1932

Abstract

With no limiting membrane surrounding virions, nonenveloped viruses have no need for membrane fusion to gain access to intracellular replication compartments. Consequently, nonenveloped viruses do not encode membrane fusion proteins. The only exception to this dogma is the fusogenic reoviruses that encode fusion-associated small transmembrane (FAST) proteins that induce syncytium formation. FAST proteins are the smallest viral membrane fusion proteins and, unlike their enveloped virus counterparts, are nonstructural proteins that evolved specifically to induce cell-to-cell, not virus-cell, membrane fusion. This distinct evolutionary imperative is reflected in structural and functional features that distinguish this singular family of viral fusogens from all other protein fusogens. These rudimentary fusogens comprise specific combinations of different membrane effector motifs assembled into small, modular membrane fusogens. FAST proteins offer a minimalist model to better understand the ubiquitous process of protein-mediated membrane fusion and to reveal novel mechanisms of nonenveloped virus dissemination that contribute to virulence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092818-015523
2019-09-29
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/virology/6/1/annurev-virology-092818-015523.html?itemId=/content/journals/10.1146/annurev-virology-092818-015523&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:D708–17
    [Google Scholar]
  2. 2. 
    Boutilier J, Duncan R 2011. The reovirus fusion-associated small transmembrane (FAST) proteins: virus-encoded cellular fusogens. Current Topics in Membranes 68 LV Chernomordik, MM Kozlov 107–40 San Diego, CA: Academic
    [Google Scholar]
  3. 3. 
    Duncan R, Chen Z, Walsh S, Wu S 1996. Avian reovirus-induced syncytium formation is independent of infectious progeny virus production and enhances the rate, but is not essential, for virus-induced cytopathology and virus egress. Virology 224:453–64
    [Google Scholar]
  4. 4. 
    Nieva JL, Madan V, Carrasco L 2012. Viroporins: structure and biological functions. Nat. Rev. Microbiol. 10:563–74
    [Google Scholar]
  5. 5. 
    Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N et al. 2013. Genetic basis of cell-cell fusion mechanisms. Trends Genet 29:427–37
    [Google Scholar]
  6. 6. 
    Chernomordik LV, Kozlov MM. 2005. Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–82
    [Google Scholar]
  7. 7. 
    Chernomordik LV, Kozlov MM. 2008. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:675–83
    [Google Scholar]
  8. 8. 
    Cohen FS, Melikyan GB. 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199:1–14
    [Google Scholar]
  9. 9. 
    Kozlov MM, McMahon HT, Chernomordik LV 2010. Protein-driven membrane stresses in fusion and fission. Trends Biochem. Sci. 35:699–706
    [Google Scholar]
  10. 10. 
    Harrison SC. 2015. Viral membrane fusion. Virology 479–80:498–507
    [Google Scholar]
  11. 11. 
    Apellaniz B, Huarte N, Largo E, Nieva JL 2014. The three lives of viral fusion peptides. Chem. Phys. Lipids 181:40–55
    [Google Scholar]
  12. 12. 
    Gregory SM, Harada E, Liang B, Delos SE, White JM, Tamm LK 2011. Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. PNAS 108:11211–16
    [Google Scholar]
  13. 13. 
    Gray C, Tamm LK. 1998. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers. Protein Sci 7:2359–73
    [Google Scholar]
  14. 14. 
    Lai AL, Moorthy AE, Li Y, Tamm LK 2012. Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion. J. Mol. Biol. 418:3–15
    [Google Scholar]
  15. 15. 
    Lee J, Nyenhuis DA, Nelson EA, Cafiso DS, White JM, Tamm LK 2017. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity. PNAS 114:E7987–96
    [Google Scholar]
  16. 16. 
    Liao Y, Zhang SM, Neo TL, Tam JP 2015. Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein. Biochemistry 54:1819–30
    [Google Scholar]
  17. 17. 
    Shaw AL, Samal SK, Subramanian K, Prasad BV 1996. The structure of aquareovirus shows how the different geometries of the two layers of the capsid are reconciled to provide symmetrical interactions and stabilization. Structure 4:957–67
    [Google Scholar]
  18. 18. 
    Attoui H, Fang Q, Jaafar FM, Cantaloube JF, Biagini P et al. 2002. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J. Gen. Virol. 83:1941–51
    [Google Scholar]
  19. 19. 
