1932

Abstract

My encounter with Jacques Monod has shaped my scientific career. After a short incursion in the biochemistry of strict anaerobes, and after elucidating the biosynthetic pathway leading from aspartate to threonine in , I joined his laboratory. With him and Howard Rickenberg, I discovered the stereospecific permeability of galactosides and amino acids (permeases). After this intermezzo, I returned to the analysis of biosynthetic pathways and of their regulation by allosteric feedback inhibition and repression in Among others, my studies led to the discovery of the tryptophan and methionine repressors, to the incorporation of amino acid analogues in proteins, including selenomethionine (which much later led to progress in protein crystallography), to the definition of isofunctional and multifunctional enzymes, and to the elucidation of the primary structure of most of the enzymes leading to threonine and methionine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.59.030804.121329
2005-10-13
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/mi/59/1/annurev.micro.59.030804.121329.html?itemId=/content/journals/10.1146/annurev.micro.59.030804.121329&mimeType=html&fmt=ahah

Literature Cited

  1. Amos H, Cohen GN. 1954. Amino acid utilization in bacterial growth. 2. A study of the threonine-isoleucine relationship in mutants of E. coli. Biochem. J 57:338–43 [Google Scholar]
  2. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas L. et al. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32:5766–79 [Google Scholar]
  3. Beadle GW, Tatum EL. 1941. Genetic control of biochemical reactions in. Neurospora. Proc. Natl. Acad. Sci. USA 27:499–506 [Google Scholar]
  4. Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D. et al. 1986. Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and share a similar regulatory region. Proc. Natl. Acad. Sci. USA 83:867–71 [Google Scholar]
  5. Brunel F, Duchange N, Fischer A-M, Cohen GN, Zakin MM. 1987. Antithrombin III Alger: a new case of Arg 47 → Cys mutation. Am. J. Haematol. 25:223–24 [Google Scholar]
  6. Brunel F, Ochoa A, Schaeffer E, Boissier F, Guillou Y. et al. 1988. Interactions of DNA-binding proteins with the 5′ region of the human transferrin gene. J. Biol. Chem. 263:10180–85 [Google Scholar]
  7. Burr B, Walker J, Truffa-Bachi P, Cohen GN. 1976. Homoserine kinase from Escherichia coli K12. Eur. J. Biochem. 62:519–26 [Google Scholar]
  8. Cassan M, Parsot C, Cohen GN, Patte J-C. 1986. Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12: evolutionary pathway leading to three isofunctional enzymes. J. Biol. Chem 261:1052–57 [Google Scholar]
  9. Cohen GN. 2004. Microbial Biochemistry Dordrecht: Kluwer333 pp.
  10. Cohen GN, Barbe V, Flament D, Galperin M, Heilig R. et al. 2003. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol. Microbiol. 47:1495–512 [Google Scholar]
  11. Cohen GN, Cohen-Bazire G. 1949. Etudes sur le mécanisme de la fermentation acétonobutylique. II. Synthèse de butyrate à partir de lactate et d’acétate. Ann. Inst. Pasteur 77:729–34 [Google Scholar]
  12. Cohen GN, Cohen-Bazire G. 1950. Reduction by molecular hydrogen of acetoacetate to butyrate by butyric acid bacteria. Nature 166:1077–80 [Google Scholar]
  13. Cohen GN, Cowie DB. 1957. Remplacement total de la méthionine par la séléno-méthionine dans les protéines d’ E. coli.. C. R. Acad. Sci. 244:680–83 [Google Scholar]
  14. Cohen GN, Halvorson HO, Spiegelman S. 1958. Effects of p-fluorophenylalanine on the growth and physiology of yeast. In Microsomal Particles and Protein Synthesis ed. RB Roberts pp. 100–108 New York: Pergamon [Google Scholar]
  15. Cohen GN, Hirsch M-L. 1954. Threonine synthase, a system synthesizing L-threonine from L-homoserine. J. Bacteriol. 67:182–90 [Google Scholar]
  16. Cohen GN, Jacob F. 1959. Sur la répression de la synthèse des enzymes intervenant dans la formation du tryptophane chez Escherichia coli.. C. R. Acad. Sci 248:3490–92 [Google Scholar]
