1932

Abstract

▪ Abstract 

Mobile group II introns, found in bacterial and organellar genomes, are both catalytic RNAs and retrotransposable elements. They use an extraordinary mobility mechanism in which the excised intron RNA reverse splices directly into a DNA target site and is then reverse transcribed by the intron-encoded protein. After DNA insertion, the introns remove themselves by protein-assisted, autocatalytic RNA splicing, thereby minimizing host damage. Here we discuss the experimental basis for our current understanding of group II intron mobility mechanisms, beginning with genetic observations in yeast mitochondria, and culminating with a detailed understanding of molecular mechanisms shared by organellar and bacterial group II introns. We also discuss recently discovered links between group II intron mobility and DNA replication, new insights into group II intron evolution arising from bacterial genome sequencing, and the evolutionary relationship between group II introns and both eukaryotic spliceosomal introns and non-LTR-retrotransposons. Finally, we describe the development of mobile group II introns into gene-targeting vectors, “targetrons,” which have programmable target specificity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.38.072902.091600
2004-12-15
2024-04-25
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.genet.38.072902.091600
Loading
/content/journals/10.1146/annurev.genet.38.072902.091600
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error