1932

Abstract

The feather is a complex ectodermal organ with hierarchical branching patterns. It provides functions in endothermy, communication, and flight. Studies of feather growth, cycling, and health are of fundamental importance to avian biology and poultry science. In addition, feathers are an excellent model for morphogenesis studies because of their accessibility, and their distinct patterns can be used to assay the roles of specific molecular pathways. Here we review the progress in aspects of development, regeneration, and evolution during the past three decades. We cover the development of feather buds in chicken embryos, regenerative cycling of feather follicle stem cells, formation of barb branching patterns, emergence of intrafeather pigmentation patterns, interplay of hormones and feather growth, and the genetic identification of several feather variants. The discovery of feathered dinosaurs redefines the relationship between feathers and birds. Inspiration from biomaterials and flight research further fuels biomimetic potential of feathers as a multidisciplinary research focal point.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022513-114127
2015-02-16
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/animal/3/1/annurev-animal-022513-114127.html?itemId=/content/journals/10.1146/annurev-animal-022513-114127&mimeType=html&fmt=ahah

Literature Cited

  1. Lucas AM, Stettenheim PR. 1972. Avian Anatomy Integuments Part I, II Washington, DC: US Gov. Print. Off.
  2. Crawford R. 1990. Poultry Breeding and Genetics Amsterdam: Elsevier
  3. Sengel P. 1976. Morphogenesis of skin. Developmental and Cell Biology Series (Book 3) Abercrombie M, Newth DR, Torrey JG. Cambridge: Cambridge Univ. Press [Google Scholar]
  4. Lin CM, Jiang TX, Widelitz RB, Chuong CM. 2006. Molecular signaling in feather morphogenesis. Curr. Opin. Cell Biol. 18:730–41 [Google Scholar]
  5. Lin SJ, Wideliz RB, Yue Z, Li A, Wu X et al. 2013. Feather regeneration as a model for organogenesis. Dev. Growth Differ. 55:139–48 [Google Scholar]
  6. Xu X, Zheng X, You H. 2010. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464:1338–41 [Google Scholar]
  7. Prum RO. 1999. Development and evolutionary origin of feathers. J. Exp. Zool. 285:291–306 [Google Scholar]
  8. Chuong CM, Chodankar R, Widelitz RB, Jiang TX. 2000. Evo-devo of feathers and scales: building complex epithelial appendages. Curr. Opin. Genet. Dev. 10:449–56 [Google Scholar]
  9. Scaal M, Prols F, Fuchtbauer EM, Patel K, Hornik C et al. 2002. BMPs induce dermal markers and ectopic feather tracts. Mech. Dev. 110:51–60 [Google Scholar]
  10. Fliniaux I, Viallet JP, Dhouailly D. 2004. Signaling dynamics of feather tract formation from the chick somatopleure. Development 131:3955–66 [Google Scholar]
  11. Hornik C, Krishan K, Yusuf F, Scaal M, Brand-Saberi B. 2005. cDermo-1 misexpression induces dense dermis, feathers, and scales. Dev. Biol. 277:42–50 [Google Scholar]
  12. Widelitz RB, Jiang TX, Chen CW, Stott NS, Jung HS, Chuong CM. 1999. Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model. Development 126:2577–87 [Google Scholar]
  13. Widelitz RB, Jiang TX, Lu J, Chuong CM. 2000. β-Catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated β-catenin. Dev. Biol. 219:98–114 [Google Scholar]
  14. Chen CW, Chuong CM. 2000. Dynamic expression of lunatic fringe during feather morphogenesis: a switch from medial-lateral to anterior-posterior asymmetry. Mech. Dev. 1–2:351–54 [Google Scholar]
  15. Jiang TX, Jung HS, Widelitz RB, Chuong CM. 1999. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126:4997–5009 [Google Scholar]
  16. Bardot B, Lecoin L, Fliniaux I, Huillard E, Marx M, Viallet JP. 2004. Drm/Gremlin, a BMP antagonist, defines the interbud region during feather development. Int. J. Dev. Biol. 2–3:149–56 [Google Scholar]
