1932

Abstract

Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040248
2018-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040248.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040248&mimeType=html&fmt=ahah

Literature Cited

  1. Aggarwal R, Subramanyam S, Zhao C, Chen MS, Harris MO, Stuart JJ. 1.  2014. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor). PLOS ONE 9:e100958 [Google Scholar]
  2. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ. 2.  et al. 2003. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–84 [Google Scholar]
  3. Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM. 3.  2016. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci. Rep. 6:26912 [Google Scholar]
  4. Arora AK, Forshaw A, Miller TA, Durvasula R. 4.  2015. A delivery system for field application of paratransgenic control. BMC Biotechnol 15:59 [Google Scholar]
  5. Bally J, McIntyre GJ, Doran RL, Lee K, Perez A. 5.  et al. 2016. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Front. Plant Sci. 7:1453 [Google Scholar]
  6. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P. 6.  et al. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25:1322–26 [Google Scholar]
  7. Beale MH, Birkett MA, Bruce TJ, Chamberlain K, Field LM. 7.  et al. 2006. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. PNAS 103:10509–13 [Google Scholar]
  8. Bentur JS, Rawat N, Divya D, Sinha DK, Agarrwal R. 8.  et al. 2016. Rice-gall midge interactions: battle for survival. J. Insect Physiol. 84:40–49 [Google Scholar]
  9. Binder BF, Robbins JC, Wilson RL. 9.  1995. Chemically mediated ovipositional behaviors of the European corn borer, Ostrinianubilalis (Lepidoptera: Pyralidae). J. Chem. Ecol. 21:1315–27 [Google Scholar]
  10. Bjorkman C, Niemela P. 10.  2015. Climate Change and Insect Pests Wallingford, UK: CABI
  11. Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A. 11.  et al. 2012. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. PNAS 109:20124–29 [Google Scholar]
  12. Boissot N, Thomas S, Chovelon V, Lecoq H. 12.  2016. NBS-LRR-mediated resistance triggered by aphids: Viruses do not adapt; aphids adapt via different mechanisms. BMC Plant Biol 16:25 [Google Scholar]
  13. Bonning BC, Pal N, Liu S, Wang Z, Sivakumar S. 13.  et al. 2014. Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nat. Biotechnol. 32:102–5 [Google Scholar]
  14. Borel B.14.  2017. When the pesticides run out. Nature 543:302–4 [Google Scholar]
  15. Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. 15.  2010. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLOS Genet 6:e1001216 [Google Scholar]
  16. Bruce TJ, Aradottir GI, Smart LE, Martin JL, Caulfield JC. 16.  et al. 2015. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep. 5:11183 [Google Scholar]
  17. Buchner P.17.  1965. Endosymbioses of Animals with Plant Microorganisms Chichester, UK: John Wiley and Sons
  18. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J. 18.  et al. 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biol 15:e2001793 [Google Scholar]
  19. Carolan JC, Fitzroy CI, Ashton PD, Douglas AE, Wilkinson TL. 19.  2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9:2457–67 [Google Scholar]
  20. Carriere Y, Crickmore N, Tabashnik BE. 20.  2015. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 33:161–68 [Google Scholar]
  21. Casteel CL, Hansen AK. 21.  2014. Evaluating insect-microbiomes at the plant-insect interface. J. Chem. Ecol. 40:836–47 [Google Scholar]
  22. Casteel CL, Walling LL, Paine TD. 22.  2006. Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomol. Exp. Appl. 121:67–72 [Google Scholar]
  23. Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Narasu VM. 23.  et al. 2016. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res 25:665–78 [Google Scholar]
  24. Chandler JA, James PM, Jospin G, Lang JM. 24.  2014. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2:e474 [Google Scholar]
  25. Chen YH, Gols R, Benrey B. 25.  2015. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60:35–58 [Google Scholar]
