1932

Abstract

This article contains a very personal account of my evolution as a physical chemist/chemical physicist, with commentary on some of the influences on that evolution and summary accounts of research accomplishments in four of the subject areas that have engaged my attention, ranging from isolated molecules to condensed matter.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.59.032607.093731
2008-05-05
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/pc/59/1/annurev.physchem.59.032607.093731.html?itemId=/content/journals/10.1146/annurev.physchem.59.032607.093731&mimeType=html&fmt=ahah

Literature Cited

  1. Levine M, Rice SA. 1.  1950. Effect of folic acid, aminopterin and vitamin K on growth of roots in Allium cepa. Proc. Soc. Exp. Biol. Med. 74:310–12 [Google Scholar]
  2. Rice SA, Doty P. 2.  1957. The thermal denaturation of desoxyribose nucleic acid. J. Am. Chem. Soc. 79:3937–47 [Google Scholar]
  3. Rice SA, Wada A. 3.  1958. On a model of the helix-coil transition in macromolecules. J. Chem. Phys. 29:233–34 [Google Scholar]
  4. Rice SA, Wada A, Geiduschek EP. 4.  1958. Some comments on the theory of denaturation. Discuss. Faraday Soc. 25:130–57 [Google Scholar]
  5. Rice SA, Nagasawa M. 5.  1961. Polyelectrolyte Solutions New York: Academic
  6. Zimm BH, Rice SA. 6.  1960. The helix-coil transition in charged macromolecules. Mol. Phys. 3:391–407 [Google Scholar]
  7. Klemperer W, Rice SA. 7.  1957. Infrared spectra of the alkali halides. I. Lithium halides. J. Chem. Phys. 26:618–24 [Google Scholar]
  8. Rice SA, Klemperer W. 8.  1957. Spectra of the alkali halides. II. The infrared spectra of the sodium and potassium halides, RbCl and CsCl. J. Chem. Phys. 27:573–79 [Google Scholar]
  9. Kirkwood JG. 9.  1946. The statistical mechanical theory of transport properties. I. General theory. J. Chem. Phys. 14:180–201 [Google Scholar]
  10. Rice SA, Kirkwood JG, Ross J, Zwanzig RW. 10.  1959. Statistical mechanical theory of transport processes. XII. Dense rigid sphere fluids. J. Chem. Phys. 31:575–83 [Google Scholar]
  11. Rice SA, Kirkwood JG. 11.  1959. On an approximate theory of transport in dense media. J. Chem. Phys. 31:901–3 [Google Scholar]
  12. Nagizadeh J, Rice SA. 12.  1962. Kinetic theory of dense fluids. X. Measurement and interpretation of self-diffusion in liquid Ar, Kr, Xe, and CH4. J. Chem. Phys. 36:2710–20 [Google Scholar]
  13. Ikenberry LD, Rice SA. 13.  1963. On the kinetic theory of dense fluids. XIV. Experimental and theoretical studies of thermal conductivity in liquid Ar, Xe and CH4. J. Chem. Phys. 39:1561–71 [Google Scholar]
  14. Lowry BA, Gray P, Rice SA. 14.  1964. On the kinetic theory of dense fluids. XVII. The shear viscosity. J. Chem. Phys. 40:3673–83 [Google Scholar]
  15. Davis HT, Meyer L, Rice SA. 15.  1962. Kinetic theory of dense fluids. XII. Electronic and ionic motion in liquid He4 and liquid He3. J. Chem. Phys. 7:1521–27 [Google Scholar]
  16. Davis HT, Meyer L, Rice SA. 16.  1962. On the kinetic theory of simple dense fluids. XIII. The mobility of negative ions in liquid Ar, Kr, Xe. J. Chem. Phys. 37:2470–72 [Google Scholar]
  17. Schnyders H, Meyer L, Rice SA. 17.  1966. Electron drift velocities in liquefied argon and krypton at low electric field strengths. Phys. Rev. 150:127–45 [Google Scholar]
  18. Jahnke JA, Meyer L, Rice SA. 18.  1971. Zero field mobility of an excess electron in fluid argon. Phys. Rev. A 3:734–52 [Google Scholar]
