1932

Abstract

Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses—a group of viruses that lack any lipid coating or envelope—play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041944
2017-09-29
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/virology/4/1/annurev-virology-101416-041944.html?itemId=/content/journals/10.1146/annurev-virology-101416-041944&mimeType=html&fmt=ahah

Literature Cited

  1. Welsch S, Müller B, Kräusslich HG. 1.  2007. More than one door—budding of enveloped viruses through cellular membranes. FEBS Lett 581:2089–97 [Google Scholar]
  2. Mesters JR, Tan J, Hilgenfeld R. 2.  2006. Viral enzymes. Curr. Opin. Struct. Biol. 16:776–86 [Google Scholar]
  3. Wiethoff CM, Wodrich H, Gerace L, Nemerow GR. 3.  2005. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J. Virol. 79:1992–2000 [Google Scholar]
  4. Hindiyeh M, Li QH, Basavappa R, Hogle JM, Chow M. 4.  1999. Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J. Virol. 73:9072–79 [Google Scholar]
  5. Fricks CE, Hogle JM. 5.  1990. Cell-induced conformational change in poliovirus: Externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64:1934–45 [Google Scholar]
  6. Dormitzer PR, Nason EB, Prasad BVV, Harrison SC. 6.  2004. Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430:1053–58 [Google Scholar]
  7. Odegard AL, Chandran K, Zhang X, Parker JSL, Baker TS, Nibert ML. 7.  2004. Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J. Virol. 78:8732–45 [Google Scholar]
  8. Bong DT, Janshoff A, Steinem C, Ghadiri MR. 8.  2000. Membrane partitioning of the cleavage peptide in flock house virus. Biophys. J. 78:839–45 [Google Scholar]
  9. Speir JA, Taylor DJ, Natarajan P, Pringle FM, Ball LA, Johnson JE. 9.  2010. Evolution in action: N and C termini of subunits in related T = 4 viruses exchange roles as molecular switches. Structure 18:700–9 [Google Scholar]
  10. Danthi P, Tosteson M, Li QH, Chow M. 10.  2003. Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J. Virol. 77:5266–74 [Google Scholar]
  11. Agosto MA, Ivanovic T, Nibert ML. 11.  2006. Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. PNAS 103:16496–501 [Google Scholar]
  12. Maier O, Galan DL, Wodrich H, Wiethoff CM. 12.  2010. An N-terminal domain of adenovirus protein VI fragments membranes by inducing positive membrane curvature. Virology 402:11–19 [Google Scholar]
  13. Bajaj S, Dey D, Bhukar R, Kumar M, Banerjee M. 13.  2016. Non-enveloped virus entry: structural determinants and mechanism of functioning of a viral lytic peptide. J. Mol. Biol. 428:3540–56 [Google Scholar]
  14. Chow M, Newman JFE, Filman D, Hogle JM, Rowlands DJ, Brown F. 14.  1987. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–86 [Google Scholar]
  15. Banerjee M, Johnson JE. 15.  2008. Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr. Protein Pept. Sci. 9:16–27 [Google Scholar]
  16. Dorsch S, Liebisch G, Kaufmann B, von Landenberg P, Hoffmann JH. 16.  et al. 2002. The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J. Virol. 76:2014–18 [Google Scholar]
  17. Cheng W, Li J, Huang C, Yao D, Liu N. 17.  et al. 2010. Identification and nearly full-length genome characterization of novel porcine bocaviruses. PLOS ONE 5:e13583 [Google Scholar]
  18. Johnson JE, Munshi S, Liljas L, Agrawal D, Olson NH. 18.  et al. 1994. Comparative studies of T = 3 and T = 4 icosahedral RNA insect viruses. Arch. Virol. Suppl. 9:497–512 [Google Scholar]
  19. Helgstrand C, Munshi S, Johnson JE, Liljas L. 19.  2004. The refined structure of Nudaurelia capensis ω virus reveals control elements for a T = 4 capsid maturation. Virology 318:192–203 [Google Scholar]
  20. Taylor DJ, Krishna NK, Canady MA, Schneemann A, Johnson JE. 20.  2002. Large-scale, pH-dependent, quaternary structure changes in an RNA virus capsid are reversible in the absence of subunit autoproteolysis. J. Virol. 76:9972–80 [Google Scholar]
