1932

Abstract

In this article, I briefly recount the historical events in my native country that led me to become a plant pathologist. I started as a field pathologist specializing in fungal diseases of legumes, moved to biochemical research on virulence factors, and then on to molecular plant-microbe interactions. I describe the impact my graduate studies at the University of California (UC)-Davis had on my career. My life's work and teaching can be said to reflect the development in plant pathology during the past 40 years. I have included a concise review of the development of plant pathology in Israel and the ways it is funded. Dealing with administrative duties while conducting research has contributed to my belief in the importance of multidisciplinary approaches and of preserving the applied approach in the teaching of plant pathology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-045953
2014-08-04
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/phyto/52/1/annurev-phyto-102313-045953.html?itemId=/content/journals/10.1146/annurev-phyto-102313-045953&mimeType=html&fmt=ahah

Literature Cited

  1. Aaronovitz Y, Bauer S, Loya R, Schreiber R, Barash I, Gutnick DL. 1.  1987. Specific inhibitors of tissue degrading enzymes for control of post-harvest diseases of fruit and vegetables. Isr. Patent Appl. No.8422 [Google Scholar]
  2. Aaronovitz Y, Bauer S, Loya R, Schreiber R, Barash I, Gutnick DL. 2.  1989. A specific bacterial inhibitor of the extracellular polygalacturonase of Geotrichum candidum. Novel Microbial Products for Medicine and Agriculture. Society for Industrial Microbiology AL Demain, GA Somkuti, JC Hunter-Cevera, HW Rosmoor 151–59 Amsterdam, Neth: Elsevier Sci. [Google Scholar]
  3. Balaji V, Jacob-Hirsh J, Sherf O, Eichenlaub R, Iraki N. 3.  et al. 2008. Tomato transcripton changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol. 146:1797–809 [Google Scholar]
  4. Barash I. 4.  1968. Liberation of polygalacturonase during spore germination by Geotrichum candidum. Phytopathology 58:1364–71 [Google Scholar]
  5. Barash I. 5.  1972. Accumulation of urea and allantoin during purine utilization by germinating spores of Geotrichum candidum. J. Gen. Microbiol. 72:539–42 [Google Scholar]
  6. Barash I, Angel E. 6.  1970. Isolation and properties of an exopolygalacturonase produced by Penicillium digitatum during infection of lemon fruits. Isr. J. Bot. 19:599–608 [Google Scholar]
  7. Barash I, Dori S, Mor H, Manulis S. 7.  1993. Role of iron in fungal phytopathologies. Iron Chelation in Plants and Soil Microorganisms LL Barton, BC Hemming 251–67 San Diego, CA: Academic, Inc. [Google Scholar]
  8. Barash I, Eyal Z. 8.  1970. Properties of a polygalacturonase produced by Geotrichum candidum. Phytopathology 60:27–30 [Google Scholar]
  9. Barash I, Karr JA, Strobel GA. 9.  1975. Isolation and characterization of stemphylin, a chromone glucoside from Stemphylium botryosum. Plant Physiol. 55:646–51 [Google Scholar]
  10. Barash I, Klein L. 10.  1969. The surface localization of polygalacturonase in Geotrichum candidum. Phyto-pathology 59:319–24 [Google Scholar]
  11. Barash I, Klisiewicz JM, Kosuge T. 11.  1964. Biochemical factors affecting pathogenicity of Botrytis cinerea on safflower. Phytopathology 54:923–27 [Google Scholar]
  12. Barash I, Conway ML, Howard DH. 12.  1967. Carbon catabolism and synthesis of macromolecules during spore germination of Microsporum gypseum. J. Bacteriol. 93:656–62 [Google Scholar]
  13. Barash I, Lowy I, Pomerantz S. 13.  1972. Effect of urea on ammonium-dependent synthesis of carbamyl phosphate during spore germination of Geotrichum candidum. Plant Physiol. 50:642–44 [Google Scholar]
