1932

Abstract

Despite growing up amid humble surroundings, I ended up receiving an excellent education at the University of California at Berkeley and postdoctoral training at Harvard. My academic career at Caltech was shaped by serendipity, inspirational colleagues, and a stimulating research environment, as well as smart, motivated students and postdocs who were willing to join my search for molecular understanding of complex biological systems. From chemical physics I allowed my research to evolve, beginning with the application of NMR to investigate the base stacking of nucleic acid bases in solution, the dynamic structure of membranes, and culminating with the use of various forms of spectroscopy to elucidate the structure and function of membrane proteins and the early kinetic events in protein folding. The journey was a biased random walk driven by my own intellectual curiosity and instincts and by the pace at which I learned biochemistry from my students and postdocs, my colleagues, and the literature and through osmosis during seminars and scientific meetings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.050708.133713
2009-06-09
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/biophys/38/1/annurev.biophys.050708.133713.html?itemId=/content/journals/10.1146/annurev.biophys.050708.133713&mimeType=html&fmt=ahah

Literature Cited

  1. Banerjee U, Zidovetzki R, Birge R, Chan SI. 1.  1985. Interaction of alamethicin with lecithin bilayers: a 31P and 2H NMR study. Biochemistry 24:7621–27 [Google Scholar]
  2. Bangerter BW, Chan SI. 2.  1968. A proton magnetic resonance study of the interaction of adenosine with polyuridylic acid: evidence for both adenine-uracil base-stacking and base-pairing. Proc. Natl. Acad. Sci. USA 60:1144–51 [Google Scholar]
  3. Bangerter BW, Chan SI. 3.  1969. Proton magnetic resonance studies of ribose dinucleoside monophosphates in aqueous solution. The nature of the base-stacking interaction in adenylyl (3′ 5′) cytidine and cytidylyl (3′ 5′) adenosine. J. Am. Chem. Soc. 91:3910–21 [Google Scholar]
  4. Beinert H, Griffiths DE, Wharton DC, Sands RH. 4.  1962. Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. J. Biol. Chem. 237:2337–46 [Google Scholar]
  5. Blair DF, Gelles J, Chan SI. 5.  1986. Redox-linked proton translocation in cytochrome oxidase: the importance of gating electron flow. Biophys. J. 50:713–33 [Google Scholar]
  6. Blair DF, Martin CT, Gelles J, Wang H, Brudvig GW. 6.  et al. 1983. The metal centers of cytochrome c oxidase: structures and interactions. Chem. Scr. 21:43–53 [Google Scholar]
  7. Blair DF, Witt SN, Chan SI. 7.  1985. The mechanism of cytochrome c oxidase-catalyzed dioxygen reduction at low temperatures. Evidence for two intermediates at the three-electron level and entropic promotion of the bond-breaking step. J. Am. Chem. Soc. 107:7389–99 [Google Scholar]
  8. Bocian DF, Chan SI. 8.  1978. NMR studies of membrane structure and dynamics. Annu. Rev. Phys. Chem. 29:307–35 [Google Scholar]
  9. Bull TE, Barthel JS, Jonas J. 9.  1971. The effect of pressure on the F-19 spin-rotation interactions in benzotrifluoride in the liquid state. J. Chem. Phys. 54:3663–66 [Google Scholar]
  10. Burke TE, Chan SI. 10.  1970. Nuclear spin relaxation in the presence of internal rotation. Nuclear-spin-internal-rotational coupling in benzotrifluoride and hexafluorobutyne-2. J. Magn. Reson. 2:120–40 [Google Scholar]
  11. Chan SI, Austin JA, Paez OA. 11.  1969. Electron spin resonance studies of concentrated alkali metal-ammonia solutions. Proc. Int. Union Pure Appl. Chem. Conf.425–38 New York: Cornell Univ. Press [Google Scholar]
