1932

Abstract

Shoot architecture is determined by the organization and activities of apical, axillary, intercalary, secondary, and inflorescence meristems and by the subsequent development of stems, leaves, shoot branches, and inflorescences. In this review, we discuss the unifying principles of hormonal and genetic control of shoot architecture including advances in our understanding of lateral branch outgrowth; control of stem elongation, thickness, and angle; and regulation of inflorescence development. We focus on recent progress made mainly in , rice, pea, maize, and tomato, including the identification of new genes and mechanisms controlling shoot architecture. Key advances include elucidation of mechanisms by which strigolactones, auxins, and genes such as and control shoot architecture. Knowledge now available provides a foundation for rational approaches to crop breeding and the generation of ideotypes with defined architectural features to improve performance and productivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040422
2018-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040422.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040422&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A. 1.  et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–56 [Google Scholar]
  2. Aguilar-Martinez JA, Poza-Carrion C, Cubas P. 2.  2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–72 [Google Scholar]
  3. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K. 3.  et al. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. PNAS 108:20242–47 [Google Scholar]
  4. Al-Babili S, Bouwmeester HJ. 4.  2015. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66:161–86 [Google Scholar]
  5. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T. 5.  et al. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741–45 [Google Scholar]
  6. Bai MY, Fan M, Oh E, Wang ZY. 6.  2012. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24:4917–29 [Google Scholar]
  7. Barbier FF, Lunn JE, Beveridge CA. 7.  2015. Ready, steady, go! A sugar hit starts the race to shoot branching. Curr. Opin. Plant Biol. 25:39–45 [Google Scholar]
  8. Bashline L, Lei L, Li S, Gu Y. 8.  2014. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol. Plant 7:586–600 [Google Scholar]
  9. Bell AD.9.  1993. Plant Form: An Illustrated Guide to Flowering Plant Morphology Oxford, UK: Oxford Univ. Press
  10. Benlloch R, Berbel A, Ali L, Gohari G, Millan T, Madueno F. 10.  2015. Genetic control of inflorescence architecture in legumes. Front. Plant Sci. 6:543 [Google Scholar]
  11. Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G. 11.  et al. 2014. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–21Together with Reference 127, provides evidence of the central roles of auxin and cytokinin signaling in the control of phyllotaxy. [Google Scholar]
  12. Birchler JA.12.  2015. Heterosis: the genetic basis of hybrid vigour. Nat. Plants 1:15020 [Google Scholar]
  13. Birnbaum KD, Sanchez Alvarado A. 13.  2008. Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710 [Google Scholar]
  14. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. 14.  2006. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–85 [Google Scholar]
  15. Brackmann K, Greb T. 15.  2014. Long- and short-distance signaling in the regulation of lateral plant growth. Physiol. Plant. 151:134–41 [Google Scholar]
  16. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. 16.  1997. Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83 [Google Scholar]
  17. Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M. 17.  et al. 2012. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–38 [Google Scholar]
  18. Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA. 18.  2015. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–29 [Google Scholar]
  19. Caesar K, Elgass K, Chen Z, Huppenberger P, Witthoft J. 19.  et al. 2011. A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana. Plant J 66:528–40 [Google Scholar]
  20. Chae E, Tan QK, Hill TA, Irish VF. 20.  2008. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235–45 [Google Scholar]
  21. Chehab EW, Eich E, Braam J. 21.  2009. Thigmomorphogenesis: a complex plant response to mechano-stimulation. J. Exp. Bot. 60:43–56 [Google Scholar]
  22. Chen L, Xiong G, Cui X, Yan M, Xu T. 22.  et al. 2013. OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice. Mol. Plant 6:988–91 [Google Scholar]
  23. Chen Y, Fan X, Song W, Zhang Y, Xu G. 23.  2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol. J 10:139–49 [Google Scholar]
  24. Cheng ZJ, Shang BH, Zhang XS, Hu YX. 24.  2017. Plant hormones and stem cells. Hormone Metabolism and Signaling in Plants JY Li, CY Li, SM Smith 405–30 London: Elsevier [Google Scholar]
  25. Clark SE, Williams RW, Meyerowitz EM. 25.  1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–85 [Google Scholar]
  26. Crawford S, Shinohara N, Sieberer T, Williamson L, George G. 26.  et al. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–13 [Google Scholar]
  27. Darwin C.27.  1880. The Power of Movement in Plants London: John Murray
  28. Daviere JM, Wild M, Regnault T, Baumberger N, Eisler H. 28.  et al. 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr. Biol. 24:1923–28 [Google Scholar]