  26. Cheng X, Zhu L, He G. 26.  2013. Towards understanding of molecular interactions between rice and the brown planthopper. Mol. Plant 6:621–34 [Google Scholar]
  27. Chougule NP, Bonning BC. 27.  2012. Toxins for transgenic resistance to hemipteran pests. Toxins 4:405–29 [Google Scholar]
  28. Chougule NP, Li H, Liu S, Linz LB, Narva KE. 28.  et al. 2013. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. PNAS 110:8465–70 [Google Scholar]
  29. Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF. 29.  et al. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. PNAS 110:15728–33 [Google Scholar]
  30. Clay K.30.  1988. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16 [Google Scholar]
  31. Collard BC, Mackill DJ. 31.  2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 363:557–72 [Google Scholar]
  32. Cook DE, Mesarich CH, Thomma BPHJ.32.  2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541–63 [Google Scholar]
  33. Crist E, Mora C, Engelman R. 33.  2017. The interaction of human population, food production, and biodiversity protection. Science 356:260–64 [Google Scholar]
  34. Crock J, Wildung M, Croteau R. 34.  1997. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha×piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene. PNAS 94:12833–38 [Google Scholar]
  35. Dandekar AM, Gouran H, Ibanez AM, Uratsu SL, Aguero CB. 35.  et al. 2012. An engineered innate immune defense protects grapevines from Pierce disease. PNAS 109:3721–25 [Google Scholar]
  36. de Vries EJ, Breeuwer JA, Jacobs G, Mollema C. 36.  2001. The association of Western flower thrips, Frankliniella occidentalis, with a near Erwinia species gut bacteria: transient or permanent?. J. Invertebr. Pathol. 77:120–28 [Google Scholar]
  37. Deng Y, Zhai K, Xie Z, Yang D, Zhu X. 37.  et al. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–65 [Google Scholar]
  38. Dillon RJ, Dillon VM. 38.  2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49:71–92 [Google Scholar]
  39. Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A. 39.  2014. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii–mediated virus resistance. Plant J 80:993–1004 [Google Scholar]
  40. Douglas AE.40.  1989. Mycetocyte symbiosis in insects. Biol. Rev. Camb. Philos. Soc. 64:409–34 [Google Scholar]
  41. Douglas AE.41.  2006. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57:747–54 [Google Scholar]
  42. Douglas AE.42.  2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34 [Google Scholar]
  43. Douglas AE.43.  2016. How multi-partner endosymbioses function. Nat. Rev. Microbiol. 14:731–43 [Google Scholar]
  44. Du B, Zhang W, Liu B, Hu J, Wei Z. 44.  et al. 2009. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. PNAS 106:22163–68 [Google Scholar]
  45. Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 45.  2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32 [Google Scholar]
  46. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S. 46.  et al. 1997. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. PNAS 94:3274–78 [Google Scholar]
  47. Elzinga DA, De Vos M, Jander G. 47.  2014. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant Microbe Interact. 27:747–56 [Google Scholar]
  48. Engel P, Moran NA. 48.  2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:699–735 [Google Scholar]
  49. Facey PD, Meric G, Hitchings MD, Pachebat JA, Hegarty MJ. 49.  et al. 2015. Draft genomes, phylogenetic reconstruction, and comparative genomics of two novel cohabiting bacterial symbionts isolated from Frankliniella occidentalis. Genome Biol. Evol 7:2188–202 [Google Scholar]
  50. 50. FAO (UN Food Agric. Organ.) 2009. Global agriculture towards 2050 High Level Expert Forum FAO Rome, Italy:
  51. Fitches EC, Pyati P, King GF, Gatehouse JA. 51.  2012. Fusion to snowdrop lectin magnifies the oral activity of insecticidal ω-Hexatoxin-Hv1a peptide by enabling its delivery to the central nervous system. PLOS ONE 7:e39389 [Google Scholar]