  12. Chan SI, Baker MR. 12.  1961. Large rotational magnetic moment of NO. Bull. Am. Phys. Soc. 6:271 [Google Scholar]
  13. Chan SI, Baker MR, Ramsey NF. 13.  1964. Molecular-beam magnetic resonance studies of the nitrogen molecule. Phys. Rev. 136:A1224–28 [Google Scholar]
  14. Chan SI, Bangerter BW, Peter HH. 14.  1966. Purine binding to dinucleotides: evidence for base stacking and insertion. Proc. Natl. Acad. Sci. USA 55:720–27 [Google Scholar]
  15. Chan SI, Borgers TR, Russell JW, Strauss HL, Gwinn WD. 15.  1966. Trimethylene oxide. Far-infrared spectrum and double-minimum vibration. J. Chem. Phys. 44:1103–11 [Google Scholar]
  16. Chan SI, Chen KHC, Yu SSF, Chen CL, Kuo SSJ. 16.  2004. Toward delineating the structure and function of the particulate methane monooxygenase (pMMO) from methanotrophic bacteria. Biochemistry 43:4421–30 [Google Scholar]
  17. Chan SI, Feigenson GW, Seiter CHA. 17.  1971. Nuclear relaxation studies of lecithin bilayers. Nature 231:110–12 [Google Scholar]
  18. Chan SI, Huang JJT, Larsen RW, Rock RS, Hansen KC. 18.  2005. Early kinetic events in protein folding: the development and applications of caged peptides. Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules M Goeldner, R Givens 479–94 Weinheim, Ger.: Wiley-VCH Verlag GmbH [Google Scholar]
  19. Chan SI, Kula RJ, Sawyer DT. 19.  1964. The proton magnetic resonance spectra and structures of ethylenediaminetetraacetic acid, methyliminodiacetic acid, and nitrilotriacetic acid chelates of molybdenum. J. Am. Chem. Soc. 86:377–79 [Google Scholar]
  20. Chan SI, Li PM. 20.  1990. Cytochrome c oxidase: understanding nature's design of a proton pump. Biochemistry 29:1–12 [Google Scholar]
  21. Chan SI, Nelson JH. 21.  1969. Proton magnetic resonance studies of ribose dinucleoside monophosphates in aqueous solution. The nature of the base-stacking interaction in adenylyl (3′ 5′) adenosine. J. Am. Chem. Soc. 91:168–83 [Google Scholar]
  22. Chan SI, Schweizer MP, Ts'o POP, Helmkamp GK. 22.  1964. Interaction and association of bases and nucleosides in aqueous solutions. A nuclear magnetic resonance study of the self-association of purine and 6-methylpurine. J. Am. Chem. Soc. 86:4182–88 [Google Scholar]
  23. Chan SI, Seiter CHA, Feigenson GW. 23.  1972. Anisotropic and restricted molecular motion in lecithin bilayers. Biochem. Biophys. Res. Commun. 46:1488–92 [Google Scholar]
  24. Chan SI, Wang VCC, Lai JCH, Yu SSF, Chen PPY. 24.  et al. 2007. Redox potentiometric studies of the particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew. Chem. Int. Ed. 46:1992–94 [Google Scholar]
  25. Chan SI, Witt SN, Blair DF. 25.  1988. The dioxygen chemistry of cytochrome c oxidase. Chem. Scr. 28a:51–56 [Google Scholar]
  26. Chan SI, Yu SSF. 26.  2008. Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster. Acc. Chem. Res. 41:969–79 [Google Scholar]
  27. Chance B, Saronio C, Leigh JS. 27.  1975. Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J. Biol. Chem. 250:9226–37 [Google Scholar]
  28. Chen KHC, Chen CL, Tseng CF, Yu SSF, Ke SC. 28.  et al. 2004. The copper clusters in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath). J. Chin. Chem. Soc. 51:1081–98 [Google Scholar]
  29. Chen PPY, Chan SI. 29.  2006. Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. J. Inorg. Biochem. 100:4801–9 [Google Scholar]
  30. Chen PPY, Yang RBG, Lee JCM, Chan SI. 30.  2007. Facile O-atom insertion into C–C and C–H bonds by a trinuclear copper complex designed to harness a “singlet oxene.”. Proc. Natl. Acad. Sci. USA 104:14570–75 [Google Scholar]