  21. Schneemann A, Zhong W, Gallagher TM, Rueckert RR. 21.  1992. Maturation cleavage required for infectivity of a nodavirus. J. Virol. 66:6728–34 [Google Scholar]
  22. Canady MA, Tihova M, Hanzlik TN, Johnson JE, Yeager M. 22.  2000. Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis ω virus (NωV). J. Mol. Biol. 299:573–84 [Google Scholar]
  23. Domitrovic T, Matsui T, Johnson JE. 23.  2012. Dissecting quasi-equivalence in nonenveloped viruses: membrane disruption is promoted by lytic peptides released from subunit pentamers, not hexamers. J. Virol. 86:9976–82 [Google Scholar]
  24. Matsui T, Lander G, Johnson JE. 24.  2009. Characterization of large conformational changes and autoproteolysis in the maturation of a T=4 virus capsid. J. Virol. 83:1126–34 [Google Scholar]
  25. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH. 25.  et al. 2010. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–82 [Google Scholar]
  26. Mangel WF, San Martín C. 26.  2014. Structure, function and dynamics in adenovirus maturation. Viruses 6:4536–70 [Google Scholar]
  27. Webster A, Russell S, Talbot P, Russell WC, Kemp GD. 27.  1989. Characterization of the adenovirus proteinase: substrate specificity. J. Gen. Virol. 70:Pt. 123225–34 [Google Scholar]
  28. Moyer CL, Besser ES, Nemerow GR. 28.  2016. A single maturation cleavage site in adenovirus impacts cell entry and capsid assembly. J. Virol. 90:521–32 [Google Scholar]
  29. Nibert ML, Furlong DB, Fields BN. 29.  1991. Mechanisms of viral pathogenesis. Distinct forms of reoviruses and their roles during replication in cells and host. J. Clin. Investig. 88:727–34 [Google Scholar]
  30. Chandran K, Farsetta DL, Nibert ML. 30.  2002. Strategy for nonenveloped virus entry: A hydrophobic conformer of the reovirus membrane penetration protein μ1 mediates membrane disruption. J. Virol. 76:9920–33 [Google Scholar]
  31. Sturzenbecker LJ, Nibert M, Furlong D, Fields BN. 31.  1987. Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J. Virol. 61:2351–61 [Google Scholar]
  32. Chandran K, Parker JSL, Ehrlich M, Kirchhausen T, Nibert ML. 32.  2003. The δ region of outer-capsid protein μ1 undergoes conformational change and release from reovirus particles during cell entry. J. Virol. 77:13361–75 [Google Scholar]
  33. Reinisch KM, Nibert ML, Harrison SC. 33.  2000. Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–67 [Google Scholar]
  34. Prasad BVV, Rothnagel R, Zeng CQY, Jakana J, Lawton JA. 34.  et al. 1996. Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–73 [Google Scholar]
  35. Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN. 35.  et al. 1999. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97:481–90 [Google Scholar]
  36. Rankin JT, Joklik K, Antczak BEJB. 36.  1989. Studies on the mechanism of the antiviral activity of ribavirin against reovirus. Virology 168:147–58 [Google Scholar]
  37. Doublié S, Sawaya MR, Ellenberger T. 37.  1999. An open and closed case for all polymerases. Structure 7:R31–35 [Google Scholar]
  38. Poch O, Sauvaget I, Delarue M, Tordo N. 38.  1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–74 [Google Scholar]
  39. Steitz TA. 39.  1998. A mechanism for all polymerases. Nature 391:231–32 [Google Scholar]
  40. Ng KKS, Arnold JJ, Cameron CE. 40.  2008. Structure-function relationships among RNA-dependent RNA polymerases. Curr. Top. Microbiol. Immunol. 320:137–56 [Google Scholar]
  41. Ferrer-Orta C, Ferrero D, Verdaguer N. 41.  2015. RNA-dependent RNA polymerases of picornaviruses: from the structure to regulatory mechanisms. Viruses 7:4438–60 [Google Scholar]
  42. Ferrero DS, Buxaderas M, Rodríguez JF, Verdaguer N. 42.  2015. The structure of the RNA-dependent RNA polymerase of a permutotetravirus suggests a link between primer-dependent and primer-independent polymerases. PLOS Pathog 11:e1005265 [Google Scholar]
  43. Tao Y, Farsetta DL, Nibert ML, Harrison SC. 43.  2002. RNA synthesis in a cage—structural studies of reovirus polymerase λ3. Cell 111:733–45 [Google Scholar]