    Nibert ML, Duncan R. 2013. Bioinformatics of recent aqua- and orthoreovirus isolates from fish: evolutionary gain or loss of FAST and fiber proteins and taxonomic implications. PLOS ONE 8:e68607
    [Google Scholar]
  20. 20. 
    Palacios G, Lovoll M, Tengs T, Hornig M, Hutchison S et al. 2010. Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus. PLOS ONE 5:e11487
    [Google Scholar]
  21. 21. 
    Jansen van Vuren P, Wiley M, Palacios G, Storm N, McCulloch S et al. 2016. Isolation of a novel fusogenic orthoreovirus from Eucampsipoda africana bat flies in South Africa. Viruses 8:65
    [Google Scholar]
  22. 22. 
    Kugler R, Marschang RE, Ihasz K, Lengyel G, Jakab F et al. 2016. Whole genome characterization of a chelonian orthoreovirus strain identifies significant genetic diversity and may classify reptile orthoreoviruses into distinct species. Virus Res 215:94–98
    [Google Scholar]
  23. 23. 
    Dandar E, Huhtamo E, Farkas SL, Oldal M, Jakab F et al. 2014. Complete genome analysis identifies Tvarminne avian virus as a candidate new species within the genus Orthoreovirus. J. Gen. Virol 95:898–904
    [Google Scholar]
  24. 24. 
    de Kloet SR. 2008. Sequence analysis of four double-stranded RNA genomic segments reveals an orthoreovirus with a unique genotype infecting psittaciformes. Avian Dis 52:480–86
    [Google Scholar]
  25. 25. 
    Ogasawara Y, Ueda H, Kikuchi N, Kirisawa R 2015. Isolation and genomic characterization of a novel orthoreovirus from a brown-eared bulbul (Hypsipetes amaurotis) in Japan. J. Gen. Virol. 96:1777–86
    [Google Scholar]
  26. 26. 
    Thalmann CM, Cummins DM, Yu M, Lunt R, Pritchard LI et al. 2010. Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology 402:26–40
    [Google Scholar]
  27. 27. 
    Gard G, Compans RW. 1970. Structure and cytopathic effects of Nelson Bay virus. J. Virol. 6:100–6
    [Google Scholar]
  28. 28. 
    Corcoran JA, Duncan R. 2004. Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell-cell fusion. J. Virol. 78:4342–51
    [Google Scholar]
  29. 29. 
    Duncan R. 1999. Extensive sequence divergence and phylogenetic relationships between the fusogenic and nonfusogenic orthoreoviruses: a species proposal. Virology 260:316–28
    [Google Scholar]
  30. 30. 
    Key T, Read J, Nibert ML, Duncan R 2013. Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins. J. Gen. Virol. 94:1039–50
    [Google Scholar]
  31. 31. 
    Ye X, Tian YY, Deng GC, Chi YY, Jiang XY 2012. Complete genomic sequence of a reovirus isolated from grass carp in China. Virus Res 163:275–83
    [Google Scholar]
  32. 32. 
    Yun T, Yu B, Ni Z, Ye W, Chen L et al. 2014. Genomic characteristics of a novel reovirus from Muscovy duckling in China. Vet. Microbiol. 168:261–71
    [Google Scholar]
  33. 33. 
    Salsman J, Top D, Boutilier J, Duncan R 2005. Extensive syncytium formation mediated by the reovirus FAST proteins triggers apoptosis-induced membrane instability. J. Virol. 79:8090–100
    [Google Scholar]
  34. 34. 
    Duncan R, Sullivan K. 1998. Characterization of two avian reoviruses that exhibit strain-specific quantitative differences in their syncytium-inducing and pathogenic capabilities. Virology 250:263–72
    [Google Scholar]
  35. 35. 
    Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR et al. 2007. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. PNAS 104:11424–29
    [Google Scholar]
  36. 36. 
    Chua KB, Voon K, Crameri G, Tan HS, Rosli J et al. 2008. Identification and characterization of a new orthoreovirus from patients with acute respiratory infections. PLOS ONE 3:e3803
    [Google Scholar]
  37. 37. 
    Pritchard LI, Chua KB, Cummins D, Hyatt A, Crameri G et al. 2006. Pulau virus; a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia. Arch. Virol. 151:229–39
    [Google Scholar]
  38. 38. 
