1932

Abstract

The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040331
2018-04-29
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040331.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040331&mimeType=html&fmt=ahah

Literature Cited

  1. Aebi M.1.  2013. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833:2430–37 [Google Scholar]
  2. Andème Ondzighi C, Christopher D, Cho E, Chang S, Staehelin L. 2.  2008. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20:2205–20 [Google Scholar]
  3. Apweiler R, Hermjakob H, Sharon N. 3.  1999. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473:4–8 [Google Scholar]
  4. Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer G. 4.  2008. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5–6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 19:216–25 [Google Scholar]
  5. Baer J, Taylor I, Walker JC. 5.  2016. Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis. J. Exp. Bot 67:5473–84 [Google Scholar]
  6. Balchin D, Hayer-Hartl M, Hartl FU. 6.  2016. In vivo aspects of protein folding and quality control. Science 353:aac4354 [Google Scholar]
  7. Baldridge RD, Rapoport TA. 7.  2016. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166:394–407 [Google Scholar]
  8. Benyair R, Ogen-Shtern N, Mazkereth N, Shai B, Ehrlich M, Lederkremer GZ. 8.  2015. Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein substrates. Mol. Biol. Cell 26:172–84 [Google Scholar]
  9. Bies C, Blum R, Dudek J, Nastainczyk W, Oberhauser S. 9.  et al. 2004. Characterization of pancreatic ERj3p, a homolog of yeast DnaJ-like protein Scj1p. Biol. Chem. 385:389–95 [Google Scholar]
  10. Blanco-Herrera F, Moreno AA, Tapia R, Reyes F, Araya M. 10.  et al. 2015. The UDP-glucose: Glycoprotein glucosyltransferase (UGGT), a key enzyme in ER quality control, plays a significant role in plant growth as well as biotic and abiotic stress in Arabidopsis thaliana. BMC Plant Biol 15:127Describes for the first time plant growth and stress phenotypes for UGGT-deficient plants. [Google Scholar]
  11. Boisson M, Gomord V, Audran C, Berger N, Dubreucq B. 11.  et al. 2001. Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J 20:1010–19 [Google Scholar]
  12. Brandizzi F, Hanton S, DaSilva L, Boevink P, Evans D. 12.  et al. 2003. ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant J 34:269–81 [Google Scholar]
  13. Bukau B, Weissman J, Horwich A. 13.  2006. Molecular chaperones and protein quality control. Cell 125:443–51 [Google Scholar]
  14. Caramelo J, Parodi A. 14.  2008. Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283:10221–25 [Google Scholar]
  15. Chaiwanon J, Garcia VJ, Cartwright H, Sun Y, Wang ZY. 15.  2016. Immunophilin-like FKBP42/TWISTED DWARF1 interacts with the receptor kinase BRI1 to regulate brassinosteroid signaling in Arabidopsis. Mol. Plant 9:593–600 [Google Scholar]
  16. Chen Q, Liu R, Wang Q, Xie Q. 16.  2017. ERAD tuning of the HRD1 complex component AtOS9 is modulated by an ER-bound E2, UBC32. Mol. Plant 10:891–94 [Google Scholar]
  17. Chen Q, Zhong Y, Wu Y, Liu L, Wang P. 17.  et al. 2016. HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals. Nat. Plants 2:16094Demonstrates that ERAD tuning exists also in plants. [Google Scholar]
  18. Chong LP, Wang Y, Gad N, Anderson N, Shah B, Zhao R. 18.  2015. A highly charged region in the middle domain of plant endoplasmic reticulum (ER)-localized heat-shock protein 90 is required for resistance to tunicamycin or high calcium-induced ER stresses. J. Exp. Bot. 66:113–24 [Google Scholar]
  19. Christensen A, Svensson K, Thelin L, Zhang W, Tintor N. 19.  et al. 2010. Higher plant calreticulins have acquired specialized functions in Arabidopsis. PLOS ONE 5:e11342 [Google Scholar]
  20. Clerc S, Hirsch C, Oggier D, Deprez P, Jakob C. 20.  et al. 2009. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J. Cell Biol. 184:159–72Identifies the glycan signal that flags misfolded glycoproteins for degradation. [Google Scholar]
  21. Crofts AJ, Leborgne-Castel N, Pesca M, Vitale A, Denecke J. 21.  1998. BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. Plant Cell 10:813–24 [Google Scholar]
