 1894. Contributions to an economic knowledge of Australian rusts (Uredineae). Agric. Gaz. N. S. W. 5:239–50
    [Google Scholar]
  24. 24.
    Cobos A, Montes N, López-Herranz M, Gil-Valle M, Pagán I 2019. Within-host multiplication and speed of colonization as infection traits associated with plant virus vertical transmission. J. Virol. 93:e01078–19
    [Google Scholar]
  25. 25.
    Collin F, Bancal P, Spink J, Kock Appelgren P, Smith J et al. 2018. Wheat lines exhibiting variation in tolerance of Septoria tritici blotch differentiated by grain source limitation. Field Crops Res 217:1–10
    [Google Scholar]
  26. 26.
    D'Arcy CJ, Eastburn DM, Schumann GL 2001. Illustrated glossary of plant pathology. Plant Health Instr https://www.apsnet.org/edcenter/resources/illglossary
    [Google Scholar]
  27. 27.
    Desbiez C, Gal-On A, Girard M, Wipf-Scheibel C, Lecoq H 2003. Increase in Zucchini yellow mosaic virus symptom severity in tolerant zucchini cultivars is related to a point mutation in P3 protein and is associated with a loss of relative fitness on susceptible plants. Phytopathology 93:1478–84
    [Google Scholar]
  28. 28.
    Desbiez C, Wipf-Scheibel C, Granier F, Robaglia C, Delaunay T, Lecoq H 1996. Biological and molecular variability of Zucchini yellow mosaic virus in the island of Martinique. Plant Dis 80:203–7
    [Google Scholar]
  29. 29.
    Desbiez C, Wipf-Scheibel C, Lecoq H 2002. Biological and serological variability, evolution and molecular epidemiology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) with special reference to Caribbean islands. Virus Res 85:5–16
    [Google Scholar]
  30. 30.
    Doumayrou J, Leblaye S, Froissart R, Michalakis Y 2013. Reduction of leaf area and symptom severity as proxies of disease-induced plant mortality: the example of the Cauliflower mosaic virus infecting two Brassicaceae hosts. Virus Res 176:91–100
    [Google Scholar]
  31. 31.
    Escriu F, Fraile A, García-Arenal F 2003. The evolution of virulence in a plant virus. Evolution 57:755–65
    [Google Scholar]
  32. 32.
    Fargette D, Pinel A, Traoré O, Ghesquiére A, Konaté G 2002. Emergence of resistance-breaking isolates of Rice yellow mottle virus during serial inoculations. Eur. J. Plant Pathol. 108:585–91
    [Google Scholar]
  33. 33.
    Flor HH, Gaines EF, Smith WK 1932. The effect of bunt on yield of wheat. J. Am. Soc. Agron. 24:778–84
    [Google Scholar]
  34. 34.
    Forbes MRL. 1993. Parasitism and host reproductive effort. Oikos 67:444–50
    [Google Scholar]
  35. 35.
    Foresman BJ, Oliver RE, Jackson EW, Chao S, Arruda MP, Kolb FL 2016. Genome-wide association mapping of Barley yellow dwarf virus tolerance in spring oat (Avena sativa L.). PLOS ONE 11:e0155376
    [Google Scholar]
  36. 36.
    Foulkes MJ, Paveley ND, Worland A, Welham SJ, Thomas J, Snape JW 2006. Major genetic changes in wheat with potential to affect disease tolerance. Phytopathology 96:680–88
    [Google Scholar]
  37. 37.
    Frank SA. 1996. Models of parasite virulence. Q. Rev. Biol. 71:37–78
    [Google Scholar]
  38. 38.
    Frantzen J. 2000. Resistance in populations. Mechanisms of Resistance to Plant Diseases A Slusarenko, RSS Fraser, LE van Loon 161–87 Dordrecht, Neth.: Kluwer Acad.
    [Google Scholar]
  39. 39.
