1932

Abstract

Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: () the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and () the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021419-083720
2020-02-15
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/animal/8/1/annurev-animal-021419-083720.html?itemId=/content/journals/10.1146/annurev-animal-021419-083720&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD 2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–80
    [Google Scholar]
  2. 2. 
    Pancer Z, Saha NR, Kasamatsu J, Suzuki T, Amemiya CT et al. 2005. Variable lymphocyte receptors in hagfish. PNAS 102:9224–29
    [Google Scholar]
  3. 3. 
    Dooley H, Flajnik MF. 2006. Antibody repertoire development in cartilaginous fish. Dev. Comp. Immunol. 30:43–56
    [Google Scholar]
  4. 4. 
    Hsu E. 2016. Assembly and expression of shark Ig genes. J. Immunol. 196:3517–23
    [Google Scholar]
  5. 5. 
    Danilova N, Bussmann J, Jekosch K, Steiner LA 2005. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 6:295–302
    [Google Scholar]
  6. 6. 
    Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P 2013. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front. Immunol. 4:28
    [Google Scholar]
  7. 7. 
    Zhang T, Tacchi L, Wei Z, Zhao Y, Salinas I 2014. Intraclass diversification of immunoglobulin heavy chain genes in the African lungfish. Immunogenetics 66:335–51
    [Google Scholar]
  8. 8. 
    Amemiya CT, Alfoldi J, Lee AP, Fan S, Philippe H et al. 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496:311–16
    [Google Scholar]
  9. 9. 
    Zhao Y, Pan-Hammarström Q, Yu S, Wertz N, Zhang X et al. 2006. Identification of IgF, a hinge-region-containing Ig class, and IgD in Xenopus tropicalis. PNAS 103:12087–92
    [Google Scholar]
  10. 10. 
    Han B, Yuan H, Wang T, Li B, Ma L et al. 2016. Multiple IgH isotypes including IgD, subclasses of IgM, and IgY are expressed in the common ancestors of modern birds. J. Immunol. 196:5138–47
    [Google Scholar]
  11. 11. 
    Cheng G, Gao Y, Wang T, Sun Y, Wei Z et al. 2013. Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians. Nat. Commun. 4:1337
    [Google Scholar]
  12. 12. 
    Li L, Wang T, Sun Y, Cheng G, Yang H et al. 2012. Extensive diversification of IgD-, IgY-, and truncated IgY(ΔFc)-encoding genes in the red-eared turtle (Trachemys scripta elegans). J. Immunol. 189:3995–4004
    [Google Scholar]
  13. 13. 
    Wang T, Sun Y, Shao W, Cheng G, Li L et al. 2012. Evidence of IgY subclass diversification in snakes: evolutionary implications. J. Immunol. 189:3557–65
    [Google Scholar]
  14. 14. 
    Gambón-Deza F, Sánchez-Espinel C, Mirete-Bachiller S, Magadán-Mompó S 2012. Snakes antibodies. Dev. Comp. Immunol. 38:1–9
    [Google Scholar]
  15. 15. 
    Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F 2013. IgH loci of American alligator and saltwater crocodile shed light on IgA evolution. Immunogenetics 65:531–41
    [Google Scholar]
  16. 16. 
    Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F 2013. Immunoglobulin genes of the turtles. Immunogenetics 65:227–37
    [Google Scholar]
  17. 17. 
    Olivieri DN, Garet E, Estevez O, Sánchez-Espinel C, Gambón-Deza F 2016. Genomic structure and expression of immunoglobulins in Squamata. Mol. Immunol. 72:81–91
    [Google Scholar]
  18. 18. 
    Gambón-Deza F, Olivieri DN. 2018. Immunoglobulin and T cell receptor genes in Chinese crocodile lizard Shinisaurus crocodilurus. Mol. Immunol 101:160–66
    [Google Scholar]
  19. 19. 
    Huang T, Wang X, Si R, Chi H, Han B et al. 2018. Identification of a transcriptionally forward α gene and two υ genes within the pigeon (Columba livia) IgH gene locus. J. Immunol. 200:3720–28
    [Google Scholar]
  20. 20. 
    Zhao Y, Cui H, Whittington CM, Wei Z, Zhang X et al. 2009. Ornithorhynchus anatinus (platypus) links the evolution of immunoglobulin genes in eutherian mammals and nonmammalian tetrapods. J. Immunol. 183:3285–93
    [Google Scholar]
  21. 21. 