  19. Rice SA, Allnatt AR. 19.  1961. On the kinetic theory of dense fluids. VI. Singlet distribution function for rigid spheres with an attractive potential. J. Chem. Phys. 34:2144–55 [Google Scholar]
  20. Allnatt AR, Rice SA. 20.  1961. On the kinetic theory of dense fluids. VII. The doublet distribution function for rigid spheres with an attractive potential. J. Chem. Phys. 34:2156–65 [Google Scholar]
  21. Hurt N, Rice SA. 21.  1966. On the kinetic theory of dense fluids. J. Chem. Phys. 44:2155–60 [Google Scholar]
  22. Popielawski J, Hurt N, Rice SA. 22.  1967. Functional integral representation of nonequilibrium statistical mechanics. J. Chem. Phys. 46:3707–13 [Google Scholar]
  23. Davis HT. 23.  1973. Kinetic theory of dense fluids and liquids revisited. Adv. Chem. Phys. 24:257–343 [Google Scholar]
  24. Rice SA, Gray P. 24.  1965. Statistical Mechanics of Simple Liquids New York: Wiley & Sons
  25. Dyer K, Pettitt B, Stell G. 25.  2007. Systematic investigation of theories of transport in the Lennard-Jones fluid. J. Chem. Phys. 126:034502 [Google Scholar]
  26. Berne B, Boon J-P, Rice SA. 26.  1966. On the calculation of autocorrelation functions of dynamical variables. J. Chem. Phys. 45:1086–96 [Google Scholar]
  27. Kestner NR, Jortner J, Cohen MH, Rice SA. 27.  1965. Low energy elastic scattering of electrons and positrons from helium atoms. Phys. Rev. 140:A56–66 [Google Scholar]
  28. Choi S, Rice SA. 28.  1962. Exciton-exciton interactions and photoconductivity in organic crystals. Phys. Rev. Lett. 8:410–12 [Google Scholar]
  29. Choi S, Rice SA. 29.  1963. Exciton-exciton interactions and photoconductivity in crystalline anthracene. J. Chem. Phys. 38:366–73 [Google Scholar]
  30. Jortner J, Katz JL, Choi S, Rice SA. 30.  1963. On the excess electron and hole band structures and carrier mobility in naphthalene, anthracene, and several polyphenyls. J. Chem. Phys. 39:1683–97 [Google Scholar]
  31. Jortner J, Choi S, Katz JL, Rice SA. 31.  1963. Triplet exciton bands in aromatic crystals. J. Chem. Phys. 39:1897–99 [Google Scholar]
  32. Silbey R, Jortner J, Rice SA. 32.  1965. On the singlet exciton-states of crystalline anthracene. J. Chem. Phys. 42:1515–39 [Google Scholar]
  33. Vala MT, Silbey R, Jortner J, Rice SA. 33.  1965. On the excited electronic states of isotactic polystyrene and polyvinylnaphthalene. J. Chem. Phys. 41:2846–53 [Google Scholar]
  34. Jortner J, Katz JL, Choi S, Rice SA. 34.  1965. Triplet excitons in crystals of aromatic molecules. J. Chem. Phys. 42:309–23 [Google Scholar]
  35. Silbey R, Jortner J, Vala MT, Rice SA. 35.  1965. On the electronic states of crystalline naphthalene. J. Chem. Phys. 42:2948–59 [Google Scholar]
  36. Silbey R, Jortner J, Rice SA. 36.  1965. Excited electronic states of crystalline benzene. J. Chem. Phys. 43:3336–43 [Google Scholar]
  37. Greer WL, Jortner J, Silbey R, Rice SA. 37.  1968. Re-examination of the theoretical interpretations of the spectra of crystalline benzene and naphthalene. J. Chem. Phys. 48:5667–82 [Google Scholar]
  38. Webber S, Jortner J, Rice SA. 38.  1964. Ion-pair exciton states and the optical spectrum of crystalline neon. J. Chem. Phys. 41:2911–25 [Google Scholar]
  39. Webber S, Jortner J, Rice SA. 39.  1965. Deep impurity states in molecular crystals: the optical excitation of a substitutional argon atom in crystalline neon. J. Chem. Phys. 42:1907–19 [Google Scholar]