  31. Chen RP, Huang JJ, Chen HL, Jan H, Velusamy M. 31.  et al. 2004. Measuring the refolding of β-sheets with different turn sequences on a nanosecond timescale. Proc. Natl. Acad. Sci. USA 101:7305–10 [Google Scholar]
  32. Clore GM, Andreasson LE, Karlsson B, Aasa R, Malmström BG. 32.  1980. Characterization of the intermediates in the reaction of mixed-valence state soluble cytochrome oxidase with oxygen at low temperatures by optical and electro-paramagnetic-resonance spectroscopy. Biochem. J. 185:155–67 [Google Scholar]
  33. Dubin AS, Chan SI. 33.  1967. Nuclear spin internal-rotation coupling. J. Chem. Phys. 46:4533–35 [Google Scholar]
  34. Eigenberg KE, Chan SI. 34.  1980. The effect of surface curvature on the head-group structure and phase transition properties of phospholipid bilayer vesicles. Biochim. Biophys. Acta 599:330–35 [Google Scholar]
  35. Elliott SJ, Zhu M, Nguyen HHT, Yip JHK, Chan SI. 35.  1997. The regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119:9949–55 [Google Scholar]
  36. Falke JJ, Chan SI. 36.  1985. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35C1 NMR study. J. Biol. Chem. 260:9537–44 [Google Scholar]
  37. Falke JJ, Chan SI. 37.  1986. Molecular mechanisms of band 3 inhibitors: transport site inhibitors. Biochemistry 25:7888–94 [Google Scholar]
  38. Falke JJ, Pace RJ, Chan SI. 38.  1984. Chloride binding to the anion transport binding sites of band 3: a 35C1 NMR study. J. Biol. Chem. 259:6472–80 [Google Scholar]
  39. Falke JJ, Pace RJ, Chan SI. 39.  1984. Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors: a 35C1 NMR study. J. Biol. Chem. 259:6481–94 [Google Scholar]
  40. Feigenson GW, Chan SI. 40.  1974. . Nuclear magnetic relaxation behavior of lecithin multilayers. J. Am. Chem. Soc. 96:1312–19 [Google Scholar]
  41. Glaser M, Simpkins H, Singer SJ, Sheetz M, Chan SI. 41.  1970. On the interactions of lipids and proteins in the red blood cell membrane. Proc. Natl. Acad. Sci. USA 65:721–28 [Google Scholar]
  42. Hansen KC, Rock RS, Larsen RW, Chan SI. 42.  2000. A method for photoinitiating protein folding in a non-denaturing environment. J. Am. Chem. Soc. 122:11567–68 [Google Scholar]
  43. Hartzell CR, Beinert H. 43.  1974. Components of cytochrome c oxidase detectable by EPR spectroscopy. Biochim. Biophys. Acta 368:318–38 [Google Scholar]
  44. Horwitz AF, Horsley WJ, Klein MP. 44.  1972. Magnetic resonance studies on membrane and model membrane systems: proton magnetic relaxation rates in sonicated lecithin dispersions. Proc. Natl. Acad. Sci. USA 69:590–93 [Google Scholar]
  45. Hu VW, Chan SI, Brown GS. 45.  1977. X-ray absorption edge studies on oxidized and reduced cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 74:3821–25 [Google Scholar]
  46. Iwata S, Ostermeier C, Ludwig B, Michel H. 46.  1995. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–69 [Google Scholar]
  47. Kainosho M, Kroon PA, Lawaczeck R, Petersen NO, Chan SI. 47.  1978. Chain length dependence of the 1H NMR relaxation rates in bilayer vesicles. Chem. Phys. Lipids 21:59–68 [Google Scholar]
  48. Kao WC, Chen YR, Yi EC, Lee H, Tian Q. 48.  et al. 2004. Quantitative proteomic analysis of metabolic regulation by copper in M. capsulatus (Bath). J. Biol. Chem. 279:51554–60 [Google Scholar]
  49. Kroon PA, Kainosho M, Chan SI. 49.  1975. The state of molecular motion of cholesterol in lecithin bilayers. Nature 256:582–84 [Google Scholar]
  50. Kroon PA, Kreishman GP, Nelson JH, Chan SI. 50.  1974. The effects of chain length on the secondary structure of oligoadenylates. Biopolymers 13:2571–92 [Google Scholar]