    Lanning DK, Zhai S-K, Knight KL 2003. Analysis of the 3′ region of the rabbit Ig heavy chain locus. Gene 309:135–44
    [Google Scholar]
  22. 22. 
    Wang X, Olp JJ, Miller RD 2009. On the genomics of immunoglobulins in the gray, short-tailed opossum Monodelphis domestica. Immunogenetics 61:581–96
    [Google Scholar]
  23. 23. 
    Achour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F 2008. Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J. Immunol. 181:2001–9
    [Google Scholar]
  24. 24. 
    Guo Y, Bao Y, Wang H, Hu X, Zhao Z et al. 2011. A preliminary analysis of the immunoglobulin genes in the African elephant (Loxodonta africana). PLOS ONE 6:e16889
    [Google Scholar]
  25. 25. 
    Guo Y, Bao Y, Meng Q, Hu X, Meng Q et al. 2012. Immunoglobulin genomics in the guinea pig (Cavia porcellus). PLOS ONE 7:e39298
    [Google Scholar]
  26. 26. 
    Flajnik MF. 2018. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol. 18:438–53
    [Google Scholar]
  27. 27. 
    Dooley H, Flajnik MF. 2005. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur. J. Immunol. 35:936–45
    [Google Scholar]
  28. 28. 
    Ehrenstein MR, Notley CA. 2010. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10:778–86
    [Google Scholar]
  29. 29. 
    Klimovich VB. 2011. IgM and its receptors: structural and functional aspects. Biochemistry 76:534–49
    [Google Scholar]
  30. 30. 
    Odaka T, Suetake H, Maeda T, Miyadai T 2018. Teleost basophils have IgM-dependent and dual Ig-independent degranulation systems. J. Immunol. 200:2767–76
    [Google Scholar]
  31. 31. 
    Ma L, Qin T, Chu D, Cheng X, Wang J et al. 2016. Internal duplications of DH, JH, and C region genes create an unusual IgH gene locus in cattle. J. Immunol. 196:4358–66
    [Google Scholar]
  32. 32. 
    Zimmerman LM. 2018. Reptilia: humoral immunity in reptiles. Advances in Comparative Immunology EL Cooper 751–72 Cham, Switz.: Springer Int.
    [Google Scholar]
  33. 33. 
    Ye J, Bromage ES, Kaattari SL 2010. The strength of B cell interaction with antigen determines the degree of IgM polymerization. J. Immunol. 184:844–50
    [Google Scholar]
  34. 34. 
    Ye J, Bromage E, Kaattari I, Kaattari S 2011. Transduction of binding affinity by B lymphocytes: a new dimension in immunological regulation. Dev. Comp. Immunol. 35:982–90
    [Google Scholar]
  35. 35. 
    Chen K, Cerutti A. 2011. The function and regulation of immunoglobulin D. Curr. Opin. Immunol. 23:345–52
    [Google Scholar]
  36. 36. 
    Choi JH, Wang KW, Zhang D, Zhan X, Wang T et al. 2017. IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice. PNAS 114:E1196–E204
    [Google Scholar]
  37. 37. 
    Ramirez-Gomez F, Greene W, Rego K, Hansen JD, Costa G et al. 2012. Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism. J. Immunol. 188:1341–49
    [Google Scholar]
  38. 38. 
    Gambón-Deza F, Espinel CS. 2008. IgD in the reptile leopard gecko. Mol. Immunol. 45:3470–76
    [Google Scholar]
  39. 39. 
    Schaerlinger B, Bascove M, Frippiat JP 2008. A new isotype of immunoglobulin heavy chain in the urodele amphibian Pleurodeles waltl predominantly expressed in larvae. Mol. Immunol. 45:776–86
    [Google Scholar]
  40. 40. 
    Zhu R, Chen ZY, Wang J, Yuan JD, Liao XY et al. 2014. Thymus cDNA library survey uncovers novel features of immune molecules in Chinese giant salamander Andrias davidianus. Dev. Comp. Immunol 46:413–22
    [Google Scholar]
  41. 41. 
    Zhu L, Yan Z, Feng M, Peng D, Guo Y et al. 2014. Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. Dev. Comp. Immunol. 42:138–47
    [Google Scholar]
  42. 42. 