  40. Jortner J, Rice SA. 40.  1966. Cooperative exciton states in molecular crystals. J. Chem. Phys. 44:3364–74 [Google Scholar]
  41. Chock D, Rice SA. 41.  1968. Cooperative excitons in a crystal with two molecules per unit cell. J. Chem. Phys. 49:4345–55 [Google Scholar]
  42. Rice SA, Jortner J. 42.  1966. Do exciton states exist in the liquid phase?. J. Chem. Phys. 44:4470–72 [Google Scholar]
  43. Nicolis G, Rice SA. 43.  1967. On the theory of excitons in liquids. II. A classical model of polarization waves in a simple liquid. J. Chem. Phys. 46:4445–53 [Google Scholar]
  44. Nicolis G, Jortner J, Rice SA. 44.  1968. Optical model calculation of the electronic states of mixed disordered systems. J. Chem. Phys. 48:3544–51 [Google Scholar]
  45. Popielawski J, Rice SA. 45.  1967. On the theory of excitons in liquids. III. Nonresonant broadening of impurity spectra in simple liquids. J. Chem. Phys. 47:2292–97 [Google Scholar]
  46. Fischer S, Rice SA. 46.  1968. A study of exciton dynamics in a simple liquid. Phys. Rev. 176:409–19 [Google Scholar]
  47. Bixon M, Jortner J. 47.  1968. Intramolecular radiationless transitions. J. Chem. Phys. 48:715–26 [Google Scholar]
  48. Spears K, Rice SA. 48.  1971. A study of the lifetimes of individual vibronic states of the isolated benzene molecule. J. Chem. Phys. 55:5561–81 [Google Scholar]
  49. Gelbart W, Spears K, Freed KF, Jortner J, Rice SA. 49.  1970. Boltzmann statistics and radiationless decay in large molecules: optical selection studies. Chem. Phys. Lett. 6:345–51 [Google Scholar]
  50. Scheps R, Florida D, Rice SA. 50.  1974. Influence of large amplitude vibrational motion on the rate of intersystem crossing: a study of single vibronic level fluorescence from aniline-h7, aniline-N, N-d2 and aniline-d5. J. Chem. Phys. 61:1730–47 [Google Scholar]
  51. Hui MG, Rice SA. 51.  1974. Intramolecular energy transfer in cis-trans isomerization: a study of fluorescence from single vibronic levels of styrene, trans-styrene-d1, styrene-d8, and ethynlbenzene. J. Chem. Phys. 61:833–42 [Google Scholar]
  52. Guttman C, Rice SA. 52.  1974. Nonradiative processes in p-C6H4F2 and m-C6H4F2. J. Chem. Phys. 61:661–65 [Google Scholar]
  53. Guttman C, Rice SA. 53.  1974. Fluorescence lifetimes of individual vibronic levels of partially deuterated benzenes: a further test of the theory of radiationless processes. J. Chem. Phys. 61:651–60 [Google Scholar]
  54. Behlen F, Rice SA. 54.  1981. Intersystem crossing in cold isolated molecules of naphthalene. J. Chem. Phys. 75:5672–84 [Google Scholar]
  55. MacDonald D, Fleming G, Rice SA. 55.  1981. Intermediate case radiationless decay: the excited state dynamics of pyrazine. Chem. Phys. 60:335–45 [Google Scholar]
  56. Stephenson T, Rice SA. 56.  1984. Vibrational state dependence of radiationless processes in 1B2u benzene. J. Chem. Phys. 81:1073–82 [Google Scholar]
  57. Rosman R, Villaeys A, Freed KF, Rice SA. 57.  1987. Lifetimes of degenerate benzene 1B2u levels split by vibrational angular momentum. J. Chem. Phys. 86:2576–87 [Google Scholar]
  58. Chernoff D, Rice SA. 58.  1979. Collision induced intramolecular vibrational energy transfer in 1B2 aniline. J. Chem. Phys. 70:2521–41 [Google Scholar]
  59. Sulkes M, Tusa J, Rice SA. 59.  1980. Collision induced relaxation of an electronically excited molecule: evidence for low energy resonance enhanced vibrational deactivation. J. Chem. Phys. 72:5733–43 [Google Scholar]