  17. Ohyama A, Saito F, Ohuchi H, Noji S. 2001. Differential expression of two BMP antagonists, gremlin and Follistatin, during development of the chick feather bud. Mech. Dev. 100:331–33 [Google Scholar]
  18. Chang CH, Jiang TX, Lin CM, Burrus LW, Chuong CM, Widelitz R. 2004. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech. Dev. 2:157–71 [Google Scholar]
  19. Kere J, Srivastava AK, Montonen O, Zonana J, Thomas N et al. 1996. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 13:409–16 [Google Scholar]
  20. Thesleff I, Mikkola ML. 2002. Death receptor signaling giving life to ectodermal organs. Sci. STKE 131:pe22 [Google Scholar]
  21. Drew CF, Lin CM, Jiang TX, Blunt G, Mou C et al. 2007. The Edar subfamily in feather placode formation. Dev. Biol. 305:232–45 [Google Scholar]
  22. Noramly S, Freeman A, Morgan BA. 1999. β-Catenin signaling can initiate feather bud development. Development 126:3509–21 [Google Scholar]
  23. Noveen A, Jiang TX, Ting-Berreth SA, Chuong CM. 1995. Homeobox genes Msx-1 and Msx-2 are associated with induction and growth of skin appendages. J. Investig. Dermatol. 104:711–19 [Google Scholar]
  24. Ting-Berreth SA, Chuong CM. 1996. Sonic Hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Dev. Dyn. 207:157–70 [Google Scholar]
  25. Jiang TX, Widelitz RB, Shen WM, Will P, Wu DY et al. 2004. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol. 48:117–35 [Google Scholar]
  26. Sengel P. 1964. The determinism of the differentiation of the skin and the cutaneous appendages of the chick embryo. The Epidermis Montagna W, Lobitz WC. 15–33 New York: Academic [Google Scholar]
  27. Oster GF, Murray JD, Harris AK. 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78:83–125 [Google Scholar]
  28. Maini PK, Baker RE, Chuong CM. 2006. Developmental biology. The Turing model comes of molecular age. Science 314:1397–98 [Google Scholar]
  29. Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237:37–72 [Google Scholar]
  30. Jung HS, Francis-West PH, Widelitz RB, Jiang TX, Ting-Berreth S et al. 1998. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol. 196:11–23 [Google Scholar]
  31. Song HK, Lee SH, Goetinck PF. 2004. FGF-2 signaling is sufficient to induce dermal condensations during feather development. Dev. Dyn. 231:741–49 [Google Scholar]
  32. Noramly S, Morgan BA. 1998. BMPs mediate lateral inhibition at successive stages in feather tract development. Development 125:3775–87 [Google Scholar]
  33. Li A, Chen M, Jiang TX, Wu P, Nie Q et al. 2013. Shaping organs by a wingless-int/Notch/nonmuscle myosin module which orients feather bud elongation. PNAS 110:E1452–61 [Google Scholar]
  34. Obinata A, Akimoto Y. 2005. Expression of Hex during feather bud development. Int. J. Dev. Biol. 49:885–90 [Google Scholar]
  35. Chodankar R, Chang CH, Yue Z, Jiang TX, Suksaweang S et al. 2003. Shift of localized growth zones contributes to skin appendage morphogenesis: role of the Wnt/β-catenin pathway. J. Investig. Dermatol. 1:20–26 [Google Scholar]
  36. Desbiens X, Quéva C, Jaffredo T, Stéhelin D, Vandenbunder B. 1991. The relationship between cell proliferation and the transcription of the nuclear oncogenes c-myc, c-myb and c-ets-1 during feather morphogenesis in the chick embryo. Development 111:699–713 [Google Scholar]
  37. Batlle E, Wilkinson DG. 2012. Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb. Perspect. Biol. 4:a008227 [Google Scholar]
  38. Dahmann C, Oates AC, Brand M. 2011. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 12:43–55 [Google Scholar]
  39. Mellitzer G, Xu Q, Wilkinson DG. 1999. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400:77–81 [Google Scholar]
  40. Xu Q, Mellitzer G, Robinson V, Wilkinson DG. 1999. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399:267–71 [Google Scholar]