    Frantzen J. 2007. Epidemiology and Plant Ecology: Principles and Applications Singapore: World Sci.
  40. 40.
    Galeng-Lawilao J, Kumar A, De Waele D 2018. QTL mapping for resistance to and tolerance for the rice root-knot nematode. Meloidogyne graminicola. BMC Genet. 19:53
    [Google Scholar]
  41. 41.
    Gandon S, Agnew P, Michalakis Y 2002. Coevolution between parasite virulence and host life-history traits. Am. Nat. 160:374–88
    [Google Scholar]
  42. 42.
    Gonçalves MC, Rossini Pinto L, Creste Souza S, Guimaráes M, Landell A 2012. Virus diseases of sugarcane. A constant challenge to sugarcane breeding in Brazil. Funct. Plant Sci. Biotechnol. 6: Spec. Issue 2 108–16
    [Google Scholar]
  43. 43.
    Goss EM, Bergelson J. 2006. Variation in resistance and virulence in the interaction between Arabidopsis thaliana and a bacterial pathogen. Evolution 60:1562–73
    [Google Scholar]
  44. 44.
    Goss EM, Bergelson J. 2007. Fitness consequences of infection of Arabidopsis thaliana with its natural bacterial pathogen Pseudomonas viridiflava. . Oecologia 152:71–81
    [Google Scholar]
  45. 45.
    Han Y, Teng W, Yu K, Poysa V, Anderson T et al. 2008. Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 162:231–39
    [Google Scholar]
  46. 46.
    Hily JM, García A, Moreno A, Plaza M, Wilkinson MD et al. 2014. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thalianaCucumber mosaic virus. . PLOS Pathog 10:e1004492
    [Google Scholar]
  47. 47.
    Hily JM, Poulicard N, Mora MA, Pagán I, García-Arenal F 2016. Environment and host genotype determine the outcome of a plant-virus interaction: from antagonism to mutualism. New Phytol 209:812–22
    [Google Scholar]
  48. 48.
    Hochberg ME, Michalakis Y, de Meeus T 1992. Parasitism as a constraint on the rate of life-history evolution. J. Evol. Biol. 5:491–504
    [Google Scholar]
  49. 49.
    Inglese SJ, Paul ND. 2006. Tolerance of Senecio vulgaris to infection and disease caused by native and alien rust fungi. Phytopathology 96:718–26
    [Google Scholar]
  50. 50.
    Jarosz AM, Davelos AI. 1995. Effects of disease in wild plant populations and the evolution of pathogen aggressiveness. New Phytol 129:371–87
    [Google Scholar]
  51. 51.
    Jarvie JA, Shanahan PE. 2009. Assessing tolerance to soybean rust in selected genotypes. Field Crops Res 114:419–25
    [Google Scholar]
  52. 52.
    Jeger MJ, Seal SE, van den Bosch F 2006. Evolutionary epidemiology of plant virus diseases. Adv. Virus Res. 67:163–203
    [Google Scholar]
  53. 53.
    Jenkins G. 1966. Comparison of tolerance to Barley yellow dwarf virus in barley and oats. Ann. Appl. Biol. 57:163–68
    [Google Scholar]
  54. 54.
    Jin H, Domier LL, Kolb FL, Brown CM 1998. Identification of quantitative loci for tolerance to barley yellow dwarf virus in oat. Phytopathology 88:410–15
    [Google Scholar]
  55. 55.
    Karisto P, Hund A, Yu K, Anderegg J, Walter A et al. 2018. Ranking quantitative resistance to Septoria tritici blotch in elite wheat cultivars using automated image analysis. Phytopathology 108:568–81
    [Google Scholar]
  56. 56.
    Kause A. 2011. Genetic analysis of tolerance to infections using random regressions: a simulation study. Genet. Res. 93:291–302
    [Google Scholar]
  57. 57.