  60. MacDonald D, Rice SA. 60.  1981. Collision induced intramolecular vibrational energy transfer in 1B3u pyrazine. J. Chem. Phys. 74:4907–17 [Google Scholar]
  61. Tusa J, Sulkes M, Jouvet C, Rice SA. 61.  1982. Mode to mode energy transfer in 1B2 aniline induced by very low energy collisions with He. J. Chem. Phys. 76:3513–23 [Google Scholar]
  62. Jouvet C, Sulkes M, Rice SA. 62.  1983. Very low energy collision induced vibrational relaxation of 1Au glyoxal. J. Chem. Phys. 78:3935–41 [Google Scholar]
  63. Cerjan C, Lipkin M, Rice SA. 63.  1983. Atom-molecule collisions at very low energies: a correlation function approach. J. Chem. Phys. 78:4929–37 [Google Scholar]
  64. Cerjan C, Rice SA. 64.  1983. A theoretical analysis of very low energy collision induced vibrational relaxation in the system He-I2(3Π0u+). J. Chem. Phys. 78:4952–57 [Google Scholar]
  65. Vandersall M, Rice SA. 65.  1983. SVL fluorescence spectroscopy and collision-induced intramolecular vibrational energy in 1B1 difluorodiazirine. J. Chem. Phys. 79:4845–62 [Google Scholar]
  66. Gray S, Rice SA. 66.  1985. A scattering resonance description of very low energy collision induced vibrational relaxation. J. Chem. Phys. 83:2818–28 [Google Scholar]
  67. Stephenson T, Rice SA. 67.  1984. Relaxation dynamics of photoexcited benzene–rare gas van der Waals complexes. J. Chem. Phys. 81:1083–101 [Google Scholar]
  68. Rosman R, Rice SA. 68.  1987. Intramolecular vibrational energy relaxation induced by van der Waals molecule fragmentation: the systems C6H6−nDn ⋅ He1,2. J. Chem. Phys. 86:3292–300 [Google Scholar]
  69. Weber P, Rice SA. 69.  1988. Intramolecular vibrational relaxation in the S0 state of s-tetrazine—X (X = Ar, Kr, Xe). J. Chem. Phys. 88:6120–33 [Google Scholar]
  70. Weber P, Rice SA. 70.  1988. Mode specific intramolecular vibrational relaxation in S1 tetrazine-argon: a perturbation theory analysis. J. Phys. Chem. 92:5470–74 [Google Scholar]
  71. Jacobson B, Humphrey S, Rice SA. 71.  1988. Direct measurements of vibrational predissociation of p-difluorobenzene-argon. J. Chem. Phys. 89:5624–41 [Google Scholar]
  72. Rice SA, McLaughlin I, Jortner J. 72.  1968. Some comments on a formal theory of photochemical dissociation reactions. J. Chem. Phys. 49:2756–66 [Google Scholar]
  73. Gelbart W, Rice SA. 73.  1969. Some formal results in a theory of molecular rearrangements: photo-isomerism. J. Chem. Phys. 50:4775–86 [Google Scholar]
  74. Gelbart W, Freed KF, Rice SA. 74.  1970. Internal rotation and the breakdown of the adiabatic approximation: many-phonon radiationless transitions. J. Chem. Phys. 52:2460–73 [Google Scholar]
  75. Gelbart W, Freed KF, Rice SA. 75.  1970. On a stochastic theory of vibrational relaxation and dissociation. J. Chem. Phys. 52:5718–32 [Google Scholar]
  76. Gelbart W, Freed KF, Rice SA. 76.  1972. Random matrix theory and the master equation for finite systems. J. Chem. Phys. 57:4699–712 [Google Scholar]
  77. Kay K, Rice SA. 77.  1972. Some theoretical results for the photochemical decomposition of large molecules. J. Chem. Phys. 57:3041–47 [Google Scholar]
  78. Heller E, Rice SA. 78.  1974. Random coupling model for molecular dissociation. J. Chem. Phys. 61:936–46 [Google Scholar]
  79. Muthukumar M, Rice SA. 79.  1978. On the influence of nonrandom sequential coupling on radiationless relaxation processes. J. Chem. Phys. 69:1619–25 [Google Scholar]