    Cheng P, Lau CS, Lai A, Ho E, Leung P et al. 2009. A novel reovirus isolated from a patient with acute respiratory disease. J. Clin. Virol. 45:79–80
    [Google Scholar]
  39. 39. 
    Yamanaka A, Iwakiri A, Yoshikawa T, Sakai K, Singh H et al. 2014. Imported case of acute respiratory tract infection associated with a member of species Nelson Bay orthoreovirus. PLOS ONE 9:e92777
    [Google Scholar]
  40. 40. 
    Wong AH, Cheng PK, Lai MY, Leung PC, Wong KK et al. 2012. Virulence potential of fusogenic orthoreoviruses. Emerg. Infect. Dis. 18:944–48
    [Google Scholar]
  41. 41. 
    Chua KB, Voon K, Yu M, Keniscope C, Abdul Rasid K, Wang L-F 2011. Investigation of a potential zoonotic transmission of orthoreovirus associated with acute influenza-like illness in an adult patient. PLOS ONE 6:e25434
    [Google Scholar]
  42. 42. 
    Voon K, Tan YF, Leong PP, Teng CL, Gunnasekaran R et al. 2015. Pteropine orthoreovirus infection among out-patients with acute upper respiratory tract infection in Malaysia. J. Med. Virol. 87:2149–53
    [Google Scholar]
  43. 43. 
    Duncan R, Murphy FA, Mirkovic RR 1995. Characterization of a novel syncytium-inducing baboon reovirus. Virology 212:752–56
    [Google Scholar]
  44. 44. 
    Kumar S, Dick EJ Jr, Bommineni YR, Yang A, Mubiru J et al. 2014. Reovirus-associated meningoencephalomyelitis in baboons. Vet. Pathol. 51:641–50
    [Google Scholar]
  45. 45. 
    Leland MM, Hubbard GB, Sentmore HT 3rd, Soike KF, Hilliard JK 2000. Outbreak of Orthoreovirus-induced meningoencephalomyelitis in baboons. Comp. Med. 50:199–205
    [Google Scholar]
  46. 46. 
    Lamirande EW, Nichols DK, Owens JW, Gaskin JM, Jacobson ER 1999. Isolation and experimental transmission of a reovirus pathogenic in ratsnakes (Elaphe species). Virus Res 63:135–41
    [Google Scholar]
  47. 47. 
    Vieler E, Baumgartner W, Herbst W, Kohler G 1994. Characterization of a reovirus isolate from a rattle snake, Crotalus viridis, with neurological dysfunction. Arch. Virol. 138:341–44
    [Google Scholar]
  48. 48. 
    Jones RC. 2000. Avian reovirus infections. Rev. Sci. Tech. 19:614–25
    [Google Scholar]
  49. 49. 
    Blindheim S, Nylund A, Watanabe K, Plarre H, Erstad B, Nylund S 2015. A new aquareovirus causing high mortality in farmed Atlantic halibut fry in Norway. Arch. Virol. 160:91–102
    [Google Scholar]
  50. 50. 
    Brown CW, Stephenson KB, Hanson S, Kucharczyk M, Duncan R et al. 2009. The p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus neuropathogenesis. J. Virol. 83:552–61
    [Google Scholar]
  51. 51. 
    Kanai Y, Kawagishi T, Okamoto M, Sakai Y, Matsuura Y, Kobayashi T 2018. Lethal murine infection model for human respiratory disease-associated Pteropine orthoreovirus. Virology 514:57–65
    [Google Scholar]
  52. 52. 
    Kawagishi T, Kanai Y, Tani H, Shimojima M, Saijo M et al. 2016. Reverse genetics for fusogenic bat-borne orthoreovirus associated with acute respiratory tract infections in humans: role of outer capsid protein σC in viral replication and pathogenesis. PLOS Pathog 12:e1005455
    [Google Scholar]
  53. 53. 
    Guo H, Sun X, Yan L, Shao L, Fang Q 2013. The NS16 protein of aquareovirus-C is a fusion-associated small transmembrane (FAST) protein, and its activity can be enhanced by the nonstructural protein NS26. Virus Res 171:129–37
    [Google Scholar]
  54. 54. 
    Racine T, Hurst T, Barry C, Shou J, Kibenge F, Duncan R 2009. Aquareovirus effects syncytiogenesis by using a novel member of the FAST protein family translated from a noncanonical translation start site. J. Virol. 83:5951–55
    [Google Scholar]
  55. 55. 