    Kause A, Ødegárd J. 2012. The genetic analysis of tolerance to infections: a review. Front. Genet. 3:262
    [Google Scholar]
  58. 58.
    Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:1225–41
    [Google Scholar]
  59. 59.
    Kawuki RS, Tukamuhabwa P, Adipala E 2004. Soybean rust severity, rate of rust development, and tolerance as influenced by maturity period and season. Crop Prot 23:447–55
    [Google Scholar]
  60. 60.
    Koskela T, Puustinen S, Salonen V, Mutikainen P 2002. Resistance and tolerance in a host plant–holoparasitic plant interaction: genetic variation and costs. Evolution 56:899–908
    [Google Scholar]
  61. 61.
    Kover PX, Schaal BA. 2002. Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. PNAS 99:11270–74
    [Google Scholar]
  62. 62.
    Kramer T, Gildemacher BH, Van der Ster M, Parlevliet JE 1980. Tolerance of spring barley cultivars to leaf rust. Puccinia hordei. Euphytica 29:209–16
    [Google Scholar]
  63. 63.
    Kutzer MA, Armitage SA. 2016. Maximising fitness in the face of parasites: a review of host tolerance. Zoology 119:281–89
    [Google Scholar]
  64. 64.
    Lapidot M, Friedmann M, Lachman O, Yehezkel A, Nahon S et al. 1997. Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis 81:1425–28
    [Google Scholar]
  65. 65.
    Li Y, Qin L, Zhao J, Muhammad T, Cao H et al. 2017. SlMAPK3 enhances tolerance to Tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLOS ONE 12:e0172466
    [Google Scholar]
  66. 66.
    Little TJ, Shuker DM, Colegrave N, Day T, Graham AL 2010. The coevolution of virulence: tolerance in perspective. PLOS Pathog 6:e1001006
    [Google Scholar]
  67. 67.
    Masini L, Grenville‐Briggs LJ, Andreasson E, Råberg L, Lankinen Å 2019. Tolerance and overcompensation to infection by Phytophthora infestans in the wild perennial climber Solanum dulcamara. Ecol. . Evol 9:4557–67
    [Google Scholar]
  68. 68.
    McLeod DV, Day T. 2015. Pathogen evolution under host avoidance plasticity. Proc. R. Soc. B 282:20151656
    [Google Scholar]
  69. 69.
    Medel R. 2001. Assessment of correlational selection on tolerance and resistance traits in a host plant-parasitic plant interaction. Evol. Ecol. 15:37–52
    [Google Scholar]
  70. 70.
    Michalakis Y, Hochberg ME. 1994. Parasitic effects on host life-history traits: a review of recent studies. Parasite 1:291–94
    [Google Scholar]
  71. 71.
    Mikaberidze A, McDonald BA. 2020. A tradeoff between tolerance and resistance to a major fungal pathogen in elite wheat cultivars. New Phytol 226:3879–90
    [Google Scholar]
  72. 72.
    Miller MR, White A, Boots M 2005. The evolution of host resistance: tolerance and control as distinct strategies. J. Theor. Biol. 236:198–207
    [Google Scholar]
  73. 73.
    Miller MR, White A, Boots M 2006. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60:945–56
    [Google Scholar]
  74. 74.
    Montarry J, Corbiere R, Lesueur S, Glais I, Andrivon D 2006. Does selection by resistant hosts trigger local adaptation in plant–pathogen systems. J. Evol. Biol. 19:522–31
    [Google Scholar]
  75. 75.
    Montes N, Alonso-Blanco C, García-Arenal F 2019. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLOS Pathog 15:e1007810
    [Google Scholar]
  76. 76.
    Montes N, Pagán I. 2019. Light intensity modulates the efficiency of virus seed transmission through modifications of plant tolerance. Plants 8:E304
    [Google Scholar]
  77. 77.
    Montes N, Vijayan V, Pagán I 2020. Trade-offs between host tolerances to different pathogens in plant-virus interactions. Virus Evol 6:veaa019
    [Google Scholar]
  78. 78.