  52. Flor HH.52.  1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  53. Fondong VN.53.  2017. The search for resistance to cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front. Plant Sci. 8:408 [Google Scholar]
  54. Futuyma DJ, Agrawal AA. 54.  2009. Macroevolution and the biological diversity of plants and herbivores. PNAS 106:18054–61 [Google Scholar]
  55. Gan H, Churchill ACL, Wickings K. 55.  2017. Invisible but consequential: Root endophytic fungi have variable effects on belowground plant-insect interactions. Ecosphere 8:e01710 [Google Scholar]
  56. Gao LL, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB. 56.  2007. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol. Plant Microbe Interact 20:82–93 [Google Scholar]
  57. Georges F, Ray H. 57.  2017. Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8:1–12 [Google Scholar]
  58. Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM. 58.  et al. 2010. Immunity and other defenses in pea aphids. Acyrthosiphon pisum. Genome Biol. 11:R21 [Google Scholar]
  59. Gibson RW, Pickett JA. 59.  1983. Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–9 [Google Scholar]
  60. Gleadow RM, Moller BL. 60.  2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu. Rev. Plant Biol. 65:155–85 [Google Scholar]
  61. Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W. 61.  et al. 2016. A transgenic approach for controlling Lygus in cotton. Nat. Commun. 7:12213 [Google Scholar]
  62. Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O. 62.  2003. Grasses and gall midges: plant defense and insect adaptation. Annu. Rev. Entomol. 48:549–77 [Google Scholar]
  63. Hesler LS, Chiozza MV, O'Neal ME, MacIntosh GC, Tilmon KJ. 63.  et al. 2013. Performance and prospects of Rag genes for management of soybean aphid. Entomol. Exp. Appl. 147:201–16 [Google Scholar]
  64. Hogenhout SA, Bos JI. 64.  2011. Effector proteins that modulate plant–insect interactions. Curr. Opin. Plant Biol. 14:422–28 [Google Scholar]
  65. Hopkins RJ, van Dam NM, van Loon JJA. 65.  2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54:57–83 [Google Scholar]
  66. 66. ISAAA 2016. ISAA Brief 52-2016: Executive Summary http://www.isaaa.org/resources/publications/briefs/52/executivesummary/default.asp
  67. Jaouannet M, Rodriguez PA, Thorpe P, Lenoir CJ, MacLeod R. 67.  et al. 2014. Plant immunity in plant-aphid interactions. Front. Plant Sci. 5:663 [Google Scholar]
  68. Ji H, Kim SR, Kim YH, Suh JP, Park HM. 68.  et al. 2016. Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Sci. Rep. 6:34376 [Google Scholar]
  69. Katiyar S, Verulkar S, Chandel G, Zhang Y, Huang B, Bennett J. 69.  2001. Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Euphytica 122:327–34 [Google Scholar]
  70. King A.70.  2017. Technology: the future of agriculture. Nature 544:S21–23 [Google Scholar]
  71. Kissoudis C, van de Wiel C, Visser RG, van der Linden G. 71.  2016. Future-proof crops: challenges and strategies for climate resilience improvement. Curr. Opin. Plant Biol. 30:47–56 [Google Scholar]
  72. Klingler J, Creasy R, Gao L, Nair RM, Calix AS. 72.  et al. 2005. Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–55 [Google Scholar]
  73. Koricheva J, Gange AC, Jones T. 73.  2009. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–97 [Google Scholar]
  74. Laurila J, Laakso I, Valkonen JPT, Hiltunen R, Pehu E. 74.  1996. Formation of parental type and novel alkaloids in somatic hybrids between Solanum brevidens and S. tuberosum. Plant Sci 118:145–55 [Google Scholar]
  75. Lesk C, Rowhani P, Ramankutty N. 75.  2016. Influence of extreme weather disasters on global crop production. Nature 529:84–87 [Google Scholar]
  76. Leyser O.76.  2014. Moving beyond the GM debate. PLOS Biol 12:e1001887 [Google Scholar]
  77. Li H, Guan R, Guo H, Miao X. 77.  2015. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ 38:2277–85 [Google Scholar]
  78. Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I. 78.  2006. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol. Plant Microbe Interact. 19:655–64 [Google Scholar]