  14. Barash I, Klisiewicz JM, Kosuge T. 14.  1965. Utilization of carbon compounds in zoospores of Phytophthora dreschsleri and their effect on motility and germination. Phytopathology 55:1257–61 [Google Scholar]
  15. Barash I, Manulis-Sasson S. 15.  2007. Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends Microbiol. 15:538–45 [Google Scholar]
  16. Barash I, Manulis-Sasson S. 16.  2009. Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu. Rev. Phytopathol. 47:133–52 [Google Scholar]
  17. Barash I, Manulis S. 17.  1986. Iron and phytotoxins as exemplified by stemphyloxins and other toxins. Iron, Siderophores and Plant disease TR Swinburne 273–81 New York: Springer [Google Scholar]
  18. Barash I, Manulis S, Kashman Y, Springer JP, Chen MHM. 18.  et al. 1983. Crystalization and X-ray analysis of Stemphyloxin I, a phytotoxin from Stemphylium botryosum. Science 220:1065–66 [Google Scholar]
  19. Barash I, Mor H. 19.  1972. Studies on the control and properties of ornithine transcarbamylase in germinated spores of Geotrichum candidum. Plant Cell Physiol. 13:119–30 [Google Scholar]
  20. Barash I, Mor H. 20.  1973. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase in germinated spores of Geotrichum candidum. Plant Physiol. 51:852–58 [Google Scholar]
  21. Barash I, Mor H, Sadon T. 21.  1975. Evidence for ammonium-dependent de novo synthesis of glutamate dehydrogenase in detached oat leaves. Plant Physiol. 56:856–58 [Google Scholar]
  22. Barash I, Mor H, Sadon T. 22.  1976. Isozymes of glutamate dehydrogenase from oat leaves: properties and light effect on synthesis. Plant Cell Physiol. 17:493–500 [Google Scholar]
  23. Barash I, Pupkin G, Koren L, Ben-Hayyim G, Strobel GA. 23.  1981. A low molecular weight phytotoxin produced by Phoma tracheiphila, the cause of mal secco disease in citrus. Physiol. Plant Pathol. 19:17–19 [Google Scholar]
  24. Barash I, Pupkin G, Netzer D, Kashman Y. 24.  1982. A novel enolic β-ketoaldehyde phytotoxin produced by Stemphylium botryosum f. sp. lycopersici: partial chemical and biological characterization. Plant Physiol. 69:23–27 [Google Scholar]
  25. Barash I, Sadon T, Mor H. 25.  1973. Induction of a specific isoenzyme of glutamate dehydrogenase by ammonia in oat leaves. Nat. New Biol. 244:150–52 [Google Scholar]
  26. Barash I, Wahl I. 26.  1960. Studies of Ascochyta diseaeses of peas in Israel. Hassadeh 41:262–67 (In Hebrew) [Google Scholar]
  27. Barash I, Zilberman E, Marcus L. 27.  1984. Purification of Geotrichum candidum endopolygalacturonase from culture and from host tissue by affinity chromatography on cross-linked polypectate. Physiol. Plant Pathol. 25:161–69 [Google Scholar]
  28. Barash I, Zion R, Krikun J, Nachmias A. 28.  1988. Effect of iron status on verticillium wilt disease and on in vitro production of siderophores by Verticillium dahliae. J. Plant Nutr. 11:893–905 [Google Scholar]
  29. Bogdanove AJ, Schornack S, Lahaye T. 29.  2010. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13:394–401 [Google Scholar]
  30. Breiman A, Barash I. 30.  1976. Characterization of L-asparagine transport systems in Stemphylium botryosum. J. Bacteriol. 127:1127–35 [Google Scholar]
  31. Breiman A, Barash I. 31.  1978. In vivo regulation of NADP-specific glutamate dehydrogenase by L-amides in Stemphylium botryosum. J. Gen. Microbiol. 106:343–52 [Google Scholar]
  32. Breiman A, Barash I. 32.  1980. Methylamine and ammonia transport in Stemphylium botryosum. J. Gen. Microbiol. 116:201–6 [Google Scholar]
  33. Burr TJ, Katz BH, Abawi GS, Crosier DC. 33.  1991. Comparison of tumorigenic strains of Erwinia herbicola isolated from table beet with E. h. gypsophilae. Plant Dis. 75:855–58 [Google Scholar]