    Newton AC. 2016. Exploitation of diversity within crops: the key to disease tolerance. Front. Plant Sci. 7:665
    [Google Scholar]
  79. 79.
    Newton AC, Thomas WTB, Guy DC, Gaunt R 1998. The interaction of fertiliser treatment with tolerance to powdery mildew in spring barley. Field Crops Res 55:45–56
    [Google Scholar]
  80. 80.
    Ney B, Bancal M-O, Bancal P, Bingham IJ, Foulkes J et al. 2013. Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses. Eur. J. Plant Pathol. 135:561–80
    [Google Scholar]
  81. 81.
    Ogrodowicz P, Kuczyńska A, Mikołajczak K, Adamski T, Surma M et al. 2019. Mapping of quantitative trait loci for traits linked to Fusarium head blight symptoms evaluation in barley RILs. bioRxiv 751552. https://doi.org/10.1101/751552
    [Crossref]
  82. 82.
    Pagán I. 2008. Factores que determinan la virulencia del virus del mosaioc del pepino (CMV) en Arabidopsis thaliana PhD Thesis, Univ. Politéc Madrid, Madrid:
    [Google Scholar]
  83. 83.
    Pagán I, Alonso-Blanco C, García-Arenal F 2007. The relationship of within-host multiplication and virulence in a plant-virus system. PLOS ONE 2:e786
    [Google Scholar]
  84. 84.
    Pagán I, Alonso-Blanco C, García-Arenal F 2008. Host responses in life-history traits and tolerance to virus infection in Arabidopsis thaliana. . PLOS Pathog 4:e1000124
    [Google Scholar]
  85. 85.
    Pagán I, Alonso-Blanco C, García-Arenal F 2009. Differential tolerance to direct and indirect density-dependent costs of viral infection in Arabidopsis thaliana. . PLOS Pathog 5:e1000531
    [Google Scholar]
  86. 86.
    Pagán I, García-Arenal F. 2018. Tolerance to plant pathogens: theory and experimental evidence. Int. J. Mol. Sci. 19:810
    [Google Scholar]
  87. 87.
    Pagán I, Montes N, Milgroom MG, García-Arenal F 2014. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLOS Pathog 10:e1004293
    [Google Scholar]
  88. 88.
    Pallás V, García JA. 2011. How do plant viruses induce disease? Interactions and interference with host components. J. Gen. Virol. 92:2691–705
    [Google Scholar]
  89. 89.
    Parker SR, Welhamb S, Paveley ND, Foulkes J, Scott RK 2004. Tolerance of Septoria leaf blotch in winter wheat. Plant Pathol 53:1–10
    [Google Scholar]
  90. 90.
    Paudel DB, Sanfaçon H. 2018. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 9:1575
    [Google Scholar]
  91. 91.
    Paul ND, Ayres PG. 1984. Effects of rust and post-infection drought on photosynthesis, growth and water relations in groundsel. Plant Pathol 33:561–69
    [Google Scholar]
  92. 92.
    Paul ND, Ayres PG. 1986. Interference between healthy and rusted groundsel (Senecio vulgaris L.) within mixed populations of different densities and proportions. New Phytol 104:257–69
    [Google Scholar]
  93. 93.
    Paul ND, Ayres PG. 1986. The effects of infection by rust (Puccinia lagenophorae Cooke) on the growth of groundsel (Senecio vulgaris L.) cultivated under a range of nutrient concentrations. Ann. Bot. 58:321–31
    [Google Scholar]
  94. 94.
    Paul ND, Ayres PG. 1986. The impact of a pathogen (Puccinia lagenophorae) on populations of groundsel (Senecio vulgaris) overwintering in the field: I. Mortality, vegetative growth and the development of size hierarchies. J. Ecol. 74:1069–84
    [Google Scholar]
  95. 95.