  22. Cui F, Liu L, Zhao Q, Zhang Z, Li Q. 22.  et al. 2012. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–44 [Google Scholar]
  23. D'Alessio C, Dahms NM. 23.  2015. Glucosidase II and MRH-domain containing proteins in the secretory pathway. Curr. Protein Pept. Sci. 16:31–48 [Google Scholar]
  24. de Oliveira MVV, Xu G, Li B, de Souza Vespoli L, Meng X. 24.  et al. 2016. Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation. Nat. Plants 2:15218 [Google Scholar]
  25. Dejgaard K, Theberge JF, Heath-Engel H, Chevet E, Tremblay ML, Thomas DY. 25.  2010. Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J. Proteome Res. 9:1763–71 [Google Scholar]
  26. Denecke J, Goldman M, Demolder J, Seurinck J, Botterman J. 26.  1991. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3:1025–35 [Google Scholar]
  27. Denic V, Quan EM, Weissman JS. 27.  2006. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–59 [Google Scholar]
  28. Deprez P, Gautschi M, Helenius A. 28.  2005. More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol. Cell 19:183–95 [Google Scholar]
  29. Di Cola A, Frigerio L, Lord J, Ceriotti A, Roberts L. 29.  2001. Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. PNAS 98:14726–31 [Google Scholar]
  30. Doblas VG, Amorim-Silva V, Posé D, Rosado A, Esteban A. 30.  et al. 2013. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Arabidopsis. Plant Cell 25:728–43 [Google Scholar]
  31. Dunkley T, Hester S, Shadforth I, Runions J, Weimar T. 31.  et al. 2006. Mapping the Arabidopsis organelle proteome. PNAS 103:6518–23 [Google Scholar]
  32. Farid A, Malinovsky FG, Veit C, Schoberer J, Zipfel C, Strasser R. 32.  2013. Specialized roles of the conserved subunit OST3/6 of the oligosaccharyltransferase complex in innate immunity and tolerance to abiotic stresses. Plant Physiol 162:24–38 [Google Scholar]
  33. Farid A, Pabst M, Schoberer J, Altmann F, Glössl J, Strasser R. 33.  2011. Arabidopsis thaliana α1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth. Plant J 68:314–25 [Google Scholar]
  34. Ferris SP, Jaber NS, Molinari M, Arvan P, Kaufman RJ. 34.  2013. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum. Mol. Biol. Cell 24:2597–608 [Google Scholar]
  35. Foresti O, Frigerio L, Holkeri H, de Virgilio M, Vavassori S, Vitale A. 35.  2003. A phaseolin domain involved directly in trimer assembly is a determinant for binding by the chaperone BiP. Plant Cell 15:2464–75 [Google Scholar]
  36. Frenkel Z, Gregory W, Kornfeld S, Lederkremer G. 36.  2003. Endoplasmic reticulum–associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6–5GlcNAc2. J. Biol. Chem. 278:34119–24 [Google Scholar]
  37. Fujimori T, Suno R, Iemura SI, Natsume T, Wada I, Hosokawa N. 37.  2017. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation. Genes Cells 22:684–98 [Google Scholar]
  38. Gao M, Wang X, Wang D, Xu F, Ding X. 38.  et al. 2009. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:34–44 [Google Scholar]
  39. Gauss R, Kanehara K, Carvalho P, Ng DT, Aebi M. 39.  2011. A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol. Cell 42:782–93 [Google Scholar]
  40. Gillmor C, Poindexter P, Lorieau J, Palcic M, Somerville C. 40.  2002. α-glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J. Cell Biol 156:1003–13 [Google Scholar]
  41. Hagiwara M, Ling J, Koenig PA, Ploegh HL. 41.  2016. Posttranscriptional regulation of glycoprotein quality control in the endoplasmic reticulum is controlled by the E2 Ub-conjugating enzyme UBC6e. Mol. Cell 63:753–67 [Google Scholar]
  42. Hanson SR, Culyba EK, Hsu TL, Wong CH, Kelly JW, Powers ET. 42.  2009. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. PNAS 106:3131–36 [Google Scholar]
  43. Häweker H, Rips S, Koiwa H, Salomon S, Saijo Y. 43.  et al. 2010. Pattern recognition receptors require N-glycosylation to mediate plant immunity. J. Biol. Chem. 285:4629–36 [Google Scholar]
  44. Helenius A.44.  1994. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell 5:253–65 [Google Scholar]
  45. Helenius A, Aebi M. 45.  2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73:1019–49 [Google Scholar]