    Anderson MK, Strong SJ, Litman RT, Luer CA, Amemiya CT et al. 1999. A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and IgNARC genes. Immunogenetics 49:56–67
    [Google Scholar]
  43. 43. 
    Rumfelt LL, Diaz M, Lohr RL, Mochon E, Flajnik MF 2004. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish. J. Immunol. 173:1129–39
    [Google Scholar]
  44. 44. 
    Ohta Y, Flajnik M. 2006. IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. PNAS 103:10723–28
    [Google Scholar]
  45. 45. 
    Zhao Y, Pan-Hammarström Q, Kacskovics I, Hammarström L 2003. The porcine Ig δ gene: unique chimeric splicing of the first constant region domain in its heavy chain transcripts. J. Immunol. 171:1312–18
    [Google Scholar]
  46. 46. 
    Edholm E-S, Bengtén E, Stafford JL, Sahoo M, Taylor EB et al. 2010. Identification of two IgD+ B cell populations in channel catfish, Ictalurus punctatus. J. Immunol. 185:4082–94
    [Google Scholar]
  47. 47. 
    Smith LE, Crouch K, Cao W, Müller MR, Wu L et al. 2012. Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias). Dev. Comp. Immunol. 36:665–79
    [Google Scholar]
  48. 48. 
    Brink R, Goodnow CC, Crosbie J, Adams E, Eris J et al. 1992. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J. Exp. Med. 176:991–1005
    [Google Scholar]
  49. 49. 
    Nitschke L, Kosco MH, Kohler G, Lamers MC 1993. Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. PNAS 90:1887–91
    [Google Scholar]
  50. 50. 
    Roes J, Rajewsky K. 1993. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J. Exp. Med. 177:45–55
    [Google Scholar]
  51. 51. 
    Lutz C, Ledermann B, Kosco-Vilbois MH, Ochsenbein AF, Zinkernagel RM et al. 1998. IgD can largely substitute for loss of IgM function in B cells. Nature 393:797–801
    [Google Scholar]
  52. 52. 
    Zikherman J, Parameswaran R, Weiss A 2012. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489:160–64
    [Google Scholar]
  53. 53. 
    Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q et al. 2009. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J. Exp. Med. 206:139–51
    [Google Scholar]
  54. 54. 
    Quách TD, Manjarrez-Orduño N, Adlowitz DG, Silver L, Yang H et al. 2011. Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. J. Immunol. 186:4640–48
    [Google Scholar]
  55. 55. 
    Kirchenbaum GA, St. Clair JB, Detanico T, Aviszus K, Wysocki LJ. 2014. Functionally responsive self-reactive B cells of low affinity express reduced levels of surface IgM. Eur. J. Immunol. 44:970–82
    [Google Scholar]
  56. 56. 
    Sabouri Z, Perotti S, Spierings E, Humburg P, Yabas M et al. 2016. IgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nat. Commun. 7:13381
    [Google Scholar]
  57. 57. 
    Noviski M, Mueller JL, Satterthwaite A, Garrett-Sinha LA, Brombacher F, Zikherman J 2018. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 7:e035074
    [Google Scholar]
  58. 58. 
    Übelhart R, Hug E, Bach MP, Wossning T, Dühren-von Minden M et al. 2015. Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol. 16:534–43
    [Google Scholar]
  59. 59. 
    Hobeika E, Maity PC, Jumaa H 2016. Control of B cell responsiveness by isotype and structural elements of the antigen receptor. Trends Immunol 37:310–20
    [Google Scholar]
  60. 60. 
    Noviski M, Zikherman J. 2018. Control of autoreactive B cells by IgM and IgD B cell receptors: maintaining a fine balance. Curr. Opin. Immunol. 55:67–74
    [Google Scholar]
  61. 61. 
    Gutzeit C, Chen K, Cerutti A 2018. The enigmatic function of IgD: some answers at last. Eur. J. Immunol. 48:1101–13
    [Google Scholar]
  62. 62. 
    Mattila PK, Feest C, Depoil D, Treanor B, Montaner B et al. 2013. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38:461–74
    [Google Scholar]
  63. 63. 
    Kläsener K, Maity PC, Hobeika E, Yang J, Reth M 2014. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. eLife 3:e02069
    [Google Scholar]
  64. 64. 