  29. De Smet I, Jurgens G. 29.  2007. Patterning the axis in plants-auxin in control. Curr. Opin. Genet. Dev. 17:337–43 [Google Scholar]
  30. Doebley J, Stec A, Gustus C. 30.  1995. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–46 [Google Scholar]
  31. Domagalska MA, Leyser O. 31.  2011. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12:211–21 [Google Scholar]
  32. Donald CM.32.  1968. Breeding of crop ideotypes. Euphytica 17:385–403 [Google Scholar]
  33. Dong H, Zhao H, Xie W, Han Z, Li G. 33.  et al. 2016. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLOS Genet 12:e1006412 [Google Scholar]
  34. Dong Z, Jiang C, Chen X, Zhang T, Ding L. 34.  et al. 2013. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–22 [Google Scholar]
  35. Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS. 35.  2011. De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606 [Google Scholar]
  36. Dun EA, de Saint Germain A, Rameau C, Beveridge CA. 36.  2012. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–98 [Google Scholar]
  37. Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C. 37.  et al. 2014. Regulatory modules controlling maize inflorescence architecture. Genome Res 24:431–43 [Google Scholar]
  38. Felippe GM, Dale JE. 38.  1973. Effects of shading first leaf of barley plants on growth and carbon nutrition of stem apex. Ann. Bot. 37:45–56 [Google Scholar]
  39. Ferguson BJ, Beveridge CA. 39.  2009. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149:1929–44 [Google Scholar]
  40. Fisher AP, Sozzani R. 40.  2016. Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root. Curr. Opin. Plant Biol. 29:38–43 [Google Scholar]
  41. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 41.  1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–14 [Google Scholar]
  42. Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y. 42.  et al. 2013. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. PNAS 110:20431–36 [Google Scholar]
  43. Gaillochet C, Daum G, Lohmann JU. 43.  2015. O cell, where art thou? The mechanisms of shoot meristem patterning. Curr. Opin. Plant Biol. 23:91–97 [Google Scholar]
  44. Gallavotti A, Long JA, Stanfield S, Yang X, Jackson D. 44.  et al. 2010. The control of axillary meristem fate in the maize ramosa pathway. Development 137:2849–56 [Google Scholar]
  45. Ge L, Chen R. 45.  2016. Negative gravitropism in plant roots. Nat. Plants 2:16155 [Google Scholar]
  46. Giulini A, Wang J, Jackson D. 46.  2004. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–34 [Google Scholar]
  47. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA. 47.  et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94 [Google Scholar]
  48. Gonzalez-Grandio E, Pajoro A, Franco-Zorrilla JM, Tarancon C, Immink RG, Cubas P. 48.  2017. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. PNAS 114:E245–54Provides direct evidence that BRC1 activates ABA biosynthesis in buds, indicating a potential mechanism by which BRC1 represses bud outgrowth. [Google Scholar]
  49. Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, Cubas P. 49.  2013. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25:834–50Shows that BRC1 integrates environmental and endogenous signals to control lateral bud outgrowth. [Google Scholar]
  50. Grassini P, Eskridge KM, Cassman KG. 50.  2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4:2918 [Google Scholar]
  51. Greb T, Clarenz O, Schafer E, Muller D, Herrero R. 51.  et al. 2003. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–87 [Google Scholar]
  52. Guo H, Li L, Aluru M, Aluru S, Yin Y. 52.  2013. Mechanisms and networks for brassinosteroid regulated gene expression. Curr. Opin. Plant Biol. 16:545–53 [Google Scholar]
  53. Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. 53.  2009. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. PNAS 106:7648–53 [Google Scholar]
  54. Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY. 54.  et al. 2016. N-glycan containing a core alpha1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). New Phytol 212:108–22 [Google Scholar]
  55. Hashiguchi Y, Tasaka M, Morita MT. 55.  2013. Mechanism of higher plant gravity sensing. Am. J. Bot. 100:91–100 [Google Scholar]
  56. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S. 56.  et al. 2003. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–10 [Google Scholar]
  57. Hu X, Qian Q, Xu T, Zhang Y, Dong G. 57.  et al. 2013. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLOS Genet 9:e1003391 [Google Scholar]
  58. Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y. 58.  et al. 2015. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell 27:1681–96 [Google Scholar]
  59. Huang S, Weigel D, Beachy RN, Li J. 59.  2016. A proposed regulatory framework for genome-edited crops. Nat. Genet. 48:109–11 [Google Scholar]
  60. Huang X, Qian Q, Liu Z, Sun H, He S. 60.  et al. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41:494–97 [Google Scholar]
  61. Huang X, Yang S, Gong J, Zhao Y, Feng Q. 61.  et al. 2015. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6:6258 [Google Scholar]