  34. Butler EE, Webster RK, Eckert JW. 34.  1965. Taxonomy, pathogenicity and physiological properties of the fungus causing sour rot in citrus. Phytopathology 55:1262–68 [Google Scholar]
  35. Chalupowicz L, Barash I, Panijel M, Sessa G, Manulis-Sasson S. 35.  2009. Regulatory interactions between quorum-sensing, auxin, cytokinin and hrp-regulatory genes in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Mol. Plant-Microbe Interact. 22:849–56 [Google Scholar]
  36. Chalupowicz L, Cohen-Kandli M, Dror O, Eichenlaub R, Gartemann K-H. 36.  et al. 2010. Sequential expression of bacterial virulence and plant defense genes during infection of tomato with Clavibacter michiganensis subsp. michiganensis. Phytopathology 100:252–61 [Google Scholar]
  37. Chalupowicz L, Weinthal D, Gaba V, Sessa G, Barash I, Manulis-Sasson S. 37.  2013. Polar auxin transport is essential for gall formation by Pantoea agglomerans on Gypsophila. Mol. Plant Pathol. 14:185–90 [Google Scholar]
  38. Chalupowicz L, Zellermann E-M, Fluegel O, Dror O, Eichenlaub R. 38.  et al. 2012. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology 102:23–31 [Google Scholar]
  39. Clark E, Manulis S, Ophir Y, Barash I, Gafni Y. 39.  1993. Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83:234–40 [Google Scholar]
  40. Comai L, Kosuge T. 40.  1980. Involvement of plasmid deoxyribonucleic acid in indoleacetic synthesis in Pseudomonas savastanoi. J. Bacteriol. 143:950–57 [Google Scholar]
  41. Comai L, Kosuge T. 41.  1982. Cloning and characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J. Bacteriol. 149:40–46 [Google Scholar]
  42. Cooksey DA. 42.  1986. Galls of Gypsophila paniculata caused by Erwinia herbicola. Plant Dis. 70:464–68 [Google Scholar]
  43. Dori S, Solel Z, Kashman Y, Barash I. 43.  1990. Characterization of hydroxamate siderophores and siderophore-mediated iron uptake in Gaeumannomyces graminis var. tritici. Physiol. Mol. Plant Pathol. 37:95–106 [Google Scholar]
  44. Errel A, Mor H, Barash I. 44.  1973. The isozymic nature and kinetic properties of glutamate dehydrogenase from safflower seedlings. Plant Cell Physiol. 14:39–50 [Google Scholar]
  45. Ezra D, Barash I, Valinsky L, Manulis S. 45.  2000. The dual function in virulence and host range restriction of a gene isolated from the pPATHEhg plasmid of Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 13:693–98 [Google Scholar]
  46. Ezra D, Barash I, Weinthal DM, Gaba V, Manulis S. 46.  2004. pthG from Pantoea agglomerans pv. gypsophilae encodes an avirulence effector that determines incompatibility in multiple beet species. Mol. Plant Pathol. 5:105–14 [Google Scholar]
  47. Finkler A, Ben-Zvi B, Koltin Y, Barash I. 47.  1988. Transcription and in vitro translation of the dsRNA virus isolated from Rhizoctonia solani. Virus 1:205–19 [Google Scholar]
  48. Finkler A, Koltin Y, Barash I, Sneh B, Pozniak D. 48.  1985. Isolation of a virus from virulent strains of Rhizoctonia solani. J. Gen. Virol. 66:1221–32 [Google Scholar]
  49. Gafni Y, Manulis S, Kunik T, Lichter A, Barash I, Ophir Y. 49.  1997. Characterization of the auxin synthesis genes of Erwinia herbicola pv. gypsophilae. Israel J. Plant Sci. 45:279–84 [Google Scholar]
  50. Guo M, Manulis S, Mor H, Barash I. 50.  2002. The presence of diverse IS elements and an avrPphD homologue that acts as a virulence factor on the pathogenicity plasmid of Erwinia herbicola pv. gypsophilae Mol. Plant-Microbe Interact. 15:709–16 [Google Scholar]
  51. Hershenhorn J, Bher L, Barash I, Arzee T. 51.  1989. Mode of sour rot formation as inferred from comparative studies with virulent and avirulent strains of Geotrichum candidum. J. Phytopathol. 126:257–71 [Google Scholar]