    Maity PC, Blount A, Jumaa H, Ronneberger O, Lillemeier BF, Reth M 2015. B cell antigen receptors of the IgM and IgD classes are clustered in different protein islands that are altered during B cell activation. Sci. Signal. 8:ra93
    [Google Scholar]
  65. 65. 
    Gasparrini F, Feest C, Bruckbauer A, Mattila PK, Müller J et al. 2016. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J 35:258–80
    [Google Scholar]
  66. 66. 
    Becker M, Hobeika E, Jumaa H, Reth M, Maity PC 2017. CXCR4 signaling and function require the expression of the IgD-class B-cell antigen receptor. PNAS 114:5231–36
    [Google Scholar]
  67. 67. 
    Schweighoffer E, Vanes L, Nys J, Cantrell D, McCleary S et al. 2013. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity 38:475–88
    [Google Scholar]
  68. 68. 
    Sabouri Z, Schofield P, Horikawa K, Spierings E, Kipling D et al. 2014. Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. PNAS 111:E2567–75
    [Google Scholar]
  69. 69. 
    Reed JH, Jackson J, Christ D, Goodnow CC 2016. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med. 213:1255–65
    [Google Scholar]
  70. 70. 
    Burnett DL, Langley DB, Schofield P, Hermes JR, Chan TD et al. 2018. Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination. Science 360:223–26
    [Google Scholar]
  71. 71. 
    Chen K, Xu W, Wilson M, He B, Miller NW et al. 2009. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol. 10:889–98
    [Google Scholar]
  72. 72. 
    Vladutiu AO. 2000. Immunoglobulin D: properties, measurement, and clinical relevance. Clin. Diagn. Lab. Immunol. 7:131–40
    [Google Scholar]
  73. 73. 
    Riesbeck K, Nordstrom T. 2006. Structure and immunological action of the human pathogen Moraxella catarrhalis IgD-binding protein. Crit. Rev. Immunol. 26:353–76
    [Google Scholar]
  74. 74. 
    Singh K, Nordstrom T, Morgelin M, Brant M, Cardell LO, Riesbeck K 2014. Haemophilus influenzae resides in tonsils and uses immunoglobulin D binding as an evasion strategy. J. Infect. Dis. 209:1418–28
    [Google Scholar]
  75. 75. 
    Xu Z, Takizawa F, Parra D, Gómez D, von Gersdorff Jørgensen L et al. 2016. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods. Nat. Commun. 7:10728
    [Google Scholar]
  76. 76. 
    Zhai GT, Wang H, Li JX, Cao PP, Jiang WX et al. 2018. IgD-activated mast cells induce IgE synthesis in B cells in nasal polyps. J. Allergy Clin. Immunol. 142:1489–99.e23
    [Google Scholar]
  77. 77. 
    Gould HJ, Sutton BJ. 2008. IgE in allergy and asthma today. Nat. Rev. Immunol. 8:205–17
    [Google Scholar]
  78. 78. 
    Vidarsson G, Dekkers G, Rispens T 2014. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5:520
    [Google Scholar]
  79. 79. 
    Sutton BJ, Davies AM, Bax HJ, Karagiannis SN 2019. IgE antibodies: from structure to function and clinical translation. Antibodies 8:19
    [Google Scholar]
  80. 80. 
    Wagner B, Miller DC, Lear TL, Antczak DF 2004. The complete map of the Ig heavy chain constant gene region reveals evidence for seven IgG isotypes and for IgD in the horse. J. Immunol. 173:3230–42
    [Google Scholar]
  81. 81. 
    Eguchi-Ogawa T, Toki D, Wertz N, Butler JE, Uenishi H 2012. Structure of the genomic sequence comprising the immunoglobulin heavy constant (IGHC) genes from Sus scrofa. Mol. Immunol 52:97–107
    [Google Scholar]
  82. 82. 
    Mashoof S, Goodroe A, Du CC, Eubanks JO, Jacobs N et al. 2013. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol 6:358–68
    [Google Scholar]
  83. 83. 
    Lundqvist ML, Middleton DL, Radford C, Warr GW, Magor KE 2006. Immunoglobulins of the non-galliform birds: antibody expression and repertoire in the duck. Dev. Comp. Immunol. 30:93–100
    [Google Scholar]
  84. 84. 