  79. Li ZT, Hopkins DL, Gray DJ. 79.  2015. Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions. Transgenic Res 24:821–36 [Google Scholar]
  80. Liu SM, Li J, Zhu JQ, Wang XW, Wang CS. 80.  et al. 2016. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests. Insect Sci 23:265–76 [Google Scholar]
  81. Lu Y, Wu K, Jiang Y, Xia B, Li P. 81.  et al. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–54 [Google Scholar]
  82. Martinez de Ilarduya O, Xie Q, Kaloshian I. 82.  2003. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol. Plant Microbe Interact. 16:699–708 [Google Scholar]
  83. McKey D, Cavagnaro TR, Cliff J, Gleadow R. 83.  2010. Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change. Chemoecology 20:109–33 [Google Scholar]
  84. Mithofer A, Boland W. 84.  2012. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63:431–50 [Google Scholar]
  85. Moar W, Khajuria C, Pleau M, Ilagan O, Chen M. 85.  et al. 2017. Cry3Bb1-resistant western corn rootworm, Diabrotica virgiferavirgifera (LeConte) does not exhibit cross-resistance to DvSnf7 dsRNA. PLOS ONE 12:e0169175 [Google Scholar]
  86. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJ. 86.  2000. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. PNAS 97:3820–25 [Google Scholar]
  87. Moses T, Pollier J, Thevelein JM, Goossens A. 87.  2013. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200:27–43 [Google Scholar]
  88. Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC. 88.  2016. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 6:22587 [Google Scholar]
  89. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G. 89.  et al. 2002. Herbivory: Caterpillar saliva beats plant defences. Nature 416:599–600 [Google Scholar]
  90. Mutti NS, Louis J, Pappan LK, Pappan K, Begum K. 90.  et al. 2008. A protein from the salivary glands of the pea aphid, Acyrthosiphonpisum, is essential in feeding on a host plant. PNAS 105:9965–69 [Google Scholar]
  91. Nombela G, Williamson VM, Muniz M. 91.  2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant Microbe Interact 16:645–49 [Google Scholar]
  92. O'Connor SE.92.  2015. Engineering of secondary metabolism. Annu. Rev. Genet. 49:71–94 [Google Scholar]
  93. Oerke EC.93.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  94. Olsen KM, Wendel JF. 94.  2013. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu. Rev. Plant Biol. 64:47–70 [Google Scholar]
  95. Osterberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE. 95.  et al. 2017. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci 22:373–84 [Google Scholar]
  96. Paini DR, Sheppard AW, Cook DC, De Barro PJ, Worner SP, Thomas MB. 96.  2016. Global threat to agriculture from invasive species. PNAS 113:7575–79 [Google Scholar]
  97. Palma L, Munoz D, Berry C, Murillo J, Caballero P. 97.  2014. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–325 [Google Scholar]
  98. Pasoreck EK, Su J, Silverman IM, Gosai SJ, Gregory BD. 98.  et al. 2016. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling. Plant Biotechnol. J. 14:1862–75 [Google Scholar]
  99. Pineda A, Zheng SJ, van Loon JJ, Pieterse CM, Dicke M. 99.  2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–14 [Google Scholar]
  100. Pitino M, Hogenhout SA. 100.  2013. Aphid protein effectors promote aphid colonization in a plant species–specific manner. Mol. Plant Microbe Interact. 26:130–39 [Google Scholar]
  101. Prado JR, Segers G, Voelker T, Carson D, Dobert R. 101.  et al. 2014. Genetically engineered crops: from idea to product. Annu. Rev. Plant Biol. 65:769–90 [Google Scholar]
  102. Price DR, Gatehouse JA. 102.  2008. RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400 [Google Scholar]
  103. Raguso RA, Agrawal AA, Douglas AE, Jander G, Kessler A. 103.  et al. 2015. The raison d'être of chemical ecology. Ecology 96:617–30 [Google Scholar]