  46. Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T. 46.  2009. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–60 [Google Scholar]
  47. Hong Z, Jin H, Fitchette A, Xia Y, Monk A. 47.  et al. 2009. Mutations of an α1,6 mannosyltransferase inhibit endoplasmic reticulum–associated degradation of defective brassinosteroid receptors in Arabidopsis. Plant Cell 21:3792–802 [Google Scholar]
  48. Hong Z, Jin H, Tzfira T, Li J. 48.  2008. Multiple mechanism–mediated retention of a defective brassino-steroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418–29 [Google Scholar]
  49. Hong Z, Kajiura H, Su W, Jin H, Kimura A. 49.  et al. 2012. Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis. PNAS 109:11437–42 [Google Scholar]
  50. Horn SC, Hanna J, Hirsch C, Volkwein C, Schütz A. 50.  et al. 2009. Usa1 functions as a scaffold of the HRD–ubiquitin ligase. Mol. Cell 36:782–93 [Google Scholar]
  51. Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I. 51.  et al. 2010. EDEM1 accelerates the trimming of α1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–75 [Google Scholar]
  52. Houck SA, Ren HY, Madden VJ, Bonner JN, Conlin MP. 52.  et al. 2014. Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol. Cell 54:166–79 [Google Scholar]
  53. Howell SH.53.  2013. Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol. 64:477–99 [Google Scholar]
  54. Hüttner S, Veit C, Schoberer J, Grass J, Strasser R. 54.  2012. Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum–associated degradation of glycoproteins. Plant Mol. Biol. 79:21–33 [Google Scholar]
  55. Hüttner S, Veit C, Vavra U, Schoberer J, Dicker M. 55.  et al. 2014. A context-independent N-glycan signal targets the misfolded extracellular domain of Arabidopsis STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochem. J. 464:401–11 [Google Scholar]
  56. Hüttner S, Veit C, Vavra U, Schoberer J, Liebminger E. 56.  et al. 2014. Arabidopsis class I α-mannosidases MNS4 and MNS5 are involved in endoplasmic reticulum–associated degradation of misfolded glycoproteins. Plant Cell 26:1712–28Demonstrates that specific Arabidopsis α-mannosidases generate the signal for glycoprotein degradation. [Google Scholar]
  57. Hwang J, Walczak CP, Shaler TA, Olzmann JA, Zhang L. 57.  et al. 2017. Characterization of protein complexes of the endoplasmic reticulum–associated degradation E3 ubiquitin ligase Hrd1. J. Biol. Chem. 292:9104–16 [Google Scholar]
  58. Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB. 58.  1999. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol. Cell 4:331–41 [Google Scholar]
  59. Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N. 59.  et al. 2002. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908 [Google Scholar]
  60. Jakob C, Burda P, Roth J, Aebi M. 60.  1998. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell Biol. 142:1223–33 [Google Scholar]
  61. Jeong IS, Lee S, Bonkhofer F, Tolley J, Fukudome A. 61.  et al. 2018. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies. Plant J 94:131–45 [Google Scholar]
  62. Jin H, Hong Z, Su W, Li J. 62.  2009. A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. PNAS 106:13612–17 [Google Scholar]
  63. Jin H, Yan Z, Nam K, Li J. 63.  2007. Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol. Cell 26:821–30Describes the powerful genetic screen that identified many components of the plant ER-associated degradation pathway. [Google Scholar]
  64. Jin Y, Zhuang M, Hendershot LM. 64.  2009. ERdj3, a luminal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER: identification of critical residues. Biochemistry 48:41–49 [Google Scholar]
  65. Kamauchi S, Nakatani H, Nakano C, Urade R. 65.  2005. Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 272:3461–76 [Google Scholar]
  66. Kelleher D, Gilmore R. 66.  2006. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R [Google Scholar]
  67. Kim JH, Nguyen NH, Nguyen NT, Hong SW, Lee H. 67.  2013. Loss of all three calreticulins, CRT1, CRT2 and CRT3, causes enhanced sensitivity to water stress in Arabidopsis. Plant Cell Rep 32:1843–53 [Google Scholar]