    Faith RE, Clem LW. 1973. Passive cutaneous anaphylaxis in the chicken: biological fractionation of the mediating antibody population. Immunology 25:151–64
    [Google Scholar]
  85. 85. 
    Taylor AI, Fabiane SM, Sutton BJ, Calvert RA 2009. The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 48:558–62
    [Google Scholar]
  86. 86. 
    Gambón-Deza F, Sánchez-Espinel C, Valdueza-Beneitez J 2007. A novel IgA-like immunoglobulin in the reptile Eublepharis macularius.Dev. Comp. Immunol 31:596–605
    [Google Scholar]
  87. 87. 
    Schaerlinger B, Frippiat JP. 2008. IgX antibodies in the urodele amphibian Ambystoma mexicanum. Dev. Comp. Immunol 32:908–15
    [Google Scholar]
  88. 88. 
    Zhang X, Calvert RA, Sutton BJ, Dore KA 2017. IgY: a key isotype in antibody evolution. Biol. Rev. Camb. Philos. Soc. 92:2144–56
    [Google Scholar]
  89. 89. 
    Grey HM. 1967. Duck immunoglobulins. I. Structural studies on a 5.7S and 7.8S γ-globulin. J. Immunol. 98:811–19
    [Google Scholar]
  90. 90. 
    Wei Z, Wu Q, Ren L, Hu X, Guo Y et al. 2009. Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis. J. Immunol. 183:3858–64
    [Google Scholar]
  91. 91. 
    Leslie GA, Clem LW. 1972. Phylogeny of immunoglobulin structure and function. VI. 17S, 7.5S and 5.7S anti-DNP of the turtle Pseudamys scripta. J. Immunol 108:1656–64
    [Google Scholar]
  92. 92. 
    Huang T, Wu K, Yuan X, Shao S, Wang W et al. 2016. Molecular analysis of the immunoglobulin genes in goose. Dev. Comp. Immunol. 60:160–66
    [Google Scholar]
  93. 93. 
    Grey HM. 1967. Duck immunoglobulins. II. Biologic and immunochemical studies. J. Immunol. 98:820–26
    [Google Scholar]
  94. 94. 
    Humphrey BD, Calvert CC, Klasing KC 2004. The ratio of full length IgY to truncated IgY in immune complexes affects macrophage phagocytosis and the acute phase response of mallard ducks (Anas platyrhynchos). Dev. Comp. Immunol. 28:665–72
    [Google Scholar]
  95. 95. 
    Higgins DA, Ko OK, Chan SW 2001. Duck antibody responses to keyhole limpet haemocyanin, human immunoglobulin G and the trinitrophenyl hapten. Evidence of affinity maturation. Avian Pathol 30:381–90
    [Google Scholar]
  96. 96. 
    Magor KE. 2011. Immunoglobulin genetics and antibody responses to influenza in ducks. Dev. Comp. Immunol. 35:1008–16
    [Google Scholar]
  97. 97. 
    Meddings JL, Owens L, Burgess G, Ariel E 2014. Revelations in reptilian and avian immunology: a proposed evolutionary selection pressure for truncated immunoglobulin-Y. Int. J. Immunol. Stud. 2:29–41
    [Google Scholar]
  98. 98. 
    Takada A, Kawaoka Y. 2003. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev. Med. Virol. 13:387–98
    [Google Scholar]
  99. 99. 
    Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJ, Mahalingam S 2015. Fc receptors in antibody-dependent enhancement of viral infections. Immunol. Rev. 268:340–64
    [Google Scholar]
  100. 100. 
    Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE et al. 2007. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1:135–45
    [Google Scholar]
  101. 101. 
    Hansen IS, Baeten DLP, den Dunnen J 2019. The inflammatory function of human IgA. Cell. Mol. Life Sci. 76:1041–55
    [Google Scholar]
  102. 102. 
    Bunker JJ, Bendelac A. 2018. IgA responses to microbiota. Immunity 49:211–24
    [Google Scholar]
  103. 103. 
    Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC 2018. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36:359–81
    [Google Scholar]
  104. 104. 
    Mussmann R, Du Pasquier L, Hsu E 1996. Is Xenopus IgX an analog of IgA. Eur. J. Immunol. 26:2823–30
    [Google Scholar]
  105. 105. 
    Du CC, Mashoof SM, Criscitiello MF 2012. Oral immunization of the African clawed frog (Xenopus laevis) upregulates the mucosal immunoglobulin IgX. Vet. Immunol. Immunopathol. 145:493–98
    [Google Scholar]
  106. 106. 