  41. Suksaweang S, Jiang TX, Roybal P, Chuong CM, Widelitz R. 2012. Roles of EphB3/ephrin-B1 in feather morphogenesis. Int. J. Dev. Biol. 56:719–28 [Google Scholar]
  42. Lillie FR, Wang H. 1941. Physiology of development of the feather V. Experimental morphogenesis. Physiol. Zool. 14:103–35 [Google Scholar]
  43. Yue Z, Jiang TX, Widelitz RB, Chuong CM. 2005. Mapping stem cell activities in the feather follicle. Nature 438:1026–29 [Google Scholar]
  44. Jiang TX, Tuan TL, Wu P, Widelitz RB, Chuong CM. 2011. From buds to follicles: matrix metalloproteinases in developmental tissue remodeling during feather morphogenesis. Differentiation 81:307–14 [Google Scholar]
  45. Lin J, Luo J, Redies C. 2011. Differential regional expression of multiple ADAMs during feather bud formation. Dev. Dyn. 240:2142–52 [Google Scholar]
  46. Chang CH, Yu M, Wu P, Jiang TX, Yu HS et al. 2004. Sculpting skin appendages out of epidermal layers via temporally and spatially regulated apoptotic events. J. Investig. Dermatol. 6:1348–55 [Google Scholar]
  47. Alibardi L, Knapp LW, Sawyer RH. 2006. β-Keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers. J. Submicrosc. Cytol. Pathol. 2–3:175–92 [Google Scholar]
  48. Yu M, Wu P, Widelitz RB, Chuong CM. 2002. The morphogenesis of feathers. Nature 420:308–12 [Google Scholar]
  49. Prum RO. 2005. Evolution of the morphological innovations of feathers. J. Exp. Zool. B Mol. Dev. Evol. 304:570–79 [Google Scholar]
  50. Harris MP, Fallon JF, Prum RO. 2002. Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J. Exp. Zool. 294:160–76 [Google Scholar]
  51. Zhang L, Nie Q, Su Y, Xie X, Luo W et al. 2013. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene 519:77–81 [Google Scholar]
  52. Yue Z, Jiang TX, Widelitz RB, Chuong CM. 2006. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. PNAS 103:951–55 [Google Scholar]
  53. Yue Z, Jiang TX, Wu P, Widelitz RB, Chuong CM. 2012. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae. Dev. Biol. 372:45–54 [Google Scholar]
  54. Int. Chick. Genome Seq. Consort 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716 [Google Scholar]
  55. Greenwold MJ, Sawyer RH. 2010. Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol. Biol. 10:148 [Google Scholar]
  56. Presland RB, Whitbread LA, Rogers GE. 1989. Avian keratin genes. II. Chromosomal arrangement and close linkage of three gene families. J. Mol. Biol. 209:561–76 [Google Scholar]
  57. Greenwold MJ, Sawyer RH. 2013. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. J. Exp. Zool. B Mol. Dev. Evol. 320:393–405 [Google Scholar]
  58. Dalla Valle L, Nardi A, Gelmi C, Toni M, Emera D, Alibardi L. 2009. β-Keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. J. Exp. Zool. B Mol. Dev. Evol. 312:42–57 [Google Scholar]
  59. Greenwold MJ, Sawyer RH. 2011. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. J. Exp. Zool. B Mol. Dev. Evol. 316:609–16 [Google Scholar]
  60. Lin SJ, Foley J, Jiang TX, Yeh CY, Wu P et al. 2013. Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge. Science 340:1442–45 [Google Scholar]
  61. Harris MP, Williamson S, Fallon JF, Meinhardt H, Prum RO. 2005. Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. PNAS 102:11734–39 [Google Scholar]
  62. Prum RO, Williamson S. 2002. Reaction-diffusion models of within-feather pigmentation patterning. Proc. Biol. Sci. 269:781–92 [Google Scholar]
  63. Prum RO, Dyck J. 2003. A hierarchical model of plumage: morphology, development, and evolution. J. Exp. Zool. B Mol. Dev. Evol. 298:73–90 [Google Scholar]
  64. Abbott UK, Asmundson VS. 1957. Scaleless, an inherited ectodermal defect in the domestic fowl. J. Hered. 48:63–70 [Google Scholar]
  65. Wells KL, Hadad Y, Ben-Avraham D, Hillel J, Cahaner A, Headon DJ. 2012. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens. BMC Genomics 13:257 [Google Scholar]
