1932

Abstract

This reminiscence is a celebration of my good fortune in family, biological and scientific. The biological family into which I was born gave me a strong start, although not entirely in the direction I took. I swerved from an anticipated career in medical practice into continuing delight in those who became my scientific family in microbiology. The families changed, yet they continued to give me strength and inspiration. In my youth, I was gently guided by mentors who gave me freedom to explore where curiosity beckoned. I hope I repaid this gift to my laboratory colleagues who enlightened me over the years. I learned much from my students, and my horizons were extended by industrial scientists. It has been my particular good fortune to learn the workings of microorganisms and microbiologists as editor of for a decade, as editor-in-chief of for a decade, and as editor of for a quarter of a century.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.112408.134251
2010-10-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/64/1/annurev.micro.112408.134251.html?itemId=/content/journals/10.1146/annurev.micro.112408.134251&mimeType=html&fmt=ahah

Literature Cited

  1. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S. 1.  et al. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32:5766–79 [Google Scholar]
  2. Baumann P, Doudoroff M, Stanier RY. 2.  1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 95:1520–41 [Google Scholar]
  3. Canovas JL, Stanier RY. 3.  1967. Regulation of the enzymes of the β-ketoadipate pathway in Moraxella calcoacetica. 1. General aspects. Eur. J. Biochem. 1:289–300 [Google Scholar]
  4. Chari RVJ, Whitman CP, Kozarich JW, Ngai K-L, Ornston LN. 4.  1987. Absolute stereochemical course of the 3-carboxymuconate cyclo-isomerases from Pseudomonas putida and Acinetobacter calcoaceticus: analysis and implication. J. Am. Chem. Soc. 109:5514–19 [Google Scholar]
  5. D'Argenio DA, Segura A, Coco WM, Bunz PV, Ornston LN. 5.  1999. The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J. Bacteriol. 181:3505–15 [Google Scholar]
  6. D'Argenio DA, Vetting MW, Ohlendorf DH, Ornston LN. 6.  1999. Substitution, insertion, deletion, suppression, and altered substrate specificity in functional protocatechuate 3,4-dioxygenases. J. Bacteriol. 181:6478–87 [Google Scholar]
  7. Gerlt JA, Raushel FM. 7.  2003. Evolution of function in (α/β)8-barrel enzymes. Curr. Opin. Chem. Biol. 7:252–64 [Google Scholar]
  8. Glazer AN, Apell GS, Hixson CS, Bryant DA, Rimon S, Brown DM. 8.  1976. Biliproteins of cyanobacteria and Rhodophyta: homologous family of photosynthetic accessory pigments. Proc. Natl. Acad. Sci. USA 73:428–31 [Google Scholar]
  9. Gore JM, Ran FA, Ornston LN. 9.  2006. Deletion mutations caused by DNA strand slippage in Acinetobacter baylyi. Appl. Environ. Microbiol. 72:5239–45 [Google Scholar]
  10. Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN. 10.  1991. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J. Bacteriol. 173:7540–48 [Google Scholar]
  11. Hartnett C, Neidle EL, Ngai KL, Ornston LN. 11.  1990. DNA sequences of genes encoding Acinetobacter calcoaceticus protocatechuate 3,4-dioxygenase: evidence indicating shuffling of genes and of DNA sequences within genes during their evolutionary divergence. J. Bacteriol. 172:956–66 [Google Scholar]
  12. Hartnett GB, Averhoff B, Ornston LN. 12.  1990. Selection of Acinetobacter calcoaceticus mutants deficient in the p-hydroxybenzoate hydroxylase gene (pobA), a member of a supraoperonic cluster. J. Bacteriol. 172:6160–61 [Google Scholar]
  13. Hartnett GB, Ornston LN. 13.  1994. Acquisition of apparent DNA slippage structures during extensive evolutionary divergence of pcaD and catD genes encoding identical catalytic activities in Acinetobacter calcoaceticus. Gene 142:23–29 [Google Scholar]
  14. Harwood CS, Ornston LN. 14.  1988. Futile high-level transport activity impairs starvation-survival of Pseudomonas putida. J. Gen. Microbiol. 134:2421–27 [Google Scholar]
  15. Harwood CS, Parales RE. 15.  1996. The β-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50:553–90 [Google Scholar]
  16. Harwood CS, Rivelli M, Ornston LN. 16.  1984. Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacteriol. 160:622–28 [Google Scholar]
  17. Hegeman GD. 17.  1966. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida I. Synthesis of enzymes by the wild type. J. Bacteriol. 91:1140–54 [Google Scholar]
  18. Jones RM, Collier LS, Neidle EL, Williams PA. 18.  1999. areABC genes determine the catabolism of aryl esters in Acinetobacter sp. strain ADP1. J. Bacteriol. 181:4568–75 [Google Scholar]
  19. Juni E, Janik A. 19.  1969. Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J. Bacteriol. 98:281–88 [Google Scholar]
  20. Kok RG, D'Argenio DA, Ornston LN. 20.  1997. Combining localized PCR mutagenesis and natural transformation in direct genetic analysis of a transcriptional regulator gene, pobR. J. Bacteriol. 179:4270–76 [Google Scholar]
  21. Kok RG, D'Argenio DA, Ornston LN. 21.  1998. Mutation analysis of PobR and PcaU, closely related transcriptional activators in Acinetobacter. J. Bacteriol. 180:5058–69 [Google Scholar]
  22. Kornberg HL. 22.  1966. Role and control of the glyoxylate cycle in Escherichia coli. Biochem. J. 99:1–11 [Google Scholar]