    Zhang YA, Salinas I, Li J, Parra D, Bjork S et al. 2010. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11:827–35
    [Google Scholar]
  107. 107. 
    Xu Z, Parra D, Gómez D, Salinas I, Zhang Y-A et al. 2013. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. PNAS 110:13097–102
    [Google Scholar]
  108. 108. 
    Tacchi L, Musharrafieh R, Larragoite ET, Crossey K, Erhardt EB et al. 2014. Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat. Commun. 5:5205
    [Google Scholar]
  109. 109. 
    Yu YY, Kong W, Yin YX, Dong F, Huang ZY et al. 2018. Mucosal immunoglobulins protect the olfactory organ of teleost fish against parasitic infection. PLOS Pathog 14:e1007251
    [Google Scholar]
  110. 110. 
    Watanabe H, Kobayashi K. 1974. Peculiar secretory IgA system identified in chickens. J. Immunol. 113:1405–9
    [Google Scholar]
  111. 111. 
    Ng PL, Higgins DA. 1986. Bile immunoglobulin of the duck (Anas platyrhynchos). I. Preliminary characterization and ontogeny. Immunology 58:323–27
    [Google Scholar]
  112. 112. 
    Peppard JV, Rose ME, Hesketh P 1983. A functional homologue of mammalian secretory component exists in chickens. Eur. J. Immunol. 13:566–70
    [Google Scholar]
  113. 113. 
    Bengtén E, Quiniou S, Hikima J, Waldbieser G, Warr GW et al. 2006. Structure of the catfish IGH locus: analysis of the region including the single functional IGHM gene. Immunogenetics 58:831–44
    [Google Scholar]
  114. 114. 
    Magadan-Mompó S, Sánchez-Espinel C, Gambón-Deza F 2011. Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evol. Biol. 11:165
    [Google Scholar]
  115. 115. 
    Harriman GR, Bogue M, Rogers P, Finegold M, Pacheco S et al. 1999. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J. Immunol. 162:2521–29
    [Google Scholar]
  116. 116. 
    Parr MB, Harriman GR, Parr EL 1998. Immunity to vaginal HSV-2 infection in immunoglobulin A knockout mice. Immunology 95:208–13
    [Google Scholar]
  117. 117. 
    Blanchard TG, Czinn SJ, Redline RW, Sigmund N, Harriman G, Nedrud JG 1999. Antibody-independent protective mucosal immunity to gastric helicobacter infection in mice. Cell Immunol 191:74–80
    [Google Scholar]
  118. 118. 
    O'Neal CM, Harriman GR, Conner ME 2000. Protection of the villus epithelial cells of the small intestine from rotavirus infection does not require immunoglobulin A. J. Virol. 74:4102–9
    [Google Scholar]
  119. 119. 
    Blutt SE, Miller AD, Salmon SL, Metzger DW, Conner ME 2012. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol 5:712–19
    [Google Scholar]
  120. 120. 
    Mbawuike IN, Pacheco S, Acuna CL, Switzer KC, Zhang Y, Harriman GR 1999. Mucosal immunity to influenza without IgA: an IgA knockout mouse model. J. Immunol. 162:2530–37
    [Google Scholar]
  121. 121. 
    Arulanandam BP, Raeder RH, Nedrud JG, Bucher DJ, Le J, Metzger DW 2001. IgA immunodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J. Immunol. 166:226–31
    [Google Scholar]
  122. 122. 
    Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M et al. 2015. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43:541–53
    [Google Scholar]
  123. 123. 
    Schwartz-Cornil I, Benureau Y, Greenberg H, Hendrickson BA, Cohen J 2002. Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J. Virol. 76:8110–17
    [Google Scholar]
  124. 124. 
    McNeal MM, Stone SC, Basu M, Bean JA, Clements JD et al. 2006. Protection against rotavirus shedding after intranasal immunization of mice with a chimeric VP6 protein does not require intestinal IgA. Virology 346:338–47
    [Google Scholar]
  125. 125. 
    Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA et al. 1999. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190:915–22
    [Google Scholar]
  126. 126. 
    Reikvam DH, Derrien M, Islam R, Erofeev A, Grcic V et al. 2012. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice. Eur. J. Immunol. 42:2959–70
    [Google Scholar]
  127. 127. 