  66. Somes RG Jr. 1990. Mutations and major variant of plumage and skin in chickens. Poultry Breeding and Genetics Crawford R. 169–208 Amsterdam: Elsevier [Google Scholar]
  67. Mou C, Pitel F, Gourichon D, Vignoles F, Tzika A et al. 2011. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLOS Biol. 9:e1001028 [Google Scholar]
  68. Pitel F, Bergé R, Coquerelle G, Crooijmans RP, Groenen MA et al. 2000. Mapping the naked neck (NA) and polydactyly (PO) mutants of the chicken with microsatellite molecular markers. Genet. Sel. Evol. 32:73–86 [Google Scholar]
  69. Ng CS, Wu P, Foley J, Foley A, McDonald ML et al. 2012. The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLOS Genet. 8:e1002748 [Google Scholar]
  70. Landauer W, Dunn LC. 1930. The frizzle character of fowls. J. Hered. 21:291–305 [Google Scholar]
  71. Hutt F. 1930. The inheritance of frizzled plumage. J. Genet. 22:128–29 [Google Scholar]
  72. Winter H, Schissel D, Parry DA, Smith TA, Liovic M et al. 2004. An unusual Ala12Thr polymorphism in the 1A α-helical segment of the companion layer-specific keratin K6hf: evidence for a risk factor in the etiology of the common hair disorder pseudofolliculitis barbae. J. Investig. Dermatol. 122:652–57 [Google Scholar]
  73. Starck JM, Ricklefs RE. 1998. Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum Oxford, UK: Oxford Univ. Press
  74. Kuenzel WJ. 2003. Neurobiology of molt in avian species. Poult. Sci. 82:981–91 [Google Scholar]
  75. Shaffner CS. 1954. Feather papilla stimulation by progesterone. Science 120:345 [Google Scholar]
  76. Shaffner CS. 1955. Progesterone induced molt. Poult. Sci. 34:840–42 [Google Scholar]
  77. Juhn M, Harris PC. 1955. Local effects on the feather papilla of thyroxine and of progesterone. Proc. Soc. Exp. Biol. Med. 90:202–4 [Google Scholar]
  78. Vézina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T. 2009. Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a Northerly Wintering Shorebird. Physiol. Biochem. Zool. 82:129–42 [Google Scholar]
  79. Dawson A, Goldsmith AR. 1983. Plasma prolactin and gonadotrophins during gonadal development and the onset of photorefractoriness in male and female starlings (Sturnus vulgaris) on artificial photoperiods. J. Endocrinol. 97:253–60 [Google Scholar]
  80. Nolan V Jr, Ketterson ED. 1990. Effect of long days on molt and autumn migratory state of site-faithful juncos held at their winter sites. Wilson Bull. 102:469–79 [Google Scholar]
  81. Ikegami K, Yoshimura T. 2012. Circadian clocks and the measurement of daylength in seasonal reproduction. Mol. Cell. Endocrinol. 349:76–81 [Google Scholar]
  82. Péczely P, Bogenfürst F, Kulcsár M, Polgár B. 2011. Role of gonadal and adrenal steroids and thyroid hormones in the regulation of molting in domestic goose. Acta Biol. Hung. 62:1–21 [Google Scholar]
  83. Romero LM, Soma KK, Wingfield JC. 1998. Hypothalamic-pituitary-adrenal axis changes allow seasonal modulation of corticosterone in a bird. Am. J. Physiol. 274:R1338–44 [Google Scholar]
  84. Yoshimura T. 2013. Thyroid hormone and seasonal regulation of reproduction. Front. Neuroendocrinol. 34:157–66 [Google Scholar]
  85. Done T, Gow EA, Stutchbury BJM. 2011. Corticosterone stress response and plasma metabolite levels during breeding and molt in a free-living migratory songbird, the wood thrush (Hylocichla mustelina). Gen. Comp. Endocrinol. 171:176–82 [Google Scholar]
  86. Hurley LL, Wallace AM, Sartor JJ, Ball GF. 2008. Photoperiodic induced changes in reproductive state of border canaries (Serinus canaria) are associated with marked variation in hypothalamic gonadotropin-releasing hormone immunoreactivity and the volume of song control regions. Gen. Comp. Endocrinol. 158:10–19 [Google Scholar]
  87. Martin LB. 2005. Trade-offs between molt and immune activity in two populations of house sparrows (Passer domesticus). Can. J. Zool. 83:780–87 [Google Scholar]