  104. Ramaseshadri P, Segers G, Flannagan R, Wiggins E, Clinton W. 104.  et al. 2013. Physiological and cellular responses caused by RNAi-mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. PLOS ONE 8:e54270 [Google Scholar]
  105. Rao SA, Carolan JC, Wilkinson TL. 105.  2013. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins. PLOS ONE 8:e57413 [Google Scholar]
  106. Ray DK, Mueller ND, West PC, Foley JA. 106.  2013. Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8:e66428 [Google Scholar]
  107. Ray S, Alves PC, Ahmad I, Gaffoor I, Acevedo FE. 107.  et al. 2016. Turnabout is fair play: Herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiol 171:694–706 [Google Scholar]
  108. Ray S, Basu S, Rivera-Vega LJ, Acevedo FE, Louis J. 108.  et al. 2016. Lessons from the far end: caterpillar frass–induced defenses in maize, rice, cabbage, and tomato. J. Chem. Ecol. 42:1130–41 [Google Scholar]
  109. Reymond P.109.  2013. Perception, signaling and molecular basis of oviposition-mediated plant responses. Planta 238:247–58 [Google Scholar]
  110. Ricroch A, Harwood W, Svobodova Z, Sagi L, Hundleby P. 110.  et al. 2016. Challenges facing European agriculture and possible biotechnological solutions. Crit. Rev. Biotechnol. 36:875–83 [Google Scholar]
  111. Riehle MA, Jacobs-Lorena M. 111.  2005. Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochem. Mol. Biol. 35:699–707 [Google Scholar]
  112. Rodriguez PA, Stam R, Warbroek T, Bos JI. 112.  2014. Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Mol. Plant Microbe Interact. 27:30–39 [Google Scholar]
  113. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM. 113.  1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. PNAS 95:9750–54 [Google Scholar]
  114. Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW. 114.  et al. 2015. Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93 [Google Scholar]
  115. Schellenberger U, Oral J, Rosen BA, Wei JZ, Zhu G. 115.  et al. 2016. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 354:634–37 [Google Scholar]
  116. Schoonhoven LM, van Loon JJA, Dicke M. 116.  2005. Insect-Plant Biology Oxford, UK: Oxford Univ. Press
  117. Schwartz EF, Mourao CB, Moreira KG, Camargos TS, Mortari MR. 117.  2012. Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers 98:385–405 [Google Scholar]
  118. Schwartzberg EG, Tumlinson JH. 118.  2014. Aphid honeydew alters plant defence responses. Funct. Ecol. 28:386–94 [Google Scholar]
  119. Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB. 119.  et al. 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59:1212–21 [Google Scholar]
  120. Sharma PN, Torii A, Takumi S, Mori N, Nakamura C. 120.  2004. Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stål) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140:61–69 [Google Scholar]
  121. Song H, Zhang J, Li D, Cooper AMW, Silver K. 121.  et al. 2017. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochem. Mol. Biol. 86:68–80 [Google Scholar]
  122. Spit J, Philips A, Wynant N, Santos D, Plaetinck G, Vanden Broeck J. 122.  2017. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 81:103–16 [Google Scholar]
  123. Staudacher H, Kaltenpoth M, Breeuwer JA, Menken SB, Heckel DG, Groot AT. 123.  2016. Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. PLOS ONE 11:e0154514 [Google Scholar]
  124. Stover E, Stange RR, McCollum TG, Jaynes J, Irey M, Mirkov E. 124.  2013. Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to huanglongbing and citrus canker. J. Am. Soc. Horticult. Sci. 138:142–48 [Google Scholar]
  125. Stuart JJ, Chen MS, Shukle R, Harris MO. 125.  2012. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopathol. 50:339–57 [Google Scholar]
  126. Sudakaran S, Kost C, Kaltenpoth M. 126.  2017. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25:375–90 [Google Scholar]
  127. Tabashnik BE, Brevault T, Carriere Y. 127.  2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31:510–21 [Google Scholar]
  128. Tagliabue G.128.  2016. The precautionary principle: its misunderstandings and misuses in relation to “GMOs.”. Nat. Biotechnol. 33:437–39 [Google Scholar]