  44. Graci JD, Too K, Smidansky ED, Edathil JP, Barr EW. 44.  et al. 2008. Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob. Agents Chemother. 52:971–79 [Google Scholar]
  45. Li ZH, Li CM, Ling P, Shen FH, Chen SH. 45.  et al. 2008. Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. J. Infect. Dis. 197:854–57 [Google Scholar]
  46. Chen TC, Chang HY, Lin PF, Chern JH, Hsu JTA. 46.  et al. 2009. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob. Agents Chemother. 53:2740–47 [Google Scholar]
  47. van der Linden L, Vives-Adrián L, Selisko B, Ferrer-Orta C, Liu X. 47.  et al. 2015. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family. PLOS Pathog 11:e1004733 [Google Scholar]
  48. Singleton MR, Dillingham MS, Wigley DB. 48.  2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23–50 [Google Scholar]
  49. Raney KD, Benkovic SJ. 49.  1995. Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA. J. Biol. Chem. 270:22236–42 [Google Scholar]
  50. Goregaoker SP, Culver JN. 50.  2003. Oligomerization and activity of the helicase domain of the tobacco mosaic virus 126- and 183-kilodalton replicase proteins. J. Virol. 77:3549–56 [Google Scholar]
  51. Stäuber N, Martinez-Costas J, Sutton G, Monastyrskaya K, Roy P. 51.  1997. Bluetongue virus VP6 protein binds ATP and exhibits an RNA-dependent ATPase function and a helicase activity that catalyze the unwinding of double-stranded RNA substrates. J. Virol. 71:7220–26 [Google Scholar]
  52. Dudas KC, Kreuzer KN. 52.  2001. UvsW protein regulates bacteriophage T4 origin-dependent replication by unwinding R-loops. Mol. Cell. Biol. 21:2706–15 [Google Scholar]
  53. Rodríguez PL, Carrasco L. 53.  1993. Poliovirus protein 2C has ATPase and GTPase activities. J. Biol. Chem. 268:8105–10 [Google Scholar]
  54. Gorbalenya AE, Koonin EV, Wolf YI. 54.  1990. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–48 [Google Scholar]
  55. Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR. 55.  et al. 2010. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. J. Biol. Chem. 285:24347–59 [Google Scholar]
  56. Scheffner M, Knippers R, Stahl H. 56.  1991. Simian-virus-40 large-T-antigen-catalyzed DNA and RNA unwinding reactions. Eur. J. Biochem. 195:49–54 [Google Scholar]
  57. Enemark EJ, Joshua-Tor L. 57.  2006. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270–75 [Google Scholar]
  58. Smith RH, Kotin RM. 58.  1998. The Rep52 gene product of adeno-associated virus is a DNA helicase with 3′-to-5′ polarity. J. Virol. 72:4874–81 [Google Scholar]
  59. Jindal HK, Yong CB, Wilson GM, Tam P, Astell CR. 59.  1994. Mutations in the NTP-binding motif of minute virus of mice (MVM) NS-1 protein uncouple ATPase and DNA helicase functions. J. Biol. Chem. 269:3283–89 [Google Scholar]
  60. Matson SW, Tabor S, Richardson CC. 60.  1983. The gene 4 protein of bacteriophage T7. Characterization of helicase activity. J. Biol. Chem. 258:14017–24 [Google Scholar]
  61. Tabor S, Richardson CC. 61.  1981. Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. PNAS 78:205–9 [Google Scholar]
  62. Venkatesan M, Silver LL, Nossal NG. 62.  1982. Bacteriophage T4 gene 41 protein, required for the synthesis of RNA primers, is also a DNA helicase. J. Biol. Chem. 257:12426–34 [Google Scholar]
  63. Li D, Zhao R, Lilyestrom W, Gai D, Zhang R. 63.  et al. 2003. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423:512–18 [Google Scholar]
  64. White PW, Titolo S, Brault K, Thauvette L, Pelletier A. 64.  et al. 2003. Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1-E2 protein interaction. J. Biol. Chem. 278:26765–72 [Google Scholar]
  65. Faucher AM, White PW, Brochu C, Grand-Maître C, Rancourt J, Fazal G. 65.  2004. Discovery of small-molecule inhibitors of the ATPase activity of human papillomavirus E1 helicase. J. Med. Chem 4718–21 [Google Scholar]
  66. Ali SH, Chandraker A, DeCaprio JA. 66.  2007. Inhibition of simian virus 40 large T antigen helicase activity by fluoroquinolones. Antivir. Ther. 12:1–6 [Google Scholar]