  88. Bacon WL, Long DW. 1996. Secretion of luteinizing hormone during a forced molt in turkey hens. Poult. Sci. 75:1579–86 [Google Scholar]
  89. Braw-Tal R, Yossefi S, Pen S, Shinder D, Bar A. 2004. Hormonal changes associated with ageing and induced moulting of domestic hens. Br. Poult. Sci. 45:815–22 [Google Scholar]
  90. Jacquet JM, Seigneurin F, De Reviers M. 1993. Induced moulting in cockerels: effects on sperm production, plasma concentrations of luteinising hormone, testosterone and thyroxine, and on pituitary sensitivity to luteinising hormone-releasing hormone. Br. Poult. Sci. 34:765–75 [Google Scholar]
  91. Nolan VJ, Ketterson ED, Ziegenfus C, Cullen DP, Chandler CR. 1992. Testosterone and avian life histories: effects of experimentally elevated testosterone on prebasic molt and survival in male dark-eyed juncos. Condor 94:364–70 [Google Scholar]
  92. Schleussner G, Dittami JP, Gwinner E. 1985. Testosterone implants affect molt in male European starlings, Sturnus vulgaris. Physiol. Zool. 585:597–604 [Google Scholar]
  93. Dickerman RW, Bahr JM. 1989. Molt induced by gonadotropin-releasing hormone agonist as model for studying endocrine mechanisms of molting in laying hens. Poult. Sci. 68:1402–8 [Google Scholar]
  94. Sandhu MA, Rahman ZU, Riaz A, Rahman SU, Javed I, Ullah N. 2010. Somatotrophs and lactotrophs: an immunohistochemical study of Gallus domesticus pituitary gland at different stages of induced moult. Eur. J. Histochem. 54:e25 [Google Scholar]
  95. Romero LM. 2002. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128:1–24 [Google Scholar]
  96. Lattin CR, Bauer CM, de Bruijn R, Romero LM. 2012. Hypothalamus-pituitary-adrenal axis activity and the subsequent response to chronic stress differ depending upon life history stage. Gen. Comp. Endocrinol. 178:494–501 [Google Scholar]
  97. DesRochers DW, Reed JM, Awerman J, Kluge JA, Wilkinson J et al. 2009. Exogenous and endogenous corticosterone alter feather quality. Comp. Biochem. Physiol. A 152:46–52 [Google Scholar]
  98. Péczely P, Pethes G. 1981. Effect of ovariectomy, thyroidectomy and of thyroxine treatment on the plasma level of corticosterone of the female Japanese quail. Acta Biol. Acad. Sci. Hung. 32:1–6 [Google Scholar]
  99. Shinomiya A, Shimmura T, Nishiwaki-Ohkawa T, Yoshimura T. 2014. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front. Endocrinol. 5:12 [Google Scholar]
  100. Dawson A, King VM, Bentley GE, Ball GF. 2001. Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16:365–80 [Google Scholar]
  101. Mayer JA, Chuong CM, Widelitz R. 2004. Rooster feathering, androgenic alopecia, and hormone-dependent tumor growth: What is in common?. Differentiation 72:474–88 [Google Scholar]
  102. Andersson MB. 2010. Sexual Selection Princeton, NJ: Princeton Univ. Press
  103. Aparicio JM, Bonal R, Cordero PJ. 2003. Evolution of the structure of tail feathers: implications for the theory of sexual selection. Evolution 57:397–405 [Google Scholar]
  104. McGlothlin JW, Jawor JM, Greives TJ, Casto JM, Phillips JL, Ketterson ED. 2008. Hormones and honest signals: Males with larger ornaments elevate testosterone more when challenged. J. Evol. Biol. 21:39–48 [Google Scholar]
  105. Kimball RT, Ligon JD. 1999. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154:182–93 [Google Scholar]
  106. Mueller NS. 1970. An experimental study of sexual dichromatism in the duck Anas platyrhynchos. J. Exp. Zool. 173:263–68 [Google Scholar]
  107. Keck WN. 1934. The control of the secondary sex characters in the English sparrow Passer domesticus (Linnaeus). J. Exp. Zool. 67:315–41 [Google Scholar]
  108. Saino N, Romano M, Rubolini D, Teplitsky C, Ambrosini R et al. 2013. Sexual dimorphism in melanin pigmentation, feather coloration and its heritability in the barn swallow (Hirundo rustica). PLOS ONE 8:e58024 [Google Scholar]