    Ciechonska M, Duncan R. 2014. Reovirus FAST proteins: virus-encoded cellular fusogens. Trends Microbiol 22:715–24
    [Google Scholar]
  56. 56. 
    Guardado Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C et al. 2005. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. J. Mol. Biol. 354:137–49
    [Google Scholar]
  57. 57. 
    Dawe S, Boutilier J, Duncan R 2002. Identification and characterization of a baboon reovirus-specific nonstructural protein encoded by the bicistronic s4 genome segment. Virology 304:44–52
    [Google Scholar]
  58. 58. 
    Shmulevitz M, Yameen Z, Dawe S, Shou J, O'Hara D et al. 2002. Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation. J. Virol. 76:609–18
    [Google Scholar]
  59. 59. 
    Bodelon G, Labrada L, Martinez-Costas J, Benavente J 2001. The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290:181–91
    [Google Scholar]
  60. 60. 
    Racine T, Barry C, Roy K, Dawe SJ, Shmulevitz M, Duncan R 2007. Leaky scanning and scanning-independent ribosome migration on the tricistronic S1 mRNA of avian reovirus. J. Biol. Chem. 282:25613–22
    [Google Scholar]
  61. 61. 
    Racine T, Duncan R. 2010. Facilitated leaky scanning and atypical ribosome shunting direct downstream translation initiation on the tricistronic S1 mRNA of avian reovirus. Nucleic Acids Res 38:7260–72
    [Google Scholar]
  62. 62. 
    Kuntz-Simon G, Le Gall-Recule G, de Boisseson C, Jestin V 2002. Muscovy duck reovirus σC protein is atypically encoded by the smallest genome segment. J. Gen. Virol. 83:1189–200
    [Google Scholar]
  63. 63. 
    Wang Q, Yuan X, Chen Y, Zheng Q, Xu L, Wu Y 2018. Endoplasmic reticulum stress mediated MDRV p10.8 protein-induced cell cycle arrest and apoptosis through the PERK/eIF2α pathway. Front. Microbiol. 9:1327
    [Google Scholar]
  64. 64. 
    Shmulevitz M, Duncan R. 2000. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J 19:902–12
    [Google Scholar]
  65. 65. 
    Banyai K, Borzak R, Ihasz K, Feher E, Dan A et al. 2014. Whole-genome sequencing of a green bush viper reovirus reveals a shared evolutionary history between reptilian and unusual mammalian orthoreoviruses. Arch. Virol. 159:153–58
    [Google Scholar]
  66. 66. 
    Dawe S, Duncan R. 2002. The S4 genome segment of baboon reovirus is bicistronic and encodes a novel fusion-associated small transmembrane protein. J. Virol. 76:2131–40
    [Google Scholar]
  67. 67. 
    Clancy EK, Duncan R. 2009. Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell-cell membrane fusion. J. Virol. 83:2941–50
    [Google Scholar]
  68. 68. 
    Clancy EK, Duncan R. 2011. Helix-destabilizing, β-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins. J. Virol. 85:4707–19
    [Google Scholar]
  69. 69. 
    Dawe S, Corcoran JA, Clancy EK, Salsman J, Duncan R 2005. Unusual topological arrangement of structural motifs in the baboon reovirus fusion-associated small transmembrane protein. J. Virol. 79:6216–26
    [Google Scholar]
  70. 70. 
    Corcoran JA, Clancy EK, Duncan R 2011. Homomultimerization of the reovirus p14 fusion-associated small transmembrane protein during transit through the ER–Golgi complex secretory pathway. J. Gen. Virol. 92:162–66
    [Google Scholar]
  71. 71. 
    Le Boeuf F, Diallo JS, McCart JA, Thorne S, Falls T et al. 2010. Synergistic interaction between oncolytic viruses augments tumor killing. Mol. Ther. 18:888–95
    [Google Scholar]
  72. 72. 
    Le Boeuf F, Gebremeskel S, McMullen N, He H, Greenshields AL et al. 2017. Reovirus FAST protein enhances vesicular stomatitis virus oncolytic virotherapy in primary and metastatic tumor models. Mol. Ther. Oncolyt. 6:80–89
    [Google Scholar]
  73. 73. 
    Kanai Y, Komoto S, Kawagishi T, Nouda R, Nagasawa N et al. 2017. Entirely plasmid-based reverse genetics system for rotaviruses. PNAS 114:2349–54
    [Google Scholar]
  74. 74. 