  23. Meagher RB, McCorkle GM, Ornston MK, Ornston LN. 23.  1972. Inducible uptake system for β-carboxy-cis,cis-muconate in a permeability mutant of Pseudomonas putida. J. Bacteriol. 111:465–73 [Google Scholar]
  24. Meagher RB, Ornston LN. 24.  1973. Relationships among enzymes of the β-ketoadipate pathway. I. Properties of cis,cis-muconate-lactonizing enzyme and muconolactone isomerase from Pseudomonas putida. Biochemistry 12:3523–30 [Google Scholar]
  25. Morawski B, Segura A, Ornston LN. 25.  2000. Substrate range and genetic analysis of Acinetobacter vanillate demethylase. J. Bacteriol. 182:1383–89 [Google Scholar]
  26. Moxon R, Bayliss C, Hood D. 26.  2006. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40:307–33 [Google Scholar]
  27. Neidhart DJ, Kenyon GL, Gerlt JA, Petsko GA. 27.  1990. Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature 347:692–94 [Google Scholar]
  28. Ornston LN. 28.  1966. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. IV. Regulation. J. Biol. Chem. 241:3800–10 [Google Scholar]
  29. Ornston LN. 29.  1982. Communication among coevolving genes. Experiences in Biochemical Perception LN Ornston, SG Sligar 121–27 New York: Academic [Google Scholar]
  30. Ornston LN, Parke D. 30.  1976. Properties of an inducible uptake system for β-ketoadipate in Pseudomonas putida. J. Bacteriol. 125:475–88 [Google Scholar]
  31. Ornston LN, Parke D. 31.  1977. The evolution of induction mechanisms in bacteria: insights derived from the study of the β-ketoadipate pathway. Curr. Top. Cell. Regul. 12:209–62 [Google Scholar]
  32. Ornston LN, Stanier RY. 32.  1966. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida I. Biochemistry. J. Biol. Chem. 241:3776–86 [Google Scholar]
  33. Ornston MK, Ornston LN. 33.  1972. The regulation of the β-ketoadipate pathway in Pseudomonas acidovorans and Pseudomonas testosteroni. J. Gen. Microbiol. 73:455–64 [Google Scholar]
  34. Parke D. 34.  1979. Structural comparison of γ-carboxymuconolactone decarboxylase and muconolactone isomerase from Pseudomonas putida. Biochim. Biophys. Acta 578:145–54 [Google Scholar]
  35. Parke D. 35.  1997. Acquisition, reorganization, and merger of genes: novel management of the β-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol. Lett. 146:3–12 [Google Scholar]
  36. Parke D, D'Argenio DA, Ornston LN. 36.  2000. Bacteria are not what they eat: That is why they are so diverse. J. Bacteriol. 182:257–63 [Google Scholar]
  37. Parke D, Garcia MA, Ornston LN. 37.  2001. Cloning and genetic characterization of dca genes required for β-oxidation of straight-chain dicarboxylic acids in Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol. 67:4817–27 [Google Scholar]
  38. Parke D, Ornston LN. 38.  1976. Constitutive synthesis of enzymes of the protocatechuate pathway and of the β-ketoadipate uptake system in mutant strains of Pseudomonas putida. J. Bacteriol. 126:272–81 [Google Scholar]
  39. Parke D, Ornston LN. 39.  1984. Nutritional diversity of Rhizobiaceae revealed by auxanography. J. Gen. Microbiol. 130:1743–50 [Google Scholar]
  40. Parke D, Ornston LN. 40.  1986. Enzymes of the β-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. J. Bacteriol. 165:288–92 [Google Scholar]
  41. Parke D, Ornston LN. 41.  2003. Hydroxycinnamate (hca) genes from Acinetobacter sp. strain ADP1 are repressed by HcaR and induced by hydroxycinnamoyl-CoA thioesters. Appl. Environ. Microbiol. 69:5398–409 [Google Scholar]
  42. Parke D, Ornston LN. 42.  2004. Toxicity caused by hydroxycinnamoyl-coenzyme A thioester accumulation in mutants of Acinetobacter sp. strain ADP1. Appl. Environ. Microbiol. 70:2974–83 [Google Scholar]
  43. Parke D, Rivelli M, Ornston LN. 43.  1985. Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J. Bacteriol. 163:417–22 [Google Scholar]
  44. Reams AB, Neidle EL. 44.  2004. Selection for gene clustering by tandem duplication. Annu. Rev. Microbiol. 58:119–42 [Google Scholar]
  45. Sistrom WR, Stanier RY. 45.  1954. The mechanism of formation of β-ketoadipic acid by bacteria. J. Biol. Chem. 210:821–36 [Google Scholar]
  46. Stanier RY, Ornston LN. 46.  1973. The β-ketoadipate pathway. Adv. Microb. Physiol. 9:89–151 [Google Scholar]
  47. Stanier RY, Palleroni NJ, Doudoroff M. 47.  1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159–271 [Google Scholar]
  48. Vaneechoutte M, Young DM, Ornston LN, Baere TD, Nemec A. 48.  et al. 2006. The naturally transformable Acinetobacter strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl. Environ. Microbiol. 72:932–36 [Google Scholar]
  49. Wheelis ML, Ornston LN. 49.  1972. Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: deletion mapping of cat mutations. J. Bacteriol. 109:790–95 [Google Scholar]
  50. Yeh WK, Durham DR, Fletcher P, Ornston LN. 50.  1981. Evolutionary relationships among γ-carboxymuconolactone decarboxylases. J. Bacteriol. 146:233–38 [Google Scholar]
  51. Young DM, Parke D, Ornston LN. 51.  2005. Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu. Rev. Microbiol. 59:519–51 [Google Scholar]
/content/journals/10.1146/annurev.micro.112408.134251
Loading
/content/journals/10.1146/annurev.micro.112408.134251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error