  109. Lingham-Soliar T, Feduccia A, Wang X. 2007. A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc. Biol. Sci. 274:1823–29 [Google Scholar]
  110. Chuong CM, Wu P, Zhang FC, Xu X, Yu M et al. 2003. Adaptation to the sky: defining the feather with integument fossils from mesozoic China and experimental evidence from molecular laboratories. J. Exp. Zool. B Mol. Dev. Evol. 298:42–56 [Google Scholar]
  111. Mayr G, Peters DS, Plodowski G, Vogel O. 2002. Bristle-like integumentary structures at the tail of the horned dinosaur Psittacosaurus. Naturwissenschaften 89:361–65 [Google Scholar]
  112. Chen P, Dong Z, Zhen S. 1998. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–52 [Google Scholar]
  113. Xu X, Zheng X, You H. 2009. A new feather type in a nonavian theropod and the early evolution of feathers. PNAS 106:832–34 [Google Scholar]
  114. Zhang F, Zhou Z, Xu X, Wang X, Sullivan C. 2008. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455:1105–8 [Google Scholar]
  115. Xu X, Zhou Z, Prum RO. 2001. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410:200–4 [Google Scholar]
  116. Xu X, Tang Z, Wang X. 1999. A therizinosauroid dinosaur with integumentary structures from China. Nature 399:350–54 [Google Scholar]
  117. Qiang J, Currie PJ, Norell MA, Shu-An J. 1998. Two feathered dinosaurs from northeastern China. Nature 393:753–61 [Google Scholar]
  118. Xu X, Norell MA, Kuang X, Wang X, Zhao Q, Jia C. 2004. Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature 431:680–84 [Google Scholar]
  119. Schweitzer MH, Watt JA, Avci R, Knapp L, Chiappe L et al. 1999. Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J. Exp. Zool. 285:146–57 [Google Scholar]
  120. Xu X, Wang K, Zhang K, Ma Q, Xing L et al. 2012. A gigantic feathered dinosaur from the lower cretaceous of China. Nature 484:92–95 [Google Scholar]
  121. Xu X, Zhang F. 2005. A new maniraptoran dinosaur from China with long feathers on the metatarsus. Naturwissenschaften 92:173–77 [Google Scholar]
  122. Hu D, Hou L, Zhang L, Xu X. 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–43 [Google Scholar]
  123. Xu X, You H, Du K, Han F. 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475:465–70 [Google Scholar]
  124. Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y et al. 2012. Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338:510–14 [Google Scholar]
  125. Li Q, Gao KQ, Meng Q, Clarke JA, Shawkey MD et al. 2012. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–19 [Google Scholar]
  126. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X. 2003. Four-winged dinosaurs from China. Nature 421:335–40 [Google Scholar]
  127. Carney RM, Vinther J, Shawkey MD, D'Alba L, Ackermann J. 2012. New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat. Commun. 3:637 [Google Scholar]
  128. Feduccia A, Tordoff HB. 1979. Feathers of Archaeopteryx: Asymmetric vanes indicate aerodynamic function. Science 4384:1021–22 [Google Scholar]
  129. Xu X, Zhou Z, Wang X. 2000. The smallest known non-avian theropod dinosaur. Nature 408:705–8 [Google Scholar]
  130. Chiappe LM. 2007. Glorified Dinosaurs: The Origin and Early Evolution of Birds Hoboken, NJ: John Wiley
  131. Chu Q, Cai L, Fu Y, Chen X, Yan Z et al. 2014. Dkk2/Frzb in the dermal papillae regulates feather regeneration. Dev. Biol. 2:167–78 [Google Scholar]
  132. Chuong CM, Randall VA, Widelitz RB, Wu P, Jiang TX. 2012. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology 27:61–72 [Google Scholar]
  133. Chuong CM, Yeh CY, Jiang TX, Widelitz R. 2013. Module-based complexity formation: periodic patterning in feathers and hairs. Wiley Interdiscip. Rev. Dev. Biol. 2:97–112 [Google Scholar]
  134. Dorshorst B, Okimoto R, Ashwell C. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. J. Hered. 101:339–50 [Google Scholar]