  68. Kirst ME, Meyer DJ, Gibbon BC, Jung R, Boston RS. 68.  2005. Identification and characterization of endoplasmic reticulum–associated degradation proteins differentially affected by endoplasmic reticulum stress. Plant Physiol 138:218–31 [Google Scholar]
  69. Klein EM, Mascheroni L, Pompa A, Ragni L, Weimar T. 69.  et al. 2006. Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues. Plant J 48:657–73 [Google Scholar]
  70. Koiwa H, Li F, McCully M, Mendoza I, Koizumi N. 70.  et al. 2003. The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–84Provides evidence that the STT3 function is essential in plants. [Google Scholar]
  71. Kozlov G, Muñoz-Escobar J, Castro K, Gehring K. 71.  2017. Mapping the ER interactome: the P domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones. Structure 25:1415–22 [Google Scholar]
  72. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A. 72.  et al. 2010. Structural basis of carbohydrate recognition by calreticulin. J. Biol. Chem. 285:38612–20 [Google Scholar]
  73. Kreibich G, Ulrich BL, Sabatini DD. 73.  1978. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J. Cell Biol. 77:464–87 [Google Scholar]
  74. Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A. 74.  2013. Cyclophilins: proteins in search of function. Plant Signal. Behav. 8:e22734 [Google Scholar]
  75. Lamriben L, Graham JB, Adams BM, Hebert DN. 75.  2016. N-glycan-based ER molecular chaperone and protein quality control system: the calnexin binding cycle. Traffic 17:308–26 [Google Scholar]
  76. Lerouxel O, Mouille G, Andème-Onzighi C, Bruyant M, Séveno M. 76.  et al. 2005. Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant J 42:455–68 [Google Scholar]
  77. Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M. 77.  et al. 2009. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. PNAS 106:15973–78Identifies specific ER-quality-control components involved in the biogenesis of plant immune receptors (see also 102, 121). [Google Scholar]
  78. Li LM, SY, Li RJ. 78.  2017. The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response. Biochem. Biophys. Res. Commun. 487:362–67 [Google Scholar]
  79. Li Q, Wei H, Liu L, Yang X, Zhang X, Xie Q. 79.  2017. Unfolded protein response activation compensates endoplasmic reticulum–associated degradation deficiency in Arabidopsis. J. Integr. Plant Biol 59:506–21 [Google Scholar]
  80. Liebminger E, Hüttner S, Vavra U, Fischl R, Schoberer J. 80.  et al. 2009. Class I α-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–67 [Google Scholar]
  81. Liu L, Cui F, Li Q, Yin B, Zhang H. 81.  et al. 2011. The endoplasmic reticulum–associated degradation is necessary for plant salt tolerance. Cell Res 21:957–69 [Google Scholar]
  82. Liu Y, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC. 82.  2012. Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24:4635–51Reveals the involvement and activation of autophagy during ER stress (see also 153). [Google Scholar]
  83. Liu Y, Li J. 83.  2013. A conserved basic residue cluster is essential for the protein quality control function of the Arabidopsis calreticulin 3. Plant Signal. Behav. 8:e23864 [Google Scholar]
  84. Liu Y, Zhang C, Wang D, Su W, Liu L. 84.  et al. 2015. EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum–associated degradation system in Arabidopsis. PNAS 112:12205–10 [Google Scholar]
  85. Liu YC, Fujimori DG, Weissman JS. 85.  2016. Htm1p–Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. PNAS 113:E4015–24 [Google Scholar]
  86. Loibl M, Wunderle L, Hutzler J, Schulz BL, Aebi M, Strahl S. 86.  2014. Protein O-mannosyltransferases associate with the translocon to modify translocating polypeptide chains. J. Biol. Chem. 289:8599–611 [Google Scholar]
  87. S, Zhao H, Des Marais DL, Parsons EP, Wen X. 87.  et al. 2012. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–44 [Google Scholar]
  88. Luan S, Kudla J, Gruissem W, Schreiber SL. 88.  1996. Molecular characterization of a FKBP-type immunophilin from higher plants. PNAS 93:6964–69 [Google Scholar]
  89. Ma ZX, Leng YJ, Chen GX, Zhou PM, Ye D, Chen LQ. 89.  2015. The THERMOSENSITIVE MALE STERILE 1 interacts with the BiPs via DnaJ domain and stimulates their ATPase enzyme activities in Arabidopsis. PLOS ONE 10:e0132500 [Google Scholar]