  80. Gray S, Rice SA. 80.  1986. The photofragmentation of simple van der Waals complexes: classical statistical theory and comparison with exact classical and approximate quantum dynamics results. Faraday Discuss. 82:307–17 [Google Scholar]
  81. Oxtoby D, Rice SA. 81.  1976. Nonlinear resonance and stochasticity in intramolecular energy exchange. J. Chem. Phys. 65:1676–83 [Google Scholar]
  82. Kosloff R, Rice SA. 82.  1981. Dynamical correlations and chaos in classical Hamiltonian systems. J. Chem. Phys. 74:1947–55 [Google Scholar]
  83. Gray S, Noid D, Rice SA. 83.  1986. The classical mechanics of vibrational predissociation: a model based study of phase space structure and its influence on fragmentation rates. J. Chem. Phys. 84:3745–52 [Google Scholar]
  84. Gray S, Davis M, Rice SA. 84.  1986. Bottlenecks to unimolecular reactions and an alternative form for classical RRKM theory. J. Phys. Chem. 90:3470–82 [Google Scholar]
  85. Gray F, Rice SA. 85.  1987. Phase space bottlenecks and statistical theories of isomerization reactions. J. Chem. Phys. 86:2020–35 [Google Scholar]
  86. Gaspard P, Rice SA. 86.  1989. Scattering from a classically chaotic repellor. J. Chem. Phys. 90:2225–41 [Google Scholar]
  87. Tersigni S, Gaspard P, Rice SA. 87.  1990. Influence of vibrational frequency mismatch on phase-space bottlenecks to intramolecular energy redistribution and molecular fragmentation. J. Chem. Phys. 92:1775–89 [Google Scholar]
  88. Gaspard P, Rice SA. 88.  1989. Hamiltonian mapping models of molecular fragmentation. J. Phys. Chem. 93:6947–57 [Google Scholar]
  89. Zhao M, Rice SA. 89.  1992. Unimolecular fragmentation rate theory revisited: an improved classical theory. J. Chem. Phys. 96:3542–48 [Google Scholar]
  90. Zhao M, Rice SA. 90.  1992. An approximate classical unimolecular reaction rate theory. J. Chem. Phys. 96:6654–65 [Google Scholar]
  91. Jang S, Rice SA. 91.  1993. A reaction path analysis of the rate of unimolecular isomerization. J. Chem. Phys. 99:9585–90 [Google Scholar]
  92. Zhao M, Gong J, Rice SA. 92.  2005. Classical, semiclassical, and quantum mechanical unimolecular reaction rate theory. Adv. Chem. Phys. 130:3–142 [Google Scholar]
  93. Nordholm S, Rice SA. 93.  1974. Quantum ergodicity and vibrational relaxation in isolated molecules. J. Chem. Phys. 61:203–23 [Google Scholar]
  94. Nordholm S, Rice SA. 94.  1975. A quantum ergodic theory approach to unimolecular fragmentation. J. Chem. Phys. 62:157–68 [Google Scholar]
  95. Kosloff R, Rice SA. 95.  1981. The influence of quantization on the onset of chaos in Hamiltonian systems: the Kolmogorov entropy interpretation. J. Chem. Phys. 74:1340–49 [Google Scholar]
  96. Gaspard P, Rice SA. 96.  1989. Semiclassical quantization of the scattering from a classically chaotic repellor. J. Chem. Phys. 90:2242–54 [Google Scholar]
  97. Gaspard P, Rice SA. 97.  1989. Exact quantization of the scattering from a classically chaotic repellor. J. Chem. Phys. 90:2255–62 [Google Scholar]
  98. Gaspard P, Nakamura K, Rice SA. 98.  1992. Signatures of chaos in quantum dynamics and the controllability of evolution in a quantum system. In Intramolecular and Nonlinear Dynamicsed. W. Hase 1215–313 Greenwich, CT: JAI Press [Google Scholar]
  99. Tannor D, Rice SA. 99.  1985. Control of selectivity of chemical reaction via control of wave packet evolution. J. Chem. Phys. 83:5013–18 [Google Scholar]