  67. Schibler U, Perry RP. 67.  1977. The 5′-termini of heterogeneous nuclear RNA: a comparison among molecules of different sizes and ages. Nucleic Acids Res 4:4133–49 [Google Scholar]
  68. Jayaram H, Taraporewala Z, Patton JT, Prasad BVV. 68.  2002. Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417:311–15 [Google Scholar]
  69. Vasquez-Del Carpio R, Gonzalez-Nilo FD, Riadi G, Taraporewala ZF, Patton JT. 69.  2006. Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. J. Mol. Biol. 362:539–54 [Google Scholar]
  70. Takagi T, Walker AK, Sawa C, Diehn F, Takase Y. 70.  et al. 2003. The Caenorhabditis elegans mRNA 5′-capping enzyme. In vitro and in vivo characterization. J. Biol. Chem. 278:14174–84 [Google Scholar]
  71. Despins S, Issur M, Bougie I, Bisaillon M. 71.  2010. Deciphering the molecular basis for nucleotide selection by the West Nile virus RNA helicase. Nucleic Acids Res 38:5493–506 [Google Scholar]
  72. Soulière MF, Perreault JP, Bisaillon M. 72.  2008. Kinetic and thermodynamic characterization of the RNA guanylyltransferase reaction. Biochemistry 47:3863–74 [Google Scholar]
  73. Doherty AJ, Ashford SR, Subramanya HS, Wigley DB. 73.  1996. Bacteriophage T7 DNA ligase: overexpression, purification, crystallization and characterization. J. Biol. Chem. 271:11083–89 [Google Scholar]
  74. Silber R, Malathi VG, Hurwitz J. 74.  1972. Purification and properties of bacteriophage T4-induced RNA ligase. PNAS 69:3009–13 [Google Scholar]
  75. Amitsur M, Levitz R, Kaufmann G. 75.  1987. Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J 6:2499–503 [Google Scholar]
  76. Ho CK, Wang LK, Lima CD, Shuman S. 76.  2004. Structure and mechanism of RNA ligase. Structure 12:327–39 [Google Scholar]
  77. Frick DN, Richardson CC. 77.  2001. DNA primases. Annu. Rev. Biochem. 70:39–80 [Google Scholar]
  78. Benkovic SJ, Valentine AM, Salinas F. 78.  2001. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70:181–208 [Google Scholar]
  79. Nossal NG, Hinton DM. 79.  1987. Bacteriophage T4 DNA primase-helicase. Characterization of the DNA synthesis primed by T4 61 protein in the absence of T4 41 protein. J. Biol. Chem. 262:10879–85 [Google Scholar]
  80. Hobbs LJ, Nossal NG. 80.  1996. Either bacteriophage T4 RNase H or Escherichia coli DNA polymerase I is essential for phage replication. J. Bacteriol. 178:6772–77 [Google Scholar]
  81. Chu FK, Maley GF, West DK, Belfort M, Maley F. 81.  1986. Characterization of the intron in the phage T4 thymidylate synthase gene and evidence for its self-excision from the primary transcript. Cell 45:157–66 [Google Scholar]
  82. Dibb NJ, Newman AJ. 82.  1989. Evidence that introns arose at proto-splice sites. EMBO J 8:2015–21 [Google Scholar]
  83. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. 83.  1983. The double-strand-break repair model for recombination. Cell 33:25–35 [Google Scholar]
  84. Richardson C, Whitney H. 84.  1972. Chemical and enzymatic studies of deoxyribonucleic acid covalently linked to Ficoll. J. Biol. Chem. 247:5736–45 [Google Scholar]
  85. Cameron V, Uhlenbeck OC. 85.  1977. 3′-Phosphatase activity in T4 polynucleotide kinase. Biochemistry 16:5120–26 [Google Scholar]
  86. Welchman RL, Gordon C, Mayer RJ. 86.  2005. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6:599–609 [Google Scholar]
  87. Randow F, Lehner PJ. 87.  2009. Viral avoidance and exploitation of the ubiquitin system. Nat. Cell Biol. 11:527–34 [Google Scholar]
  88. Wang D, Fang L, Li P, Sun L, Fan J. 88.  et al. 2011. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J. Virol. 85:3758–66 [Google Scholar]
  89. Balakirev MY, Jaquinod M, Haas AL, Chroboczek J. 89.  2002. Deubiquitinating function of adenovirus proteinase. J. Virol. 76:6323–31 [Google Scholar]
  90. Lombardi C, Ayach M, Beaurepaire L, Chenon M, Andreani J. 90.  et al. 2013. A compact viral processing proteinase/ubiquitin hydrolase from the OTU family. PLOS Pathog 9:e1003560 [Google Scholar]