  90. Marshall RS, Jolliffe NA, Ceriotti A, Snowden CJ, Lord JM. 90.  et al. 2008. The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells. J. Biol. Chem. 283:15869–77 [Google Scholar]
  91. Martínez I, Chrispeels M. 91.  2003. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15:561–76 [Google Scholar]
  92. Maruyama D, Endo T, Nishikawa S. 92.  2010. BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. PNAS 107:1684–89 [Google Scholar]
  93. Maruyama D, Sugiyama T, Endo T, Nishikawa S. 93.  2014. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol 55:801–10 [Google Scholar]
  94. Mehnert M, Sommer T, Jarosch E. 94.  2014. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 16:77–86 [Google Scholar]
  95. Meunier L, Usherwood YK, Chung KT, Hendershot LM. 95.  2002. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13:4456–69 [Google Scholar]
  96. Mohorko E, Glockshuber R, Aebi M. 96.  2011. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J. Inherit. Metab. Dis. 34:869–78 [Google Scholar]
  97. Molinari M, Calanca V, Galli C, Lucca P, Paganetti P. 97.  2003. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–400 [Google Scholar]
  98. Molinari M, Galli C, Vanoni O, Arnold SM, Kaufman RJ. 98.  2005. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol. Cell 20:503–12 [Google Scholar]
  99. Müller J, Piffanelli P, Devoto A, Miklis M, Elliott C. 99.  et al. 2005. Conserved ERAD-like quality control of a plant polytopic membrane protein. Plant Cell 17:149–63 [Google Scholar]
  100. Müller LM, Lindner H, Pires ND, Gagliardini V, Grossniklaus U. 100.  2016. A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis. Nat. Commun 7:10826 [Google Scholar]
  101. Neal S, Jaeger PA, Duttke SH, Benner CK, Glass C. 101.  et al. 2018. The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol. Cell 69:306–20.e4 [Google Scholar]
  102. Nekrasov V, Li J, Batoux M, Roux M, Chu Z. 102.  et al. 2009. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 28:3428–38Identifies specific ER-quality-control components involved in the biogenesis of plant immune receptors (see also 77, 121). [Google Scholar]
  103. Neubert P, Strahl S. 103.  2016. Protein O-mannosylation in the early secretory pathway. Curr. Opin. Cell Biol. 41:100–8 [Google Scholar]
  104. Niemann MC, Bartrina I, Ashikov A, Weber H, Novák O. 104.  et al. 2015. Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. PNAS 112:291–96 [Google Scholar]
  105. Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K. 105.  et al. 2014. EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J. Cell Biol. 206:347–56 [Google Scholar]
  106. Noh S, Kwon C, Oh D, Moon J, Chung W. 106.  2003. Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311:81–91 [Google Scholar]
  107. Ohta M, Takaiwa F. 107.  2014. Emerging features of ER resident J-proteins in plants. Plant Signal. Behav. 9:e28194 [Google Scholar]
  108. Olson LJ, Orsi R, Alculumbre SG, Peterson FC, Stigliano ID. 108.  et al. 2013. Structure of the lectin mannose 6-phosphate receptor homology (MRH) domain of glucosidase II, an enzyme that regulates glycoprotein folding quality control in the endoplasmic reticulum. J. Biol. Chem. 288:16460–75 [Google Scholar]
  109. Park CJ, Bart R, Chern M, Canlas PE, Bai W, Ronald PC. 109.  2010. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLOS ONE 5:e9262 [Google Scholar]
  110. Park CJ, Sharma R, Lefebvre B, Canlas PE, Ronald PC. 110.  2013. The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. Plant Sci 210:53–60 [Google Scholar]
  111. Pearse BR, Gabriel L, Wang N, Hebert DN. 111.  2008. A cell-based reglucosylation assay demonstrates the role of GT1 in the quality control of a maturing glycoprotein. J. Cell Biol. 181:309–20 [Google Scholar]
  112. Persson S, Rosenquist M, Svensson K, Galvão R, Boss WF, Sommarin M. 112.  2003. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol 133:1385–96 [Google Scholar]
  113. Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J. 113.  et al. 2014. Structure of the mammalian oligosaccharyl–transferase complex in the native ER protein translocon. Nat. Commun. 5:3072 [Google Scholar]