  129. Taleb NN, Read R, Douady R, Norman J, Bar-Yam Y. 129.  2014. The precautionary principle (with application to the genetic modification of organisms) Work. Pap., Sch. Eng. NYU http://www.fooledbyrandomness.com/pp2.pdf
  130. Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A. 130.  et al. 2014. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci. Rep. 4:5872 [Google Scholar]
  131. Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK. 131.  et al. 2001. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–28 [Google Scholar]
  132. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H. 132.  et al. 2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57:231–45 [Google Scholar]
  133. Thompson JD.133.  1988. Coevolution and alternative hypotheses on insect/plant interactions. Ecology 69:893–95 [Google Scholar]
  134. Thorpe P, Cock PJ, Bos J. 134.  2016. Comparative transcriptomics and proteomics of three different aphid species identifies core and diverse effector sets. BMC Genom 17:172 [Google Scholar]
  135. Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ. 135.  et al. 2011. Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol. Appl. 4:200–15 [Google Scholar]
  136. Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E. 136.  et al. 2012. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLOS ONE 7:e36168 [Google Scholar]
  137. Tilman D, Balzer C, Hill J, Befort BL. 137.  2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–64 [Google Scholar]
  138. 138. USDA ERS 2016. Adoption of genetically engineered crops in the US https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx
  139. Varenhorst AJ, McCarville MT, O'Neal ME. 139.  2015. Reduced fitness of virulent Aphis glycines (Hemiptera: Aphididae) biotypes may influence the longevity of resistance genes in soybean. PLOS ONE 10:e0138252 [Google Scholar]
  140. Villada ES, Gonzalez EG, Lopez-Sese AI, Castiel AF, Gomez-Guillamon ML. 140.  2009. Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene. J. Exp. Bot. 60:3269–77 [Google Scholar]
  141. Wang Y, Cao L, Zhang Y, Cao C, Liu F. 141.  et al. 2015. Map-based cloning and characterization of BPH29, a B3 domain–containing recessive gene conferring brown planthopper resistance in rice. J. Exp. Bot. 66:6035–45 [Google Scholar]
  142. Whitten M, Dyson P. 142.  2017. Gene silencing in non-model insects: overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Sustained RNA interference in insects mediated by symbiotic bacteria: applications as a genetic tool and as a biocide. BioEssays39 https://doi.org/10.1002/bies.201600247 [Crossref]
  143. Whitten MM, Facey PD, Del Sol R, Fernandez-Martinez LT, Evans MC. 143.  et al. 2016. Symbiont-mediated RNA interference in insects. Proc. Biol. Sci. 283:20160042 [Google Scholar]
  144. Wiens JJ, Lapoint RT, Whiteman NK. 144.  2015. Herbivory increases diversification across insect clades. Nat. Commun. 6:8370 [Google Scholar]
  145. Wu S, Jiang Z, Kempinski C, Nybo SE, Husodo S. 145.  et al. 2012. Engineering triterpene metabolism in tobacco. Planta 236:867–77 [Google Scholar]
  146. Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH. 146.  et al. 2015. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol. Plant 8:98–110 [Google Scholar]
  147. Yuan L, Grotewold E. 147.  2015. Metabolic engineering to enhance the value of plants as green factories. Metab. Eng. 27:83–91 [Google Scholar]
  148. Zeilinger AR, Olson DM, Andow DA. 148.  2016. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton. Ecol. Appl. 26:1047–54 [Google Scholar]
  149. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. 149.  2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–94 [Google Scholar]
  150. Zhao C, Escalante LN, Chen H, Benatti TR, Qu J. 150.  et al. 2015. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol 25:613–20 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040248
Loading
/content/journals/10.1146/annurev-arplant-042817-040248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error