  17. Cohen GN, Monod J. 1957. Bacterial permeases. Bacteriol. Rev 21:168–94 [Google Scholar]
  18. Cohen GN, Patte J-C, Truffa-Bachi P. 1965. Parallel modifications caused by mutations in two enzymes concerned with the biosynthesis of threonine in Escherichia coli. Biochem. Biophys. Res. Comm 19:546–50 [Google Scholar]
  19. Cohen GN, Rickenberg HV. 1955. Etude directe de la fixation d’un inducteur de la β-galactosidase par les cellules de E. coli.. C. R. Acad. Sci. 240:466–68 [Google Scholar]
  20. Cohen GN, Rickenberg HV. 1955. Existence d’accepteurs spécifiques pour les amino acides chez E. coli. C. R. Acad. Sci. 240:2086–88 [Google Scholar]
  21. Cohen GN, Rickenberg HV. 1956. Concentration spécifique réversible des amino acides chez E. coli. Ann. Inst. Pasteur 91:693–720 [Google Scholar]
  22. Cohen-Bazire G, Cohen GN. 1949. Etudes sur le mécanisme de la fermentation acétonobutylique. I. Synthèse de butyrate à partir de pyruvate. Ann. Inst. Pasteur 77:718–28 [Google Scholar]
  23. Cohen-Bazire G, Cohen GN, Prévot A-R. 1948. Nature et mode de formation des acides volatils dans les cultures de quelques bactéries anaérobies protéolytiques du groupe de Cl. sporogenes. Formation par réaction de Stickland des acides isobutyrique, isovalérianique et valérianique optiquement actifs. Ann. Inst. Pasteur 75:291–304 [Google Scholar]
  24. Cohn M, Cohen GN, Monod J. 1953. L’effet inhibiteur spécifique de la méthionine dans la formation de la méthionine-synthase chez E. coli. C. R. Acad. Sci. 236:746–48 [Google Scholar]
  25. Cossart P, Katinka M, Yaniv M. 1981. Nucleotide sequence of the thrB gene of E. coli and its two adjacent regions: the thrAB and thrC junctions. Nucleic Acids Res. 11:339–47 [Google Scholar]
  26. Cowie DB, Cohen GN. 1957. Biosynthesis by E. coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta 26:252–61 [Google Scholar]
  27. Dautry-Varsat A, Cohen GN, Stadtman ER. 1979. Some properties of Escherichia coli glutamine synthetase after limited proteolysis by subtilisin. J. Biol. Chem 254:3124–28 [Google Scholar]
  28. Duchange N, Chasse J-F, Cohen GN, Zakin MM. 1987. Molecular characterization of the antithrombin III Tours deficiency. Thrombosis Res 45:115–21 [Google Scholar]
  29. Duchange N, Zakin MM, Ferrara P, Saint Girons I, Parki. et al. 1983. Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5′ and 3′ flanking regions of the metBL operon. J. Biol. Chem. 258:14868–71 [Google Scholar]
  30. Falcoz-Kelly F, van Rapenbusch R, Cohen GN. 1969. The methionine-repressible homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Preparation of the homogeneous protein catalyzing the two activities. Molecular weight of the native enzyme and of its subunits Eur. J. Biochem. 8:146–52 [Google Scholar]
  31. Halvorson HO, Spiegelman S. 1952. The inhibition of enzyme formation by amino acid analogues. J. Bacteriol 64:207–21 [Google Scholar]
  32. Hendrickson WA, Horton JR, Lemaster DM. 1990. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9:1665–72 [Google Scholar]
  33. Hirsch M-L, Cohen GN. 1953. Amino acid utilization in bacterial growth. 1. Peptide utilization by a leucine-requiring mutant of Escherichia coli. Biochem. J. 53:25–30 [Google Scholar]
  34. Hirsch M-L, Cohen GN. 1954. Mise en évidence d’un système synthétisant la L-homosérine à partir de l’acide aspartique. Biochim. Biophys. Acta 15:560–68 [Google Scholar]
  35. Janin J, Cohen GN. 1969. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. VII. A study of the allosteric equilibrium. Eur. J. Biochem. 11:520–29 [Google Scholar]
  36. Janin J, Iwatsubo M. 1969. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Relaxations of the allosteric equilibrium. Eur. J. Biochem. 11:530–40 [Google Scholar]
  37. Katinka M, Cossart P, Sibilli L, Saint Girons I, Chalvignac M-A. et al. 1980. Nucleotide sequence of the thrA gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 77:5730–33 [Google Scholar]