  135. Bitgood JJ, Dochnahl J, Schlafly P, Briles RW, Briles WE. 1984. A study of linkage relationships of blood group P with naked neck, silkie feathering, and recessive white in chicken. Poult. Sci. 63:592–94 [Google Scholar]
  136. Fan WL, Ng CS, Chen CF, Lu MY, Chen YH et al. 2013. Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol. Evol. 5:1376–92 [Google Scholar]
  137. Feng C, Gao Y, Dorshorst B, Song C, Gu X et al. 2014. A cis-regulatory mutation of PDSS2 causes silky-feather in chickens. PLOS Genet. 10:8e1004576 [Google Scholar]
  138. Wang Y, Gao Y, Imsland F, Gu X, Feng C et al. 2012. The crest phenotype in chicken is associated with ectopic expression of HOXC8 in cranial skin. PLOS ONE 7:e34012 [Google Scholar]
  139. Somes RG Jr. 1992. Identifying the ptilopody (feathered shank) loci of the chicken. J. Hered. 83:230–34 [Google Scholar]
  140. Bacon LD, Smith E, Crittenden LB, Havenstein GB. 1988. Association of the slow feathering (K) and an endogenous viral (ev21) gene on the Z chromosome of chickens. Poult. Sci. 67:191–97 [Google Scholar]
  141. Elferink MG, Vallee AA, Jungerius AP, Crooijmans RP, Groenen MA. 2008. Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken. BMC Genomics 9:391 [Google Scholar]
  142. Luo C, Shen X, Rao Y, Xu H, Tang J et al. 2012. Differences of Z chromosome and genomic expression between early- and late-feathering chickens. Mol. Biol. Rep. 39:6283–88 [Google Scholar]
  143. Kerje S, Sharma P, Gunnarsson U, Kim H, Bagchi S et al. 2004. The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics 168:1507–18 [Google Scholar]
  144. Chang CM, Coville JL, Coquerelle G, Gourichon D, Oulmouden A, Tixier-Boichard M. 2006. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genomics 7:19 [Google Scholar]
  145. Chang CM, Furet JP, Coville JL, Coquerelle G, Gourichon D, Tixier-Boichard M. 2007. Quantitative effects of an intronic retroviral insertion on the transcription of the tyrosinase gene in recessive white chickens. Anim. Genet. 38:162–67 [Google Scholar]
  146. Kerje S, Lind J, Schutz K, Jensen P, Andersson L. 2003. Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34:241–48 [Google Scholar]
  147. Smyth JR. 1996. Genetics of plumage, skin and pigmentation in chickens. Poultry Breeding and Genetics Crawford RD. 109–67 New York: Elsevier Sci [Google Scholar]
  148. Gunnarsson U, Hellström AR, Tixier-Boichard M, Minvielle F, Bed'hom B et al. 2007. Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:867–77 [Google Scholar]
  149. Hellström AR, Sundström E, Gunnarsson U, Bed'Hom B, Tixier-Boichard M et al. 2010. Sex-linked barring in chickens is controlled by the CDKN2A/B tumour suppressor locus. Pigment Cell Melanoma Res. 23:521–30 [Google Scholar]
  150. Moore JW, Smyth JR. 1972. Genetic factors associated with the plumage pattern of the barred Fayoumi. Poult. Sci. 51:1149–56 [Google Scholar]
  151. Gunnarsson U, Kerje S, Bed'hom B, Sahlqvist AS, Ekwall O et al. 2011. The Dark brown plumage color in chickens is caused by an 8.3-kb deletion upstream of SOX10. Pigment Cell Melanoma Res. 24:268–74 [Google Scholar]
  152. Widelitz RB, Veltmaat JM, Mayer JA, Foley J, Chuong CM. 2007. Mammary glands and feathers: comparing two skin appendages which help define novel classes during vertebrate evolution. Semin. Cell Dev. Biol. 18:255–66 [Google Scholar]
  153. Zheng XT, You HL, Xu X, Dong ZM. 2009. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–36 [Google Scholar]
  154. Wu P, Hou L, Plikus M, Hughes M, Scehnet J et al. 2004. Evo-Devo of amniote integuments and appendages. Int. J. Dev. Biol. 48:249–70 [Google Scholar]
/content/journals/10.1146/annurev-animal-022513-114127
Loading
/content/journals/10.1146/annurev-animal-022513-114127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error