  51. Kuo NNW, Huang JJT, Miksovska J, Chen RPY, Larsen RW. 51.  et al. 2005. Effects of turn mutation on the structure, stability, and folding kinetics of a β-sheet peptide. J. Am. Chem. Soc. 127:16945–54 [Google Scholar]
  52. Kyogoku Y, Lord RC, Rich A. 52.  1966. Hydrogen bonding specificity of nucleic acid purines and pyrimidines in solution. Science 154:518–20 [Google Scholar]
  53. Kyogoku Y, Lord RC, Rich A. 53.  1967. An infrared study of hydrogen bonding between adenine and uracil derivatives in chloroform solution. J. Am. Chem. Soc. 89:496–504 [Google Scholar]
  54. Lau ALY, Chan SI. 54.  1974. Nuclear magnetic resonance studies of the interaction of alamethicin with lecithin bilayers. Biochemistry 13:4942–48 [Google Scholar]
  55. Lau ALY, Chan SI. 55.  1975. Alamethicin-mediated fusion of lecithin vesicles. Proc. Natl. Acad. Sci. USA 72:2170–74 [Google Scholar]
  56. Lawaczeck R, Kainosho M, Chan SI. 56.  1976. The formation and annealing of structural defects in lipid bilayer vesicles. Biochim. Biophys. Acta 433:313–30 [Google Scholar]
  57. Lawaczeck R, Kainosho M, Girardet JL, Chan SI. 57.  1975. Effects of structural defects in sonicated phospholipid vesicles on fusion and ion permeability. Nature 256:584–86 [Google Scholar]
  58. Levine YK, Birdsall NJM, Lee AG, Metcalfe JC. 58.  1972. Carbon-13 nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids. Biochemistry 11:1416–21 [Google Scholar]
  59. Levinthal C. 59.  1968. Are there pathways for protein folding?. J. Chem. Phys. 85:44–45 [Google Scholar]
  60. Lieberman RL, Rosenzwig AC. 60.  2005. Crystal structure of a membrane-bound metalloenzyme that catalyzes the biological oxidation of methane. Nature 434:177–82 [Google Scholar]
  61. Lipscomb JD. 61.  1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48:371–99 [Google Scholar]
  62. Marcus RA, Sutin N. 62.  1985. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811:265–322 [Google Scholar]
  63. Martin CT, Scholes CP, Chan SI. 63.  1988. On the nature of cysteine coordination to CuA in cytochrome c oxidase. J. Biol. Chem 263:8420–29 [Google Scholar]
  64. Morgan JE, Li PM, Jang DJ, El-Sayed MA, Chan SI. 64.  1989. Electron transfer between cytochrome a and copper A in cytochrome c oxidase: a perturbed equilibrium study. Biochemistry 28:6975–83 [Google Scholar]
  65. Mueller L, Chan SI. 65.  1983. Two-dimensional deuterium NMR of lipid membranes. J. Chem. Phys. 78:4341–48 [Google Scholar]
  66. Musser SM, Chan SI. 66.  1995. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage. Biophys. J. 68:2543–55 [Google Scholar]
  67. Musser SM, Stowell MHB, Chan SI. 67.  1995. Cytochrome c oxidase: chemistry of a molecular machine. Adv. Enzymol. Relat. Areas Mol. Biol 71:79–208 [Google Scholar]
  68. Ng KY, Tu LC, Wang YS, Chan SI, Yu SS. 68.  2008. Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereo-selective alkane hydroxylation and olefin epoxidation. Chembiochem 9:1116–23 [Google Scholar]
  69. Nguyen HHT, Elliott SJ, Yip JHK, Chan SI. 69.  1998. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme: isolation and characterization. J. Biol. Chem. 273:7957–66 [Google Scholar]
  70. Nguyen HHT, Nakagawa KH, Hedman B, Elliott SJ, Lidstrom ME. 70.  et al. 1996. X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. J. Am. Chem. Soc. 118:12766–76 [Google Scholar]
  71. Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME. 71.  et al. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269:14995–5005 [Google Scholar]
  72. Owicki JC, McConnell HM. 72.  1979. Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc. Natl. Acad. Sci. USA 76:4750–54 [Google Scholar]