  62. Huang X, Yang S, Gong J, Zhao Q, Feng Q. 62.  et al. 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537:629–33Highlights the concept that heterozygosity in a few loci can influence plant development, modify architecture, and increase yield. [Google Scholar]
  63. Hubbard L, McSteen P, Doebley J, Hake S. 63.  2002. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–35 [Google Scholar]
  64. Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M. 64.  2012. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Plant Cell 24:4483–97 [Google Scholar]
  65. Itoh J, Hibara K, Kojima M, Sakakibara H, Nagato Y. 65.  2012. Rice DECUSSATE controls phyllotaxy by affecting the cytokinin signaling pathway. Plant J 72:869–81 [Google Scholar]
  66. Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E. 66.  et al. 2011. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23:4185–207 [Google Scholar]
  67. Jeong S, Trotochaud AE, Clark SE. 67.  1999. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–34 [Google Scholar]
  68. Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB. 68.  2013. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLOS Genet 9:e1004043 [Google Scholar]
  69. Jiao Y, Wang Y, Xue D, Wang J, Yan M. 69.  et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42:541–44 [Google Scholar]
  70. Jin J, Huang W, Gao JP, Yang J, Shi M. 70.  et al. 2008. Genetic control of rice plant architecture under domestication. Nat. Genet. 40:1365–69 [Google Scholar]
  71. Kebrom TH, Brutnell TP, Hays DB, Finlayson SA. 71.  2010. Vegetative axillary bud dormancy induced by shade and defoliation signals in the grasses. Plant Signal. Behav. 5:317–19 [Google Scholar]
  72. Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W. 72.  2012. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–18 [Google Scholar]
  73. Kebrom TH, Mullet JE. 73.  2015. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ 38:1471–78 [Google Scholar]
  74. Khush GS.74.  1995. Breaking the yield frontier of rice. GeoJournal 35:329–32 [Google Scholar]
  75. Khush GS.75.  2001. Green revolution: the way forward. Nat. Rev. Genet. 2:815–22 [Google Scholar]
  76. Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS. 76.  2016. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma 253:987–1004 [Google Scholar]
  77. Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I. 77.  et al. 2003. LAX and SPA: major regulators of shoot branching in rice. PNAS 100:11765–70 [Google Scholar]
  78. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. 78.  2003. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–50 [Google Scholar]
  79. Koumoto T, Shimada H, Kusano H, She KC, Iwamoto M, Takano M. 79.  2013. Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1,6-bisphosphatase. Plant Biotechnol 30:47–56 [Google Scholar]
  80. Krieger U, Lippman ZB, Zamir D. 80.  2010. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42:459–63 [Google Scholar]
  81. Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y. 81.  2011. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLOS ONE 6:e20621 [Google Scholar]
  82. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M. 82.  et al. 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–55 [Google Scholar]
  83. Lee BH, Johnston R, Yang Y, Gallavotti A, Kojima M. 83.  et al. 2009. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol 150:205–16 [Google Scholar]
  84. Lee I, Wolfe DS, Nilsson O, Weigel D. 84.  1997. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol 7:95–104 [Google Scholar]
  85. Lee S, Lee S, Yang KY, Kim YM, Park SY. 85.  et al. 2006. Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol 47:591–600 [Google Scholar]
  86. Li CJ, Bangerth F. 86.  1999. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant 106:415–20 [Google Scholar]
  87. Li P, Wang Y, Qian Q, Fu Z, Wang M. 87.  et al. 2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–10 [Google Scholar]
  88. Li S, Zhao B, Yuan D, Duan M, Qian Q. 88.  et al. 2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. PNAS 110:3167–72 [Google Scholar]
  89. Li SQ, Yang DC, Zhu YG. 89.  2007. Characterization and use of male sterility in hybrid rice breeding. J. Integr. Plant Biol. 49:791–804 [Google Scholar]
  90. Li X, Qian Q, Fu Z, Wang Y, Xiong G. 90.  et al. 2003. Control of tillering in rice. Nature 422:618–21 [Google Scholar]
  91. Li X, Zeng R, Liao H. 91.  2016. Improving crop nutrient efficiency through root architecture modifications. J. Integr. Plant Biol. 58:193–202 [Google Scholar]
  92. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A. 92.  et al. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. PNAS 103:6398–403 [Google Scholar]
  93. Lin Q, Wang D, Dong H, Gu S, Cheng Z. 93.  et al. 2012. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat. Commun. 3:752 [Google Scholar]
  94. Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I. 94.  et al. 2008. The making of a compound inflorescence in tomato and related nightshades. PLOS Biol 6:e288 [Google Scholar]
  95. Lowe K, Wu E, Wang N, Hoerster G, Hastings C. 95.  et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015 [Google Scholar]
  96. Lu Y, Ye X, Guo R, Huang J, Wang W. 96.  et al. 2017. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant 10:1242–45 [Google Scholar]