    Mader JS, Richardson A, Salsman J, Top D, de Antueno R et al. 2007. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Exp. Cell Res. 313:2634–50
    [Google Scholar]
  75. 75. 
    Richardson A, de Antueno R, Duncan R, Hoskin DW 2009. Intracellular delivery of bovine lactoferricin's antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem. Biophys. Res. Commun. 388:736–41
    [Google Scholar]
  76. 76. 
    Top D, de Antueno R, Salsman J, Corcoran J, Mader J et al. 2005. Liposome reconstitution of a minimal protein-mediated membrane fusion machine. EMBO J 24:2980–88
    [Google Scholar]
  77. 77. 
    Cachat E, Liu W, Hohenstein P, Davies JA 2014. A library of mammalian effector modules for synthetic morphology. J. Biol. Eng. 8:26
    [Google Scholar]
  78. 78. 
    Parmar HB, Barry C, Kai F, Duncan R 2014. Golgi complex-plasma membrane trafficking directed by an autonomous, tribasic Golgi export signal. Mol. Biol. Cell 25:866–78
    [Google Scholar]
  79. 79. 
    Corcoran JA, Syvitski R, Top D, Epand RM, Epand RF et al. 2004. Myristoylation, a protruding loop, and structural plasticity are essential features of a nonenveloped virus fusion peptide motif. J. Biol. Chem. 279:51386–94
    [Google Scholar]
  80. 80. 
    Key T, Sarker M, de Antueno R, Rainey JK, Duncan R 2015. The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation. Biochim. Biophys. Acta 1848:408–16
    [Google Scholar]
  81. 81. 
    Shmulevitz M, Epand RF, Epand RM, Duncan R 2004. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein. J. Virol. 78:2808–18
    [Google Scholar]
  82. 82. 
    Top D, Read JA, Dawe SJ, Syvitski RT, Duncan R 2012. Cell-cell membrane fusion induced by p15 fusion-associated small transmembrane (FAST) protein requires a novel fusion peptide motif containing a myristoylated polyproline type II helix. J. Biol. Chem. 287:3403–14
    [Google Scholar]
  83. 83. 
    Uversky VN. 2011. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol. 43:1090–103
    [Google Scholar]
  84. 84. 
    Barry C, Duncan R. 2009. Multifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis. J. Virol. 83:12185–95
    [Google Scholar]
  85. 85. 
    Parmar HB, Barry C, Duncan R 2014. Polybasic trafficking signal mediates Golgi export, ER retention or ER export and retrieval based on membrane-proximity. PLOS ONE 9:e94194
    [Google Scholar]
  86. 86. 
    Parmar HB, Duncan R. 2016. A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1–dependent Golgi–plasma membrane trafficking. Mol. Biol. Cell 27:1320–31
    [Google Scholar]
  87. 87. 
    Read J, Clancy EK, Sarker M, de Antueno R, Langelaan DN et al. 2015. Reovirus FAST proteins drive pore formation and syncytiogenesis using a novel helix-loop-helix fusion-inducing lipid packing sensor. PLOS Pathog 11:e1004962
    [Google Scholar]
  88. 88. 
    Shmulevitz M, Salsman J, Duncan R 2003. Palmitoylation, membrane-proximal basic residues, and transmembrane glycine residues in the reovirus p10 protein are essential for syncytium formation. J. Virol. 77:9769–79
    [Google Scholar]
  89. 89. 
    Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q et al. 2008. Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology 373:310–21
    [Google Scholar]
  90. 90. 
    Barry C, Key T, Haddad R, Duncan R 2010. Features of a spatially constrained cystine loop in the p10 FAST protein ectodomain define a new class of viral fusion peptide. J. Biol. Chem. 285:16424–33
    [Google Scholar]
  91. 91. 
    Key T, Duncan R. 2014. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins. PLOS Pathog 10:e1004023
    [Google Scholar]
  92. 92. 
    Nieto-Torres JL, Verdia-Baguena C, Castano-Rodriguez C, Aguilella VM, Enjuanes L 2015. Relevance of viroporin ion channel activity on viral replication and pathogenesis. Viruses 7:3552–73
    [Google Scholar]
  93. 93. 
    Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50
    [Google Scholar]
  94. 94. 
    Rossman JS, Jing X, Leser GP, Lamb RA 2010. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902–13
    [Google Scholar]
  95. 95. 