  73. Owicki JC, Springgate MW, McConnell HM. 73.  1978. Theoretical study of protein-lipid interactions in bilayer membranes. Proc. Natl. Acad. Sci. USA 75:1616–19 [Google Scholar]
  74. Pace RJ, Chan SI. 74.  1982. Molecular motions in lipid bilayers. II. Magnetic resonance of multilamellar and vesicle systems. J. Chem. Phys. 76:4228–40 [Google Scholar]
  75. Pearson LT, Chan SI. 75.  1982. Effects of lipid-mediated interactions on protein pair distribution functions. Biophys. J. 37:141–42 [Google Scholar]
  76. Pearson LT, Chan SI. 76.  1987. Pair distribution functions of cytochrome c oxidase in lipid bilayers: evidence for a lipid-mediated repulsion between protein particles. Chem. Scr. 27B:203–9 [Google Scholar]
  77. Pearson LT, Edelman J, Chan SI. 77.  1984. Statistical mechanics of lipid membranes: protein correlation functions and lipid ordering. Biophys. J. 45:863–71 [Google Scholar]
  78. Pearson LT, Lewis BA, Engleman DM, Chan SI. 78.  1983. Pair distribution functions of bacteriorhodopsin and rhodopsin in model bilayers. Biophys. J. 43:167–74 [Google Scholar]
  79. Petersen NO, Chan SI. 79.  1977. More on the motional state of lipid bilayer membranes. The interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657–67 [Google Scholar]
  80. Prestegard JH, Chan SI. 80.  1969. Proton magnetic resonance studies of the cation-binding properties of nonactin. The K+-nonactin complex. Biochemistry 8:3921–27 [Google Scholar]
  81. Prestegard JH, Chan SI. 81.  1970. Proton magnetic resonance studies of the cation-binding properties on nonactin. Comparison of the sodium ion, potassium ion, and cesium ion complexes. J. Am. Chem. Soc. 92:4440–46 [Google Scholar]
  82. Prior SD, Dalton H. 82.  1985. The effect of copper ions in membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131:155–63 [Google Scholar]
  83. Rock RS, Chan SI. 83.  1998. Preparation of a water-soluble “cage” based on 3′,5′-dimethoxybenzoin. J. Am. Chem. Soc. 120:10766–67 [Google Scholar]
  84. Schmidt CF Jr, Chan SI. 84.  1971. Nuclear spin-lattice relaxation of the methyl carbon-13 in toluene. J. Magn. Reson. 5:151–54 [Google Scholar]
  85. Schuh J, Banerjee U, Mueller L, Chan SI. 85.  1982. The phospholipid packing arrangement in small bilayer vesicles as revealed by proton magnetic resonance studies at 500 MHz. Biochim. Biophys. Acta 687:219–25 [Google Scholar]
  86. Schultz BE, Chan SI. 86.  2001. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu. Rev. Biophys. Biomol. Struct. 30:23–65 [Google Scholar]
  87. Schweizer MP, Chan SI, Helmkamp GK, Ts'o POP. 87.  1964. An experimental assignment of the proton magnetic resonance spectrum of purine. J. Am. Chem. Soc. 86:696–700 [Google Scholar]
  88. Seelig J, Seelig A. 88.  1974. Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–45 [Google Scholar]
  89. Seiter CHA, Chan SI. 89.  1973. Molecular motion in lipid bilayers: a nuclear magnetic resonance linewidth study. J. Am. Chem. Soc. 95:7541–53 [Google Scholar]
  90. Semrau J, Chistoserdov A, Lebron J, Costello A, Davagnino J. 90.  et al. 1995. Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 177:3071–79 [Google Scholar]
  91. Sheetz MP, Chan SI. 91.  1972. Effect of sonication on the structure of lecithin bilayers. Biochemistry 11:4573–81 [Google Scholar]
  92. Sheetz MP, Chan SI. 92.  1972. Proton magnetic resonance studies of whole human erythrocyte membranes. Biochemistry 11:548–55 [Google Scholar]
  93. Singer SJ, Nicolson GL. 93.  1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31 [Google Scholar]