  91. Gram H, Rüger W. 91.  1986. The α-glucosyltransferases of bacteriophages T2, T4 and T6. A comparison of their primary structures. Mol. Gen. Genet. 202:467–70 [Google Scholar]
  92. Vrielink A, Rüger W, Driessen HP, Freemont PS. 92.  1994. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13:3413–22 [Google Scholar]
  93. Larivière L, Gueguen-Chaignon V, Moréra S. 93.  2003. Crystal structures of the T4 phage β-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. J. Mol. Biol. 330:1077–86 [Google Scholar]
  94. Allison GE, Angeles D, Tran-Dinh N, Verma NK. 94.  2002. Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J. Bacteriol. 184:1974–87 [Google Scholar]
  95. Luther KB, Hülsmeier AJ, Schegg B, Deuber SA, Raoult D, Hennet T. 95.  2011. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme. J. Biol. Chem. 286:43701–9 [Google Scholar]
  96. Ruger W. 96.  1978. Transcription of bacteriophage T4 DNA in vitro: selective initiation with dinucleotides. Eur. J. Biochem. 88:109–17 [Google Scholar]
  97. Warren RA. 97.  1980. Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34:137–58 [Google Scholar]
  98. Song HK, Sohn SH, Suh SW. 98.  1999. Crystal structure of deoxycytidylate hydroxymethylase from bacteriophage T4, a component of the deoxyribonucleoside triphosphate-synthesizing complex. EMBO J 18:1104–13 [Google Scholar]
  99. Young JP, Mathews CK. 99.  1992. Interactions between T4 phage-coded deoxycytidylate hydroxymethylase and thymidylate synthase as revealed with an anti-idiotypic antibody. J. Biol. Chem. 267:10786–90 [Google Scholar]
  100. Wheeler L, Wang Y, Mathews CK. 100.  1992. Specific associations of T4 bacteriophage proteins with immobilized deoxycytidylate hydroxymethylase. J. Biol. Chem. 267:7664–70 [Google Scholar]
  101. Tong L. 101.  2002. Viral proteases. Chem. Rev. 102:4609–26 [Google Scholar]
  102. Babé LM, Craik CS. 102.  1997. Viral proteases: evolution of diverse structural motifs to optimize function. Cell 91:427–30 [Google Scholar]
  103. Lloyd RE. 103.  2006. Translational control by viral proteinases. Virus Res 119:76–88 [Google Scholar]
  104. Ryan MD, Flint M. 104.  1997. Virus-encoded proteinases of the picornavirus super-group. J. Gen. Virol. 78:699–723 [Google Scholar]
  105. Petersen JFW, Cherney MM, Liebig HD, Skern T, Kuechler E, James MNG. 105.  1999. The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J 18:5463–75 [Google Scholar]
  106. Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G. 106.  et al. 1994. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–71 [Google Scholar]
  107. Bergmann EM, Cherney MM, Mckendrick J, Frormann S, Luo C. 107.  et al. 1999. Crystal structure of an inhibitor complex of the 3C proteinase from hepatitis A virus (HAV) and implications for the polyprotein processing in HAV. Virology 265:153–63 [Google Scholar]
  108. Mosimann SC, Cherney MM, Sia S, Plotch S, James MN. 108.  1997. Refined X-ray crystallographic structure of the poliovirus 3C gene product. J. Mol. Biol. 273:1032–47 [Google Scholar]
  109. Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK. 109.  et al. 1999. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. PNAS 96:11000–7 [Google Scholar]
  110. Cui S, Wang J, Fan T, Qin B, Guo L. 110.  et al. 2011. Crystal structure of human enterovirus 71 3C protease. J. Mol. Biol. 408:449–61 [Google Scholar]
  111. Yang J, Leen EN, Maree FF, Curry S. 111.  2016. Crystal structure of the 3C protease from Southern African Territories type 2 foot-and-mouth disease virus. PeerJ 4:e1964 [Google Scholar]
  112. Guarné A, Hampoelz B, Glaser W, Carpena X, Tormo J. 112.  et al. 2000. Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J. Mol. Biol. 302:1227–40 [Google Scholar]
  113. Belsham GJ, McInerney GM, Ross-Smith N. 113.  2000. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol. 74:272–80 [Google Scholar]