  114. Pfeiffer A, Stephanowitz H, Krause E, Volkwein C, Hirsch C. 114.  et al. 2016. A complex of Htm1 and the oxidoreductase Pdi1 accelerates degradation of misfolded glycoproteins. J. Biol. Chem. 291:12195–207 [Google Scholar]
  115. Pimpl P, Taylor J, Snowden C, Hillmer S, Robinson D, Denecke J. 115.  2006. Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway. Plant Cell 18:198–211 [Google Scholar]
  116. Pisoni GB, Molinari M. 116.  2016. Five questions (with their answers) on ER-associated degradation. Traffic 17:341–50 [Google Scholar]
  117. Pollier J, Moses T, González-Guzmán M, De Geyter N, Lippens S. 117.  et al. 2013. The protein quality control system manages plant defence compound synthesis. Nature 504:148–52 [Google Scholar]
  118. Ritter C, Quirin K, Kowarik M, Helenius A. 118.  2005. Minor folding defects trigger local modification of glycoproteins by the ER folding sensor GT. EMBO J 24:1730–38 [Google Scholar]
  119. Römisch K.119.  2017. A case for Sec61 channel involvement in ERAD. Trends Biochem. Sci. 42:171–79 [Google Scholar]
  120. Ruggiano A, Foresti O, Carvalho P. 120.  2014. ER-associated degradation: protein quality control and beyond. J. Cell Biol. 204:869–79 [Google Scholar]
  121. Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K. 121.  et al. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J 28:3439–49Identifies specific ER-quality-control components involved in the biogenesis of plant immune receptors (see also 77, 102). [Google Scholar]
  122. Schmitz A, Herzog V. 122.  2004. Endoplasmic reticulum–associated degradation: exceptions to the rule. Eur. J. Cell Biol. 83:501–9 [Google Scholar]
  123. Schoberer J, Botchway SW. 123.  2014. Investigating protein–protein interactions in the plant endomembrane system using multiphoton-induced FRET-FLIM. Methods Mol. Biol. 1209:81–95 [Google Scholar]
  124. Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R. 124.  et al. 2017. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548:352–55 [Google Scholar]
  125. Schott A, Ravaud S, Keller S, Radzimanowski J, Viotti C. 125.  et al. 2010. Arabidopsis stromal-derived factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum. J. Biol. Chem. 285:18113–21 [Google Scholar]
  126. Schulz BL, Stirnimann CU, Grimshaw JP, Brozzo MS, Fritsch F. 126.  et al. 2009. Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. PNAS 106:11061–66 [Google Scholar]
  127. Shental-Bechor D, Levy Y. 127.  2008. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. PNAS 105:8256–61 [Google Scholar]
  128. Shin YJ, Vavra U, Veit C, Strasser R. 128.  2018. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. Plant J In press. doi: 10.1111/tpj.13851
  129. Soussilane P, Soussillane P, D'Alessio C, Paccalet T, Fitchette A. 129.  et al. 2009. N-glycan trimming by glucosidase II is essential for Arabidopsis development. Glycoconj. J. 26:597–607 [Google Scholar]
  130. Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. 130.  2013. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25:1416–29 [Google Scholar]
  131. Stigliano ID, Alculumbre SG, Labriola CA, Parodi AJ, D'Alessio C. 131.  2011. Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol. Biol. Cell 22:1810–23 [Google Scholar]
  132. Strasser R.132.  2016. Plant protein glycosylation. Glycobiology 26:926–39 [Google Scholar]
  133. Su W, Liu Y, Xia Y, Hong Z, Li J. 133.  2011. Conserved endoplasmic reticulum–associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis. PNAS 108:870–75 [Google Scholar]
  134. Su W, Liu Y, Xia Y, Hong Z, Li J. 134.  2012. The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum–associated degradation of misfolded receptor-like kinases. Mol. Plant 5:929–40 [Google Scholar]
  135. Sun T, Zhang Q, Gao M, Zhang Y. 135.  2014. Regulation of SOBIR1 accumulation and activation of defense responses in bir1-1 by specific components of ER quality control. Plant J 77:748–56 [Google Scholar]
  136. Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA. 136.  2005. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19:765–75 [Google Scholar]