  100. Shapiro M, Brumer P. 100.  1986. Laser control of product quantum state populations in unimolecular reactions. J. Chem. Phys. 84:4103–14 [Google Scholar]
  101. Rice SA, Zhao M. 101.  2000. Optical Control of Molecular Dynamics New York: Wiley
  102. Tannor D, Kosloff R, Rice SA. 102.  1986. Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J. Chem. Phys. 85:5805–20 [Google Scholar]
  103. Tannor D, Rice SA. 103.  1987. Coherent pulse sequence control of product formation in chemical reactions. Adv. Chem. Phys. 70:441–523 [Google Scholar]
  104. Kosloff R, Rice SA, Gaspard P, Tersigni S, Tannor D. 104.  1989. Wavepacket dancing: achieving chemical selectivity by shaping light pulses. Chem. Phys. 139:201–20 [Google Scholar]
  105. Peirce A, Dahleh M, Rabitz H. 105.  1988. Optimal control of quantum mechanical systems: existence, numerical approximations, and applications. Phys. Rev. A 37:4950–64 [Google Scholar]
  106. Tang H, Kosloff R, Rice SA. 106.  1996. A generalized approach to the control of the evolution of a molecular system. J. Chem. Phys. 104:5457–71 [Google Scholar]
  107. Zhao M, Rice SA. 107.  1994. Optimal control of product selectivity in the reactions of polyatomic molecules: a reduced space analysis. SPIE 2124:246–57 [Google Scholar]
  108. Shah S, Rice SA. 108.  2000. A test of the dependence of an optimal control field on the number of molecular degrees of freedom: HCN isomerization. J. Chem. Phys. 113:6536–41 [Google Scholar]
  109. Kobrak M, Rice SA. 109.  1998. Selective photochemistry via adiabatic passage: an extension of stimulated Raman adiabatic passage for degenerate final states. Phys. Rev. A 57:2885–94 [Google Scholar]
  110. Gong J, Rice SA. 110.  2004. Selective photochemistry via adiabatic passage: degenerate product states with different lifetimes. J. Chem. Phys. 120:5117–27 [Google Scholar]
  111. Gong J, Rice SA. 111.  2004. Adiabatic population transfer in a liquid: taking advantage of a decaying target state. J. Chem. Phys. 120:3777–86 [Google Scholar]
  112. Gong J, Rice SA. 112.  2004. Measurement-assisted coherent control. J. Chem. Phys. 120:9984–88 [Google Scholar]
  113. Gong J, Rice SA. 113.  2004. Complete quantum control of the population transfer branching ratio between two degenerate target states. J. Chem. Phys. 121:1364–72 [Google Scholar]
  114. Gong J, Rice SA. 114.  2004. A general method for complete population transfer in degenerate systems. Phys. Rev. A 69:1–9 [Google Scholar]
  115. Demirplak M, Rice SA. 115.  2002. Optical control of molecular dynamics in a liquid. J. Chem. Phys. 116:8028–35 [Google Scholar]
  116. Demirplak M, Rice SA. 116.  2003. Adiabatic population transfer with control fields. J. Phys. Chem. A 107:9937–45 [Google Scholar]
  117. Demirplak M, Rice SA. 117.  2005. Assisted adiabatic passage revisited. J. Phys. Chem. B 109:6838–44 [Google Scholar]
  118. Demirplak M, Rice SA. 118.  2006. Adiabatic transfer of population in a dense fluid: the role of dephasing statistics. J. Chem. Phys. 125:194517 [Google Scholar]
  119. Novak F, Rice SA. 119.  1979. Angular momentum constraints in radiationless processes: the symmetric top molecule. J. Chem. Phys. 71:4680–87 [Google Scholar]
  120. Novak F, Rice SA. 120.  1980. The influence of rotational motion on intersystem crossing in isolated molecules. J. Chem. Phys. 73:858–64 [Google Scholar]