  114. Pathak HB, Arnold JJ, Wiegand PN, Hargittai MRS, Cameron CE. 114.  2007. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J. Biol. Chem. 282:16202–13 [Google Scholar]
  115. Pathak HB, Oh HS, Goodfellow IG, Arnold JJ, Cameron CE. 115.  2008. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation. J. Biol. Chem. 283:30677–88 [Google Scholar]
  116. Gamarnik AV, Andino R. 116.  1998. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–304 [Google Scholar]
  117. Kundu P, Raychaudhuri S, Tsai W, Dasgupta A. 117.  2005. Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication. J. Virol. 79:9702–13 [Google Scholar]
  118. Caly L, Ghildyal R, Jans DA. 118.  2015. Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention?. Front. Microbiol. 6:848 [Google Scholar]
  119. Wang D, Fang L, Li K, Zhong H, Fan J. 119.  et al. 2012. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J. Virol. 86:9311–22 [Google Scholar]
  120. Shubin AV, Demidyuk IV, Lunina NA, Komissarov AA, Roschina MP. 120.  et al. 2015. Protease 3C of hepatitis A virus induces vacuolization of lysosomal/endosomal organelles and caspase-independent cell death. BMC Cell Biol 16:4 [Google Scholar]
  121. Duda RL, Oh B, Hendrix RW. 121.  2013. Functional domains of the HK97 capsid maturation protease and the mechanisms of protein encapsidation. J. Mol. Biol. 425:2765–81 [Google Scholar]
  122. Oh B, Moyer CL, Hendrix RW, Duda RL. 122.  2014. The delta domain of the HK97 major capsid protein is essential for assembly. Virology 456:171–78 [Google Scholar]
  123. Tan CW, Lai JKF, Sam IC, Chan YF. 123.  2014. Recent developments in antiviral agents against enterovirus 71 infection. J. Biomed. Sci 2114 [Google Scholar]
  124. Kuo RL, Shih SR. 124.  2013. Strategies to develop antivirals against enterovirus 71. Virol. J. 10:28 [Google Scholar]
  125. Chong P, Hsieh SY, Liu CC, Chou AH, Chang JY. 125.  et al. 2012. Production of EV71 vaccine candidates. Hum. Vaccines Immunother. 8:1775–83 [Google Scholar]
  126. Falah N, Montserret R, Lelogeais V, Schuffenecker I, Lina B. 126.  et al. 2012. Blocking human enterovirus 71 replication by targeting viral 2A protease. J. Antimicrob. Chemother. 67:2865–69 [Google Scholar]
  127. Lin YJ, Chang YC, Hsiao NW, Hsieh JL, Wang CY. 127.  et al. 2012. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J. Virol. Methods 182:93–98 [Google Scholar]
  128. Zhang X, Song Z, Qin B, Zhang X, Chen L. 128.  et al. 2013. Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: evaluation of antiviral efficacy in a murine infection model. Antivir. Res. 97:264–69 [Google Scholar]
  129. Binford SL, Weady PT, Maldonado F, Brothers MA, Matthews DA, Patick AK. 129.  2007. In vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother. 51:4366–73 [Google Scholar]
  130. Kuo C, Shie J, Fang J, Yen G, Hsu JT, Liu H. 130.  2008. Design, synthesis and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg. Med. Chem 167388–98 [Google Scholar]
  131. Patick AK, Brothers MA, Maldonado F, Binford S, Maldonado O. 131.  et al. 2005. In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother. 49:2267–75 [Google Scholar]
  132. Borysowski J, Weber-Dabrowska B, Górski A. 132.  2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. 231:366–77 [Google Scholar]
  133. Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA. 133.  2009. Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5. FEBS J 276:7329–42 [Google Scholar]
  134. Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R. 134.  2013. Characterization of five novel endolysins from gram-negative infecting bacteriophages. Appl. Microbiol. Biotechnol. 97:4369–75 [Google Scholar]
  135. Nelson D, Loomis L, Fischetti VA. 135.  2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. PNAS 98:4107–12 [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041944
Loading
/content/journals/10.1146/annurev-virology-101416-041944
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error