    Rossman JS, Lamb RA. 2013. Viral membrane scission. Annu. Rev. Cell Dev. Biol. 29:551–69
    [Google Scholar]
  96. 96. 
    Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M et al. 2018. Myomaker and Myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev. Cell 46:767–80
    [Google Scholar]
  97. 97. 
    Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ et al. 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat. Commun. 8:15665
    [Google Scholar]
  98. 98. 
    Segev N, Avinoam O, Podbilewicz B 2018. Fusogens. Curr. Biol. 28:R378–80
    [Google Scholar]
  99. 99. 
    Corcoran JA, Salsman J, de Antueno R, Touhami A, Jericho MH et al. 2006. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains. J. Biol. Chem. 281:31778–89
    [Google Scholar]
  100. 100. 
    Kielian M. 2014. Mechanisms of virus membrane fusion proteins. Annu. Rev. Virol. 1:171–89
    [Google Scholar]
  101. 101. 
    Salsman J, Top D, Barry C, Duncan R 2008. A virus-encoded cell-cell fusion machine dependent on surrogate adhesins. PLOS Pathog 4:e1000016
    [Google Scholar]
  102. 102. 
    Shmulevitz M, Corcoran J, Salsman J, Duncan R 2004. Cell-cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation. J. Virol. 78:5996–6004
    [Google Scholar]
  103. 103. 
    Huttner WB, Zimmerberg J. 2001. Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell Biol. 13:478–84
    [Google Scholar]
  104. 104. 
    Garcia-Saez AJ, Chiantia S, Schwille P 2007. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282:33537–44
    [Google Scholar]
  105. 105. 
    Rossman JS, Lamb RA. 2011. Influenza virus assembly and budding. Virology 411:229–36
    [Google Scholar]
  106. 106. 
    Yang ST, Kiessling V, Simmons JA, White JM, Tamm LK 2015. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat. Chem. Biol. 11:424–31
    [Google Scholar]
  107. 107. 
    Spira F, Mueller NS, Beck G, von Olshausen P, Beig J, Wedlich-Soldner R 2012. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 14:640–48
    [Google Scholar]
  108. 108. 
    Lorizate M, Huarte N, Saez-Cirion A, Nieva JL 2008. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. Biochim. Biophys. Acta 1778:1624–39
    [Google Scholar]
  109. 109. 
    Munoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R 1999. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol. 73:6089–92
    [Google Scholar]
  110. 110. 
    Jahn R, Fasshauer D. 2012. Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–7
    [Google Scholar]
  111. 111. 
    Koch AW, Manzur KL, Shan W 2004. Structure-based models of cadherin-mediated cell adhesion: the evolution continues. Cell. Mol. Life Sci. 61:1884–95
    [Google Scholar]
  112. 112. 
    Zhu B, Chappuis-Flament S, Wong E, Jensen IE, Gumbiner BM, Leckband D 2003. Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys. J. 84:4033–42
    [Google Scholar]
  113. 113. 
    Hartsock A, Nelson WJ. 2008. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778:660–69
    [Google Scholar]
  114. 114. 
    Helming L, Gordon S. 2009. Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–22
    [Google Scholar]
  115. 115. 
    Moreno JL, Mikhailenko I, Tondravi MM, Keegan AD 2007. IL-4 promotes the formation of multi-nucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J. Leukoc. Biol. 82:1542–53
    [Google Scholar]
  116. 116. 
    Hayes MJ, Rescher U, Gerke V, Moss SE 2004. Annexin–actin interactions. Traffic 5:571–76
    [Google Scholar]
  117. 117. 
    McNeil AK, Rescher U, Gerke V, McNeil PL 2006. Requirement for annexin A1 in plasma membrane repair. J. Biol. Chem. 281:35202–7
    [Google Scholar]
  118. 118. 
    Patel DM, Ahmad SF, Weiss DG, Gerke V, Kuznetsov SA 2011. Annexin A1 is a new functional linker between actin filaments and phagosomes during phagocytosis. J. Cell Sci. 124:578–88
    [Google Scholar]
  119. 119. 
    Ciechonska M, Duncan R. 2014. Efficient reovirus- and measles virus-mediated pore expansion during syncytium formation is dependent on annexin A1 and intracellular calcium. J. Virol. 88:6137–47
    [Google Scholar]
  120. 120. 