  121. Michielsen S, Merer AJ, Novak F, Freed KF, Hamada Y, Rice SA. 121.  1981. A study of the rotational state dependence of predissociation of a polyatomic molecule: the case of ClO2. J. Chem. Phys. 74:3089–101 [Google Scholar]
  122. Ziman J. 122.  1961. A theory of the electrical properties of liquid metals I: the monovalent metals. Phil. Mag. 6:1013–34 [Google Scholar]
  123. Wilson EG, Rice SA. 123.  1966. The reflection spectra of liquids Hg, In and Bi from 2–20 eV. Phys. Rev. 145:55–63 [Google Scholar]
  124. Boiani J, Rice SA. 124.  1969. The reflection spectrum of liquid mercury. Phys. Rev. 185:931–32 [Google Scholar]
  125. Bloch A, Rice SA. 125.  1969. Reflections in a pool of mercury: an experimental and theoretical study of the interaction between electromagnetic radiation and a liquid metal. Phys. Rev. 185:933–57 [Google Scholar]
  126. Lemberg H, Rice SA, Guidotti D. 126.  1974. Surface plasmons in liquid mercury: propagation in a nonuniform transition layer. Phys. Rev. B 10:4079–99 [Google Scholar]
  127. Guidotti D, Rice SA. 127.  1977. Surface plasmon dispersion in liquid mercury. Phys. Rev. B 15:3796–811 [Google Scholar]
  128. Allen J, Rice SA. 128.  1977. On the existence of a nonmonotonic nuclear density profile at the jellium-vacuum interface. J. Chem. Phys. 67:5105–10 [Google Scholar]
  129. D'Evelyn M, Rice SA. 129.  1981. Structure in the density profile at the liquid metal- vapor interface. Phys. Rev. Lett. 47:1844–47 [Google Scholar]
  130. D'Evelyn M, Rice SA. 130.  1983. A pseudoatom theory for the liquid-vapor interface of simple metals: computer simulation studies of sodium and cesium. J. Chem. Phys. 78:5225–49 [Google Scholar]
  131. Lu B, Rice SA. 131.  1978. Determination of the density profile in the liquid-vapor interface near the triple point. J. Chem. Phys. 68:5558–67 [Google Scholar]
  132. Sluis D, Rice SA. 132.  1983. An X-ray reflectance study of the liquid-vapor interface of Cs. J. Chem. Phys. 79:5658–72 [Google Scholar]
  133. Harris J, Gryko J, Rice SA. 133.  1987. Self-consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. I. Longitudinal and transverse density distributions in the liquid-vapor interface of a one-component system. J. Chem. Phys. 87:3069–81 [Google Scholar]
  134. Harris J, Gryko J, Rice SA. 134.  1987. Self-consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. II. Longitudinal and transverse density distributions in the liquid-vapor interface of binary metallic alloys. J. Stat. Phys. 48:1109–28 [Google Scholar]
  135. Gomez M, Rice SA. 135.  1994. Self-consistent Monte Carlo simulation of the electron and ion distributions in the liquid-vapor interface of magnesium. J. Chem. Phys. 101:8094–97 [Google Scholar]
  136. Zhao M, Chekmarev D, Cai Z-H, Rice SA. 136.  1997. The structure of liquid Ga and of the liquid-vapor interface of Ga. Phys. Rev. E 56:7033–42 [Google Scholar]
  137. Zhao M, Chekmarev D, Rice SA. 137.  1998. Quantum Monte Carlo simulations of the structure in the liquid-vapor interface of BiGa binary alloys. J. Chem. Phys. 108:5055–67 [Google Scholar]
  138. Zhao M, Rice SA. 138.  1998. Self-consistent quantum Monte Carlo simulations of the structure of the liquid-vapor interface of a eutectic indium-gallium alloy. Phys. Rev. B 57:13501–7 [Google Scholar]
  139. Chekmarev D, Zhao M, Rice SA. 139.  1999. Computer simulation study of the structure of the liquid-vapor interface of mercury at 20, 100 and 200°C. Phys. Rev. E 59:479–91 [Google Scholar]