    Paul ND, Ayres PG. 1986. The impact of a pathogen (Puccinia lagenophorae) on populations of groundsel (Senecio vulgaris) overwintering in the field: II. Reproduction. J. Ecol. 74:1085–94
    [Google Scholar]
  96. 96.
    Paul ND, Ayres PG. 1987. Survival, growth and reproduction of groundsel (Senecio vulgaris) infected by rust (Puccinia lagenophorae) in the field during summer. J. Ecol. 75:61–71
    [Google Scholar]
  97. 97.
    Paul ND, Ayres PG. 1987. Water stress modifies intraspecific interference between rust (Puccinia lagenophorae Cooke)-infected and healthy groundsel (Senecio vulgaris L.). New Phytol 106:555–66
    [Google Scholar]
  98. 98.
    Paul ND, Ayres PG. 1990. Effects on interactions between nutrient supply and rust infection of Senecio vulgaris L. on competition with Capsella bursa-pastoris (L.) Medik. New Phytol 114:667–74
    [Google Scholar]
  99. 99.
    Perrin N, Christe P. 1996. On host life-history response to parasitism. Oikos 75:317–20
    [Google Scholar]
  100. 100.
    Peturson B, Newton M, Whiteside AGO 1948. Further studies on the effect of leaf rust on the yield, grade, and quality of wheat. Can. J. Res. 26:65–70
    [Google Scholar]
  101. 101.
    Pilson D. 2000. The evolution of plant response to herbivory: simultaneously considering resistance and tolerance in Brassica rapa. Evol. . Ecol 14:457–89
    [Google Scholar]
  102. 102.
    Råberg L. 2014. How to live with the enemy: understanding tolerance to parasites. PLOS Biol 12:e1001989
    [Google Scholar]
  103. 103.
    Råberg L, Graham AL, Read AF 2009. Decomposing health: tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. Lond. B 364:37–49
    [Google Scholar]
  104. 104.
    Råberg L, Sim D, Read AF 2007. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–14
    [Google Scholar]
  105. 105.
    Read AF. 1994. The evolution of virulence. Trends Microbiol 2:73–76
    [Google Scholar]
  106. 106.
    Restif O, Koella JC. 2003. Shared control of epidemiological traits in a coevolutionary model of host-parasite interactions. Am. Nat. 161:827–36
    [Google Scholar]
  107. 107.
    Richardson LA. 2016. Understanding disease tolerance and resilience. PLOS Biol 14:e1002513
    [Google Scholar]
  108. 108.
    Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F 2011. Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus–PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor. Appl. Genet. 123:69–76
    [Google Scholar]
  109. 109.
    Robert C, Bancal M-O, Ney B, Lannou C 2005. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytol 165:227–41
    [Google Scholar]
  110. 110.
    Roberts JJ, Hendricks LT, Patterson FL 1984. Tolerance to leaf rust in susceptible wheat cultivars. Phytopathology 74:349–51
    [Google Scholar]
  111. 111.
    Rohr JR, Raffel TR, Hall CA 2010. Developmental variation in resistance and tolerance in a multi-host–parasite system. Funct. Ecol. 24:1110–21
    [Google Scholar]
  112. 112.
    Rooney JM, Hoad GV. 1989. Compensation in growth and photosynthesis of wheat (Triticum aestivum L.) following early inoculations with Septoria nodorum (Berk.) Berk. New Phytol 113:513–21
    [Google Scholar]
  113. 113.
    Roy BA, Kirchner JW. 2000. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63
    [Google Scholar]
  114. 114.
    Roy BA, Kirchner JW, Christian CE, Rose LE 2000. High disease incidence and apparent disease tolerance in a North American Great Basin plant community. Evol. Ecol. 14:421–38
    [Google Scholar]
  115. 115.