    Leikina E, Melikov K, Sanyal S, Verma SK, Eun B et al. 2013. Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J. Cell Biol. 200:109–23
    [Google Scholar]
  121. 121. 
    Richard JP, Leikina E, Langen R, Henne WM, Popova M et al. 2011. Intracellular curvature-generating proteins in cell-to-cell fusion. Biochem. J. 440:185–93
    [Google Scholar]
  122. 122. 
    Verma SK, Leikina E, Melikov K, Chernomordik LV 2014. Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin. Biochem. J. 464:293–300
    [Google Scholar]
  123. 123. 
    Pham T, Perry JL, Dosey TL, Delcour AH, Hyser JM 2017. The rotavirus NSP4 viroporin domain is a calcium-conducting ion channel. Sci. Rep. 7:43487
    [Google Scholar]
  124. 124. 
    van Kuppeveld FJ, Hoenderop JG, Smeets RL, Willems PH, Dijkman HB et al. 1997. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16:3519–32
    [Google Scholar]
  125. 125. 
    Guo HC, Jin Y, Zhi XY, Yan D, Sun SQ 2015. NLRP3 inflammasome activation by viroporins of animal viruses. Viruses 7:3380–91
    [Google Scholar]
  126. 126. 
    Hyser JM, Estes MK. 2015. Pathophysiological consequences of calcium-conducting viroporins. Annu. Rev. Virol. 2:473–96
    [Google Scholar]
  127. 127. 
    Ruggiano A, Foresti O, Carvalho P 2014. ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204:869–79
    [Google Scholar]
  128. 128. 
    Lapthorn AJ, Janes RW, Isaacs NW, Wallace BA 1995. Cystine nooses and protein specificity. Nat. Struct. Biol. 2:266–68
    [Google Scholar]
  129. 129. 
    Podbilewicz B. 2014. Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30:111–39
    [Google Scholar]
  130. 130. 
    Murakami T, Ablan S, Freed EO, Tanaka Y 2004. Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J. Virol. 78:1026–31
    [Google Scholar]
  131. 131. 
    Yao Q, Compans RW. 1995. Differences in the role of the cytoplasmic domain of human parainfluenza virus fusion proteins. J. Virol. 69:7045–53
    [Google Scholar]
  132. 132. 
    Cathomen T, Naim HY, Cattaneo R 1998. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J. Virol. 72:1224–34
    [Google Scholar]
  133. 133. 
    Abrahamyan LG, Mkrtchyan SR, Binley J, Lu M, Melikyan GB, Cohen FS 2005. The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle. J. Virol. 79:106–15
    [Google Scholar]
  134. 134. 
    Melikyan GB, Markosyan RM, Brener SA, Rozenberg Y, Cohen FS 2000. Role of the cytoplasmic tail of ecotropic Moloney murine leukemia virus Env protein in fusion pore formation. J. Virol. 74:447–55
    [Google Scholar]
  135. 135. 
    Poccia D, Larijani B. 2009. Phosphatidylinositol metabolism and membrane fusion. Biochem. J. 418:233–46
    [Google Scholar]
  136. 136. 
    Top D, Barry C, Racine T, Ellis CL, Duncan R 2009. Enhanced fusion pore expansion mediated by the trans-acting endodomain of the reovirus FAST proteins. PLOS Pathog 5:e1000331
    [Google Scholar]
  137. 137. 
    Antonny B. 2011. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80:101–23
    [Google Scholar]
  138. 138. 
    Gimenez-Andres M, Copic A, Antonny B 2018. The many faces of amphipathic helices. Biomolecules 8:45
    [Google Scholar]
  139. 139. 
    Aeffner S, Reusch T, Weinhausen B, Salditt T 2012. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. PNAS 109:E1609–18
    [Google Scholar]
  140. 140. 
    Boukh-Viner T, Guo T, Alexandrian A, Cerracchio A, Gregg C et al. 2005. Dynamic ergosterol- and ceramide-rich domains in the peroxisomal membrane serve as an organizing platform for peroxisome fusion. J. Cell Biol. 168:761–73
    [Google Scholar]
  141. 141. 
    McLaughlin S, Aderem A. 1995. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20:272–76
    [Google Scholar]
  142. 142. 
    Clancy EK, Barry C, Ciechonska M, Duncan R 2010. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents. Virology 397:119–29
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092818-015523
Loading
/content/journals/10.1146/annurev-virology-092818-015523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error