  137. Tamura K, Yamada K, Shimada T, Hara-Nishimura I. 137.  2004. Endoplasmic reticulum–resident proteins are constitutively transported to vacuoles for degradation. Plant J 39:393–402 [Google Scholar]
  138. Tannous A, Patel N, Tamura T, Hebert DN. 138.  2015. Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation. Mol. Biol. Cell 26:390–405 [Google Scholar]
  139. Totani K, Ihara Y, Matsuo I, Ito Y. 139.  2006. Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose-type glycans. J. Biol. Chem. 281:31502–8 [Google Scholar]
  140. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K. 140.  2008. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–72 [Google Scholar]
  141. Van Hoewyk D. 141.  2017. Defects in endoplasmic reticulum–associated degradation (ERAD) increase selenate sensitivity in Arabidopsis. Plant Signal. Behav In press. https://doi.org/10.1080/15592324.2016.1171451 [Crossref]
  142. Vassilakos A, Michalak M, Lehrman MA, Williams DB. 142.  1998. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37:3480–90 [Google Scholar]
  143. Vasudevan D, Haltiwanger RS. 143.  2014. Novel roles for O-linked glycans in protein folding. Glycoconj. J. 31:417–26 [Google Scholar]
  144. Vembar S, Brodsky J. 144.  2008. One step at a time: endoplasmic reticulum–associated degradation. Nat. Rev. Mol. Cell Biol. 9:944–57 [Google Scholar]
  145. Vu KV, Nguyen NT, Jeong CY, Lee YH, Lee H, Hong SW. 145.  2017. Systematic deletion of the ER lectin chaperone genes reveals their roles in vegetative growth and male gametophyte development in Arabidopsis. Plant J 89:972–83 [Google Scholar]
  146. Wang D, Weaver ND, Kesarwani M, Dong X. 146.  2005. Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–40 [Google Scholar]
  147. Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP. 147.  2018. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 359:545–50Presents the first high-resolution cryo-EM structure of an intact eukaryotic OST complex. [Google Scholar]
  148. Wu G, Otegui MS, Spalding EP. 148.  2010. The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell 22:3295–304 [Google Scholar]
  149. Xu C, Ng DT. 149.  2015. O-mannosylation: the other glycan player of ER quality control. Semin. Cell Dev. Biol. 41:129–34 [Google Scholar]
  150. Xu C, Wang S, Thibault G, Ng DT. 150.  2013. Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway. Science 340:978–81 [Google Scholar]
  151. Yamamoto M, Kawanabe M, Hayashi Y, Endo T, Nishikawa S. 151.  2010. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan. Biochem. Biophys. Res. Commun. 393:384–89 [Google Scholar]
  152. Yamamoto M, Maruyama D, Endo T, Nishikawa S. 152.  2008. Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants. Plant Cell Physiol 49:1547–62 [Google Scholar]
  153. Yang X, Srivastava R, Howell SH, Bassham DC. 153.  2016. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant J 85:83–95Reveals the involvement and activation of autophagy during ER stress (see also 82). [Google Scholar]
  154. Yuen CYL, Wang P, Kang BH, Matsumoto K, Christopher DA. 154.  2017. A non-classical member of the protein disulfide isomerase family, PDI7 of Arabidopsis thaliana, localizes to the cis-Golgi and endoplasmic reticulum membranes. Plant Cell Physiol 58:1103–17 [Google Scholar]
  155. Yuen CYL, Wong K, Christopher DA. 155.  2016. Phylogenetic characterization and promoter expression analysis of a novel hybrid protein disulfide isomerase/cargo receptor subfamily unique to plants and chromalveolates. Mol. Genet. Genom. 291:455–69 [Google Scholar]
  156. Zhao B, Lv M, Feng Z, Campbell T, Liscum E, Li J. 156.  2016. TWISTED DWARF 1 associates with BRASSINOSTEROID-INSENSITIVE 1 to regulate early events of the brassinosteroid signaling pathway. Mol. Plant 9:582–92 [Google Scholar]
  157. Zuber C, Spiro MJ, Guhl B, Spiro RG, Roth J. 157.  2000. Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol. Biol. Cell 11:4227–40 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040331
Loading
/content/journals/10.1146/annurev-arplant-042817-040331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error