    Rubio L, Herrero JR, Sarrió J, Moreno P, Guerri J 2003. A new approach to evaluate relative resistance and tolerance of tomato cultivars to begomoviruses causing the tomato yellow leaf curl disease in Spain. Plant Pathol 52:763–69
    [Google Scholar]
  116. 116.
    Sacristán S, Fraile A, Malpica JM, García-Arenal F 2005. An analysis of host adaptation and its relationship with virulence in Cucumber mosaic virus. . Phytopathology 95:827–33
    [Google Scholar]
  117. 117.
    Sacristán S, García-Arenal F. 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Mol. Plant Pathol. 9:369–84
    [Google Scholar]
  118. 118.
    Salvaudon L, Héraudet V, Shykoff JA 2007. Genotype-specific interactions and the trade-off between host and parasite fitness. BMC Evol. Biol. 7:189
    [Google Scholar]
  119. 119.
    Salvaudon L, Héraudet V, Shykoff JA 2008. Arabidopsis thaliana and the Robin Hood parasite: a chivalrous oomycete that steals fitness from fecund hosts and benefits the poorest one. Biol. Lett. 4:526–29
    [Google Scholar]
  120. 120.
    Salvaudon L, Shykoff JA. 2013. Variation in Arabidopsis developmental responses to oomycete infection: resilience versus changes in life history traits. New Phytol 197:919–26
    [Google Scholar]
  121. 121.
    Santa Brigida AB, Rojas CA, Grativol C, de Armas EM, Entenza JOP et al. 2016. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae. PLOS ONE 11:e0166473
    [Google Scholar]
  122. 122.
    Schafer JF. 1971. Tolerance to plant disease. Annu. Rev. Phytopathol. 9:235–52
    [Google Scholar]
  123. 123.
    Scharen AL, Krupinsky JM. 1969. Effect of Septoria nodorum infection on CO2 absorption and yield of wheat. Phytopathology 59:1298–301
    [Google Scholar]
  124. 124.
    Scheurer KS, Friedt W, Huth W, Waugh R, Ordon F 2001. QTL analysis of tolerance to a German strain of BYDV-PAV in barley (Hordeum vulgare L.). Theor. Appl. Genet. 103:1074–83
    [Google Scholar]
  125. 125.
    Schlichting C, Pigliucci M. 1998. Phenotypic Plasticity: A Reaction Norm Perspective Sunderland, MA: Sinauer Assoc.
  126. 126.
    Scholes JD, Farrar JF. 1986. Increased rates of photosynthesis in localized regions of a barley leaf infected with brown rust. New Phytol 104:601–12
    [Google Scholar]
  127. 127.
    Shukla A. 2018. Mechanism of tolerance in Arabidopsis to Cucumber mosaic virus infection PhD Thesis, Univ. Politéc Madrid, Madrid:
    [Google Scholar]
  128. 128.
    Shukla A, Pagán I, García-Arenal F 2018. Effective tolerance based on resource reallocation is a virus-specific defence in Arabidopsis thaliana. Mol. . Plant Pathol 19:1454–65
    [Google Scholar]
  129. 129.
    Simms EL. 2000. Defining tolerance as a norm of reaction. Evol. Ecol. 14:563–70
    [Google Scholar]
  130. 130.
    Simms E, Triplett J. 1994. Costs and benefits of plant responses to disease: resistance and tolerance. Evolution 48:1973–85
    [Google Scholar]
  131. 131.
    Simons MD. 1966. Relative tolerance of oat varieties to the crown rust fungus. Phytopathology 56:36–40
    [Google Scholar]
  132. 132.
    Stare T, Ramšak Ž, Blejec A, Stare K, Turnšek N et al. 2015. Bimodal dynamics of primary metabolism-related responses in tolerant potato–Potato virus Y interaction. BMC Genom 16:716
    [Google Scholar]
  133. 133.
    Stearns SC. 1992. The Evolution of Life Histories Oxford, UK: Oxford Univ. Press
  134. 134.