  38. Lwoff A. 1943. L’Évolution Biologique. Etude des Pertes de Fonction chez les Microorganismes Paris: Hermann308 pp.
  39. Monod J, Cohen-Bazire G. 1953. L’effet d’inhibition spécifique dans la biosynthèse de la tryptophane desmase chez Aerobacter aerogenes. C. R. Acad. Sci 236:530–32 [Google Scholar]
  40. Munier RL, Cohen GN. 1959. Incorporation d’analogues structuraux d’amino acides dans les protéines bactériennes au cours de leur synthèse in vivo. Biochim. Biophys. Acta 31:378–91 [Google Scholar]
  41. Park I, Schaeffer E, Sidoli A, Baralle FE, Cohen GN. et al. 1985. Organization of the human transferrin gene: direct evidence that it originated by gene duplication. Proc. Natl. Acad. Sci. USA 82:3149–53 [Google Scholar]
  42. Parsot C, Cossart P, Saint Girons I, Cohen GN. 1983. Nucleotide sequence of thrC and of the transcription termination region of the threonine operon in Escherichia coli K12. Nucleic Acids Res. 11:7331–45 [Google Scholar]
  43. Patte J-C, Le Bras G, Cohen GN. 1967. Regulation by methionine of the synthesis of a third aspartokinase and a second homoserine dehydrogenase in Escherichia coli K12. Biochim. Biophys. Acta 136:245–57 [Google Scholar]
  44. Patte J-C, Truffa-Bachi P, Cohen GN. 1966. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli. I. Evidence that the two activities are carried by a single protein. Biochim. Biophys. Acta 128:426–39 [Google Scholar]
  45. Phillips SEV, Manfield I, Parsons I, Davidson BE, Rafferty JB. et al. 1989. Cooperative tandem binding of met repressor of Escherichia coli.. Nature 341:711–15 [Google Scholar]
  46. Rafferty JB, Phillip SEV, Rojas C, Boulot G, Saint Girons I. et al. 1988. Crystallization of the Met repressor from E. coli. J. Mol. Biol 200:217–19 [Google Scholar]
  47. Rafferty JB, Somers WS, Saint-Girons I, Phillips SEV. 1989. Three-dimensional crystal structures of Escherichia coli met repressor with and without corepressor. Nature 341:705–10 [Google Scholar]
  48. Rickenberg HV, Cohen GN, Buttin G, Monod J. 1956. La β-galactosidase-perméase d' E. coli. Ann. Inst. Pasteur 91:829–57 [Google Scholar]
  49. Saint Girons I, Belfaiza J, Guillou Y, Perrin D, Guiso N. et al. 1986. Interactions of the Escherichia coli methionine repressor with the metF operator and with its corepressor, S-adenosylmethionine. J. Biol. Chem 261:10936–40 [Google Scholar]
  50. Saint Girons I, Duchange N, Cohen GN, Zakin MM. 1984. Structure and autoregulation of the metJ regulatory gene in E. coli. J. Biol. Chem 259:14282–85 [Google Scholar]
  51. Saint Girons I, Duchange N, Zakin MM, Park I, Margarita D. et al. 1983. Nucleotide sequence of metF, the E. coli structural gene for 5–10 methylene tetrahydrofolate reductase and of its control region. Nucleic Acids Res. 11:6723–32 [Google Scholar]
  52. Schaeffer E, Lucero MA, Jeltsch J-M, Py M-C, Levin MJ. et al. 1987. Complete structure of the human transferrin gene. Comparison with analogous chicken gene and a human pseudogene. Gene 56:109–16 [Google Scholar]
  53. Simonis N, Van Helden J, Cohen GN, Wodak SJ. 2004. Transcriptional regulation of protein complexes in yeast. Genome Biol. 5:R33 [Google Scholar]
  54. Simonis N, Wodak SJ, Cohen GN, Van Helden J. 2004. Combining pattern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics 20:2370–79 [Google Scholar]
  55. Somers WS, Phillips SEV. 1992. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature 359:387–93 [Google Scholar]
  56. Stadtman ER, Cohen GN, Le Bras G, de Robichon-Szulmajster H. 1961. Feedback inhibition and repression of aspartokinase activity in Escherichia coli and Saccharomyces cerevisiae. J. Biol. Chem 236:2033–38 [Google Scholar]
  57. Stickland LH. 1934. Studies in the metabolism of strict anaerobes. The chemical reactions by which Cl. sporogenes obtains its energy. Biochem. J. 28:1746–59 [Google Scholar]
  58. Trudinger PA, Cohen GN. 1956. Effect of 4-methyltryptophan on enzymes related to tryptophan metabolism. Biochem. J. 62:488–91 [Google Scholar]
  59. Truffa-Bachi P, van Rapenbusch R, Janin J, Gros C, Cohen GN. 1968. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. IV. Isolation, molecular weight, amino acid analysis and behaviour of the sulfhydryl groups of the protein catalyzing the two activities. Eur. J. Biochem 5:73–80 [Google Scholar]
  60. Zakin MM, Duchange N, Ferrara P, Cohen GN. 1983. Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase II-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J. Biol. Chem. 258:3028–31 [Google Scholar]
/content/journals/10.1146/annurev.micro.59.030804.121329
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error