  52. Hershenhorn J, Manulis S, Barash I. 52.  1990. Polygalacturonase associated with infection of Valencia orange by Penicillium italicum. Phytopathology 80:1374–76 [Google Scholar]
  53. Ichielevich-Auster M, Sneh B, Koltin Y, Barash I. 53.  1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica 13:103–22 [Google Scholar]
  54. Ichielevich-Auster M, Sneh B, Koltin Y, Barash I. 54.  1985. Suppression of damping-off caused by Rhizoctonia species by a nonpathogenic isolate of R. solani. Phytopathology 75:1080–84 [Google Scholar]
  55. Katan J. 55.  2009. Phytopathology in Israel: nine decades of research. Phytoparasitica 37:333–36 [Google Scholar]
  56. Kleitman F, Barash I, Burger A, Iraki N, Falah Y. 56.  et al. 2008. Characterization of a Clavibacter michiganensis subsp. michiganensis population in Israel. Eur. J. Plant Pathol. 121:463–75 [Google Scholar]
  57. Lichter A, Barash I, Valinsky L, Manulis S. 57.  1995. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J. Bacteriol. 177:4457–65 [Google Scholar]
  58. Lichter A, Manulis S, Valinsky L, Karniol B, Barash I. 58.  1996. IS1327, a new insertion-like element in the pathogenicity-associated plasmid of Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 9:98–104 [Google Scholar]
  59. Manulis S, Barash I. 59.  2003. The molecular basis for transformation of an epiphyte into a gall-forming pathogen as exemplified by Erwinia herbicola pv. gypsophilae. Plant-Microbe Interactions G Stacey, N Keen 619–52 St. Paul, Minnesota: American Phytopathological Society [Google Scholar]
  60. Manulis S, Gafni Y, Clark E, Zutra D, Ophir Y, Barash I. 60.  1991. Identification of a plasmid DNA probe for detection of Erwinia herbicola pathogenic on Gypsophila paniculata. Phytopathology 81:54–57 [Google Scholar]
  61. Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I. 61.  1998. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 11:634–42 [Google Scholar]
  62. Manulis S, Kashman Y, Barash I. 62.  1987. Identification of siderophores and siderophore-mediated uptake of iron in Stemphylium botryosum. Phytochemistry 26:1317–20 [Google Scholar]
  63. Manulis S, Kashman Y, Netzer D, Barash I. 63.  1984. Phytotoxins from Stemphylium botryosum: structural determination of stemphyloxin II, production in culture and interaction with iron. Phytochemistry 23:2193–98 [Google Scholar]
  64. Manulis S, Netzer D, Barash I. 64.  1986. Structure-activity relationships as inferred from comparative phytotoxicity of stemphyloxins and betaenones. J. Phytopathol. 115:283–87 [Google Scholar]
  65. Manulis S, Netzer D, Barash I. 65.  1987. Acquisition of iron by Stemphylium botryosum under iron-replete conditions. Can. J. Microbiol. 33:652–59 [Google Scholar]
  66. Marcus L, Barash I, Sneh B, Koltin Y, Finkler A. 66.  1986. Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn. Physiol. Mol. Plant Pathol. 29:325–36 [Google Scholar]
  67. Mor H, Barash I. 67.  1990. Characterization of siderophore-mediated iron transport in Geotrichum candidum, a non-siderophore producer. Biol. Met. 2:209–13 [Google Scholar]
  68. Mor H, Manulis S, Zuc M, Nizan R, Coplin DL, Barash I. 68.  2001. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 14:431–36 [Google Scholar]
  69. Mor H, Pasternak M, Barash I. 69.  1988. Uptake of iron by Geotrichum candidum, a nonsiderophore producer. Biol. Met. 1:99–105 [Google Scholar]
  70. Nachmias A, Bar-Joseph M, Solel Z, Barash I. 70.  1979. Diagnosis of mal secco disease in lemon by enzyme-linked immunosorbent assay. Phyopathology 69:559–61 [Google Scholar]
  71. Nachmias A, Barash I, Solel Z, Strobel GA. 71.  1977. Purification and characterization of a phytotoxin produced by Phoma tracheiphila, the causal agent of mal secco disease of citrus. Physiol. Plant Pathol. 10:147–57 [Google Scholar]