    Yel L. 2010. Selective IgA deficiency. J. Clin. Immunol. 30:10–16
    [Google Scholar]
  128. 128. 
    Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A 2017. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand. J. Immunol. 85:3–12
    [Google Scholar]
  129. 129. 
    Brandtzaeg P, Karlsson G, Hansson G, Petruson B, Björkander J, Hanson LA 1987. The clinical condition of IgA-deficient patients is related to the proportion of IgD- and IgM-producing cells in their nasal mucosa. Clin. Exp. Immunol. 67:626–36
    [Google Scholar]
  130. 130. 
    Magri G, Comerma L, Pybus M, Sintes J, Llige D et al. 2017. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity 47:118–34.e8
    [Google Scholar]
  131. 131. 
    Beard LJ, Ferrante A, Oxelius VA, Maxwell GM 1986. IgG subclass deficiency in children with IgA deficiency presenting with recurrent or severe respiratory infections. Pediatr. Res. 20:937–42
    [Google Scholar]
  132. 132. 
    Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S 2010. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J. Immunol. 184:5696–704
    [Google Scholar]
  133. 133. 
    Zielonka S, Empting M, Grzeschik J, Könning D, Barelle CJ, Kolmar H 2015. Structural insights and biomedical potential of IgNAR scaffolds from sharks. mAbs 7:15–25
    [Google Scholar]
  134. 134. 
    Flajnik MF, Deschacht N, Muyldermans S 2011. A case of convergence: Why did a simple alternative to canonical antibodies arise in sharks and camels. PLOS Biol 9:e1001120
    [Google Scholar]
  135. 135. 
    Muyldermans S. 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  136. 136. 
    Desmyter A, Spinelli S, Roussel A, Cambillau C 2015. Camelid nanobodies: killing two birds with one stone. Curr. Opin. Struct. Biol. 32:1–8
    [Google Scholar]
  137. 137. 
    Muyldermans S, Smider VV. 2016. Distinct antibody species: structural differences creating therapeutic opportunities. Curr. Opin. Immunol. 40:7–13
    [Google Scholar]
  138. 138. 
    Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR 2018. Nanobodies: chemical functionalization strategies and intracellular applications. Angew. Chem. Int. Ed. 57:2314–33
    [Google Scholar]
  139. 139. 
    Saini SS, Allore B, Jacobs RM, Kaushik A 1999. Exceptionally long CDR3H region with multiple cysteine residues in functional bovine IgM antibodies. Eur. J. Immunol. 29:2420–26
    [Google Scholar]
  140. 140. 
    Stanfield RL, Wilson IA, Smider VV 2016. Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Sci. Immunol. 1:aaf7962
    [Google Scholar]
  141. 141. 
    Deiss TC, Vadnais M, Wang F, Chen PL, Torkamani A et al. 2017. Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies. Cell. Mol. Immunol. 16:53–64
    [Google Scholar]
  142. 142. 
    Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y et al. 2013. Reshaping antibody diversity. Cell 153:1379–93
    [Google Scholar]
  143. 143. 
    Stanfield RL, Haakenson J, Deiss TC, Criscitiello MF, Wilson IA, Smider VV 2018. The unusual genetics and biochemistry of bovine immunoglobulins. Adv. Immunol. 137:135–64
    [Google Scholar]
  144. 144. 
    Sok D, Le KM, Vadnais M, Saye-Francisco KL, Jardine JG et al. 2017. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548:108–11
    [Google Scholar]
  145. 145. 
    Zhang Y, Wang D, Welzel G, Wang Y, Schultz PG, Wang F 2013. An antibody CDR3-erythropoietin fusion protein. ACS Chem. Biol. 8:2117–21
    [Google Scholar]
  146. 146. 
    Zhang Y, Wang D, de Lichtervelde L, Sun SB, Smider VV et al. 2013. Functional antibody CDR3 fusion proteins with enhanced pharmacological properties. Angew. Chem. Int. Ed. 52:8295–98
    [Google Scholar]
  147. 147. 
    Liu T, Liu Y, Wang Y, Hull M, Schultz PG, Wang F 2014. Rational design of CXCR4 specific antibodies with elongated CDRs. J. Am. Chem. Soc. 136:10557–60
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021419-083720
Loading
/content/journals/10.1146/annurev-animal-021419-083720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error