    Stewart AD, Logsdon JM, Kelley SE 2005. An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59:730–39
    [Google Scholar]
  135. 135.
    Thabet M, Najeeb MA. 2017. Impact of wheat leaf rust severity on grain yield losses in relation to host resistance for some Egyptian wheat cultivars. Middle East J. Agric. Res. 6:1501–9
    [Google Scholar]
  136. 136.
    Trudgill DL. 1991. Resistance to ant tolerance of plant parasitic nematodes in plants. Annu. Rev. Phytopathol. 29:167–92
    [Google Scholar]
  137. 137.
    Trudgill DL, Cotes LM. 1983. Tolerance of potato to potato cyst nematodes (Globodera rostochiensis and G. pallida) in relation to the growth and efficiency of the root system. Ann. Appl. Biol. 102:385–97
    [Google Scholar]
  138. 138.
    Tsuji J, Somerville SC, Hammerschmidt R 1991. Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris. Physiol. Mol. Plant Pathol. 38:57–65
    [Google Scholar]
  139. 139.
    Vale PF, Fenton A, Brown SP 2014. Limiting damage during infection: lessons from infection tolerance for novel therapeutics. PLOS Biol 12:e1001769
    [Google Scholar]
  140. 140.
    van den Bosch F, Akudibalah G, Seal S, Jeger M 2006. Host resistance and the evolutionary response of plant viruses. J. Appl. Evol. 43:506–16
    [Google Scholar]
  141. 141.
    Van der Plank JE. 1963. Plant Diseases: Epidemics and Control New York: Academic
  142. 142.
    Veronese P, Narasimhan ML, Stevenson RA, Zhu J-K, Weller SC et al. 2003. Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. . Plant J 35:574–87
    [Google Scholar]
  143. 143.
    Vidavsky F, Czosnek H. 1998. Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. . Phytopathology 88:910–14
    [Google Scholar]
  144. 144.
    Vijayan V, López-González S, Sánchez F, Ponz F, Pagán I 2017. Virulence evolution of a sterilizing plant virus: tuning multiplication and resource exploitation. Virus Evol 3:vex033
    [Google Scholar]
  145. 145.
    Vitale C, Best A. 2019. The paradox of tolerance: parasite extinction due to the evolution of host defence. J. Theor. Biol. 474:78–87
    [Google Scholar]
  146. 146.
    Williams KJ, Lewis JG, Bogacki P, Pallotta MA, Willsmore KL et al. 2003. Mapping of a QTL contributing to cereal cyst nematode tolerance and resistance in wheat. Aust. J. Agric. Res. 54:731–37
    [Google Scholar]
  147. 147.
    Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ 2008. Virus infection improves drought tolerance. New Phytol 180:911–21
    [Google Scholar]
  148. 148.
    Yavuzaslanoğlu E, Dikici A, Elekcioğlu IH 2015. Effect of Ditylenchus dipsaci Kühn, 1857 (Tylenchida: Anguinidae) on onion yield in Karaman Province, Turkey. Turk. J. Agric. For. 39:227–33
    [Google Scholar]
  149. 149.
    Zhan J, Mundt CC, Hoffer ME, McDonald BA 2002. Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J. Evol. Biol. 15:634–47
    [Google Scholar]
  150. 150.
    Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X 2013. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytol 199:228–40
    [Google Scholar]
  151. 151.
    Zhu S, Kolb FL, Kaeppler HF 2003. Molecular mapping of genomic regions underlying barley yellow dwarf tolerance in cultivated oat (Avena sativa L.). Theor. Appl. Genet. 106:1300–6
    [Google Scholar]
  152. 152.
    Zuckerman E, Eshel A, Eyal Z 1997. Physiological aspects related to tolerance of spring wheat cultivars to Septoria tritici blotch. Phytopathology 87:60–65
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-010820-012749
Loading
/content/journals/10.1146/annurev-phyto-010820-012749
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error