1932

Abstract

The ribosome is a complex macromolecular machine responsible for protein synthesis in the cell. It consists of two subunits, each of which contains both RNA and protein components. Ribosome assembly is subject to intricate regulatory control and is aided by a multitude of assembly factors in vivo, but can also be carried out in vitro. The details of the assembly process remain unknown even in the face of atomic structures of the entire ribosome and after more than three decades of research. Some of the earliest research on ribosome assembly produced the Nomura assembly map of the small subunit, revealing a hierarchy of protein binding dependencies for the 20 proteins involved and suggesting the possibility of a single intermediate. Recent work using a combination of RNA footprinting and pulse-chase quantitative mass spectrometry paints a picture of small subunit assembly as a dynamic and varied landscape, with sequential and hierarchical RNA folding and protein binding events finally converging on complete subunits. Proteins generally lock tightly into place in a 5′ to 3′ direction along the ribosomal RNA, stabilizing transient RNA conformations, while RNA folding and the early stages of protein binding are initiated from multiple locations along the length of the RNA.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.050708.133615
2009-06-09
2024-04-19
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biophys.050708.133615
Loading
/content/journals/10.1146/annurev.biophys.050708.133615
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error