  72. Nachmias A, Barash I, Solel Z, Strobel GA. 72.  1977. Translocation of mal secco toxin in lemons and its effect on electrolyte leakage, transpiration and citrus callus growth. Phytoparasitica 5:94–103 [Google Scholar]
  73. Nakamura M, Suprapta DN, Iwai H, Arai K. 73.  2001. Comparison of endo-polygalacturonase activities of citrus and non-citrus races of Geotrichum candidum, and cloning and expression of the corresponding genes. Mol. Plant Pathol. 2:265–74 [Google Scholar]
  74. Nissan G, Manulis-Sasson S, Chalupowicz L, Teper D, Yeheskel A. 74.  et al. 2012. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT. Mol. Plant-Microbe Interact. 25:231–40 [Google Scholar]
  75. Nissan G, Manulis-Sasson S, Weinthal DM, Mor H, Sessa G, Barash I. 75.  2006. The type III effectors HsvG and HsvB of gall-forming Pantoea determine host specificity and function as transcriptional activators. Mol. Microbiol. 61:1118–31 [Google Scholar]
  76. Nissan G, Manulis S, Weinthal D, Sessa G, Barash I. 76.  2005. Analysis of promoters recognized by HrpL, an alternative sigma-factor protein from Pantoea agglomerans pv. gypsophilae. Mol. Plant-Microbe Interact. 18:634–43 [Google Scholar]
  77. Nizan-Koren R, Manulis S, Mor H, Iraki NM, Barash I. 77.  2003. The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 15:1249–60 [Google Scholar]
  78. Nizan R, Barash I, Valinsky L, Lichter A, Manulis S. 78.  1997. The presence of hrp genes on the pathogenicity- associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 10:677–82 [Google Scholar]
  79. Panijel M, Chalupowicz L, Sessa G, Manulis-Sasson S, Barash I. 79.  2013. Global regulatory networks control the Hrp regulon of the gall-forming bacterium Pantoea agglomerans pv. gypsophilae. Mol. Plant-Microbe Interact. 26:1031–43 [Google Scholar]
  80. Savidor A, Teper D, Gartemann K-H, Eichenlaub R, Chalupowicz L. 80.  et al. 2012. The Clavibacter michiganensis subsp. michiganensis – tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection. J. Proteome Res. 11:736–50 [Google Scholar]
  81. Schachnai A, Barash I. 81.  1982. Evaluation of the fungicides CGA 64251, guazatine, sodium o-phenylphenate, and imazalil for control of sour rot on lemon fruits. Plant Dis. 66:733–35 [Google Scholar]
  82. Shorer J, Zelmanowicz I, Barash I. 82.  1972. Utilization and metabolism of urea during spore germination by Geotrichum candidum. Phytochemistry 11:595–608 [Google Scholar]
  83. Valinsky L, Manulis S, Nizan R, Ezra D, Barash I. 83.  1998. A pathogenicity gene isolated from the pPATH of Erwinia herbicola pv. gypsophilae determines host specificity. Mol. Plant-Microbe Interact. 11:753–62 [Google Scholar]
  84. Alfen NK. 84.  Van 1982. Biology and potential for disease control of hypovirulence of Endothia parasitica. Annu. Rev. Phytopathol. 20:349–62 [Google Scholar]
  85. Weinthal D, Barash I, Tzfira T, Gaba V, Teper D. 85.  et al. 2011. Characterization of nuclear localization signals in the type III effectors HsvG and HsvB of the gall-forming bacterium Pantoea agglomerans. Microbiology 157:1500–8 [Google Scholar]
  86. Weinthal DM, Barash I, Panijel M, Valinsky L, Gaba V, Manulis-Sasson S. 86.  2007. Distribution and replication of the pathogenicity plasmid pPATH in diverse populations of the gall-forming Pantoea agglomerans. Appl. Environ. Microbiol. 73:7552–61 [Google Scholar]
  87. Xiao Y, Hutcheson S. 87.  1994. A single promoter sequence recognized by newly identified alternate sigma factor direct expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 176:3089–91 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-045953
Loading
/content/journals/10.1146/annurev-phyto-102313-045953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error