  140. Zhao M, Rice SA. 140.  1999. The structure of the liquid-vapor interface of a gallium-tin binary alloy. J. Chem. Phys. 111:2181–89 [Google Scholar]
  141. Zhao M, Rice SA. 141.  1999. Quantum Monte Carlo simulation studies of the structure of the liquid-vapor interfaces of Sn and Pb. J. Phys. Chem. A 103:10159–65 [Google Scholar]
  142. Zhao M, Rice SA. 142.  2001. Density distribution in the liquid-vapor interface of dilute alloy Pb in Ga alloy. Phys. Rev. B 63:085409 [Google Scholar]
  143. Jiang X, Zhao M, Rice SA. 143.  2005. Longitudinal density distribution in the liquid- vapor interface of a dilute Tl in Ga. Phys. Rev. B 71:104203 [Google Scholar]
  144. Yang B, Li D, Huang Z, Rice SA. 144.  2000. Structure of the liquid-vapor interface of a dilute alloy of Pb in Ga. Phys. Rev. B 62:13111–20 [Google Scholar]
  145. Yang B, Li D, Rice SA. 145.  2003. Two-dimensional freezing of Tl in the liquid-vapor interface of a dilute TI in a Ga alloy. Phys. Rev. B 67:212103 [Google Scholar]
  146. Mohanty U, Rice SA. 146.  1983. Theory of the electrical conductivity in the liquid-vapor interface of a simple metal. J. Chem. Phys. 79:5652–57 [Google Scholar]
  147. Thomas B, Barton S, Novak F, Rice SA. 147.  1987. An experimental study of the in plane distribution of atoms in the liquid-vapor interface of mercury. J. Chem. Phys. 86:1036–47 [Google Scholar]
  148. Flom E, Cai Z-H, Acero A, Lin B, Maskil N et al.148.  1992. A grazing incidence X-ray diffraction study of the transverse structure function of the liquid-vapor interface of Ga. J. Chem. Phys. 96:4743–49 [Google Scholar]
  149. Flom E, Li M, Acero A, Maskil N, Rice SA. 149.  1993. In-plane structure of the liquid-vapor interface of an alloy: a grazing incidence X-ray diffraction study of bismuth:gallium. Science 260:332–35 [Google Scholar]
  150. Lei N, Huang Z, Rice SA. 150.  1996. Surface segregation and layering in the liquid- vapor interface of a dilute bismuth:gallium alloy. J. Chem. Phys. 104:4802–5 [Google Scholar]
  151. Lei N, Huang Z, Rice SA. 151.  1997. Structure of the liquid-vapor interface of a Sn:Ga alloy. J. Chem. Phys. 107:4051–60 [Google Scholar]
  152. Regan M, Kawamoto E, Lee S, Pershan P, Maskil N et al.152.  1995. Surface layering in liquid gallium: an X-ray reflectivity study. Phys. Rev. Lett. 75:2498–501 [Google Scholar]
  153. Li D, Rice SA. 153.  2005. Melting of quasi-two-dimensional crystalline Pb supported on liquid Ga. Phys. Rev. E 72:041506 [Google Scholar]
  154. Li D, Yang B, Rice SA. 154.  2002. Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and Sn in Ga. Phys. Rev. B 65:224202 [Google Scholar]
  155. Yang B, Li D, Rice SA. 155.  2003. Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and In in Ga. Phys. Rev. B 67:054203 [Google Scholar]
  156. Jiang X, Zhao M, Rice SA. 156.  2005. Theoretical study of the longitudinal density distribution in the liquid-vapor interface of a dilute ternary alloy: Pb and Sn in Ga. Phys. Rev. B 72:094201 [Google Scholar]
  157. Huisman W, Peters J, Zwanenburg M, de Vries S, Derry T et al.157.  1997. Layering of a liquid metal in contact with a hard wall. Nature 390:379–81 [Google Scholar]
  158. Jiang X, Rice SA. 158.  2005. A theoretical study of the structure of the liquid Ga-diamond (111). J. Chem. Phys. 123:104703 [Google Scholar]
/content/journals/10.1146/annurev.physchem.59.032607.093731
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error