  94. Smith DDS, Dalton H. 94.  1989. Solubilization of methane monooxygenase from Methylococcus capsulatus Bath. Eur. J. Biochem 182:667–72 [Google Scholar]
  95. Stevens TH, Brudvig GW, Bocian DF, Chan SI. 95.  1979. The structure of the cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc. Natl. Acad. Sci. USA 76:3320–24 [Google Scholar]
  96. Stevens TH, Chan SI. 96.  1981. Histidine is the axial ligand to cytochrome a3 in cytochrome c oxidase. J. Biol. Chem. 256:1069–71 [Google Scholar]
  97. Stevens TH, Martin CT, Wang H, Brudvig GW, Scholes CP. 97.  et al. 1982. The nature of Cua in cytochrome c oxidase. J. Biol. Chem. 257:12106–13 [Google Scholar]
  98. Stockton G, Polnaszek CF, Tulloch AP, Hasan F, Smith ICP. 98.  1976. Molecular motion and order in single-bilayer vesicles with multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry 15:954–66 [Google Scholar]
  99. Sun J, Deem MW. 99.  2007. Spontaneous emergence of modularity in a model of evolving individuals. Phys. Rev. Lett. 99:228107(4) [Google Scholar]
  100. Ts'o POP, Chan SI. 100.  1964. Interaction and association of bases and nucleosides in aqueous solutions. Association of 6-methylpurine and 5-bromouridine and treatment of multiple equilibria. J. Am. Chem. Soc. 86:4176–81 [Google Scholar]
  101. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H. 101.  et al. 1995. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–74 [Google Scholar]
  102. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H. 102.  et al. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–44 [Google Scholar]
  103. Wang JF, Falke JJ, Chan SI. 103.  1986. A proton NMR study of the mechanism of the erythrocyte glucose transporter. Proc. Natl. Acad. Sci. USA 83:3277–81 [Google Scholar]
  104. Watnick PI, Chan SI, Dea P. 104.  1990. Hydrophobic mismatch in gramicidin A'/lecithin systems. Biochemistry 29:6215–21 [Google Scholar]
  105. Wikström M. 105.  1989. Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping. Nature 338:776–78 [Google Scholar]
  106. Wikström MK. 106.  1977. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–73 [Google Scholar]
  107. Wilkinson B, Zhu M, Priestley ND, Nguyen HHT, Morimoto H. 107.  et al. 1996. A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 118:921–22 [Google Scholar]
  108. Wolynes PG, Onuchic JN, Thirumalai D. 108.  1995. Navigating the folding routes. Science 267:1619–20 [Google Scholar]
  109. Yoshikawa S, Tera T, Takahashi Y, Caughey WS. 109.  1988. Crystalline cytochrome c oxidase of bovine heart mitochondrial membranes: composition and X-ray diffraction studies. Proc. Nat. Acad. Sci. USA 85:1354–58 [Google Scholar]
  110. Yu C, Yu L, King TE. 110.  1975. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J. Biol. Chem 250:1383–92 [Google Scholar]
  111. Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF. 111.  et al. 2003. Production of high quality pMMO in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185:5915–24 [Google Scholar]
  112. Yu SSF, Wu LY, Chen KHC, Luo WI, Huang DS. 112.  et al. 2003. The stereospecific hydroxylation of [2,2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem 278:40658–69 [Google Scholar]
  113. Zaslavsky D, Sadoski RC, Wang K, Durham B, Gennis RB. 113.  et al. 1998. Single electron reduction of cytochrome c oxidase compound F: resolution of partial steps by transient spectroscopy. Biochemistry 37:14910–16 [Google Scholar]
/content/journals/10.1146/annurev.biophys.050708.133713
Loading
/content/journals/10.1146/annurev.biophys.050708.133713
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error