  97. Lu Z, Shao G, Xiong J, Jiao Y, Wang J. 97.  et al. 2015. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J. Genet. Genom. 42:71–78 [Google Scholar]
  98. Lu Z, Yu H, Xiong G, Wang J, Jiao Y. 98.  et al. 2013. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture. Plant Cell 25:3743–59 [Google Scholar]
  99. Luo AD, Liu L, Tang ZS, Bai XQ, Cao SY, Chu CC. 99.  2005. Down-regulation of OsGRF1 gene in rice rhd1 mutant results in reduced heading date. J. Integr. Plant Biol. 47:745–52 [Google Scholar]
  100. Luo D, Xu H, Liu Z, Guo J, Li H. 100.  et al. 2013. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45:573–77 [Google Scholar]
  101. MacAlister CA, Park SJ, Jiang K, Marcel F, Bendahmane A. 101.  et al. 2012. Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat. Genet. 44:1393–98 [Google Scholar]
  102. Mao C, Ding W, Wu Y, Yu J, He X. 102.  et al. 2007. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–98 [Google Scholar]
  103. Marowa P, Ding A, Kong Y. 103.  2016. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:949–65 [Google Scholar]
  104. Martin-Trillo M, Grandio EG, Serra F, Marcel F, Rodriguez-Buey ML. 104.  et al. 2011. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J 67:701–14 [Google Scholar]
  105. Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA. 105.  2014. Sugar demand, not auxin, is the initial regulator of apical dominance. PNAS 111:6092–97Demonstrates that sugars can activate lateral bud outgrowth, leading to a reevaluation of the role of hormones. [Google Scholar]
  106. McMaster GS.106.  2005. Phytomers, phyllochrons, phenology and temperate cereal development. J. Agric. Sci. 143:137–50 [Google Scholar]
  107. McSteen P, Leyser O. 107.  2005. Shoot branching. Annu. Rev. Plant Biol. 56:353–74 [Google Scholar]
  108. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. 108.  2008. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat. Genet 40:1489–92 [Google Scholar]
  109. Meng X, Yu H, Zhang Y, Zhuang F, Song X. 109.  et al. 2017. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10:1238–41 [Google Scholar]
  110. Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L. 110.  et al. 2010. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127–35 [Google Scholar]
  111. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M. 111.  et al. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:545–49 [Google Scholar]
  112. Mjomba FM, Zheng Y, Liu H, Tang W, Hong Z. 112.  et al. 2016. Homeobox is pivotal for OsWUS controlling tiller development and female fertility in rice. G3 Genes Genomes Genet 6:2013–21 [Google Scholar]
  113. Muller D, Schmitz G, Theres K. 113.  2006. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:586–97 [Google Scholar]
  114. Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. 114.  2012. Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2 [Google Scholar]
  115. Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C. 115.  et al. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. PNAS 101:8039–44 [Google Scholar]
  116. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. 116.  2009. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat. Chem. Biol 5:578–80 [Google Scholar]
  117. Oikawa T, Kyozuka J. 117.  2009. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21:1095–108 [Google Scholar]
  118. Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. 118.  2013. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct. Plant Biol. 40:1137–46 [Google Scholar]
  119. Ookawa T, Hobo T, Yano M, Murata K, Ando T. 119.  et al. 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1:132 [Google Scholar]
  120. Palauqui JC, Laufs P. 120.  2011. Phyllotaxis: in search of the golden angle. Curr. Biol. 21:R502–4 [Google Scholar]
  121. Park SJ, Jiang K, Schatz MC, Lippman ZB. 121.  2012. Rate of meristem maturation determines inflorescence architecture in tomato. PNAS 109:639–44 [Google Scholar]
  122. Park SJ, Jiang K, Tal L, Yichie Y, Gar O. 122.  et al. 2014. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 46:1337–42Elegant demonstration that small incremental changes in controlling inflorescence development in tomato may profoundly impact fruit number and yield. [Google Scholar]
  123. Pautler M, Tanaka W, Hirano HY, Jackson D. 123.  2013. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. Plant Cell Physiol 54:302–12 [Google Scholar]
  124. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM. 124.  et al. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–61 [Google Scholar]
  125. Petricka JJ, Winter CM, Benfey PN. 125.  2012. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63:563–90 [Google Scholar]
  126. Phillips IDJ.126.  1975. Apical dominance. Annu. Rev. Plant Physiol. 26:341–67 [Google Scholar]
  127. Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B. 127.  2013. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. PNAS 110:1107–12Together with Reference 11, provides evidence of the central roles of auxin and cytokinin signaling in the control of phyllotaxy. [Google Scholar]
  128. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J. 128.  et al. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–89 [Google Scholar]
  129. Prasad K, Grigg SP, Barkoulas M, Yadav RK, Sanchez-Perez GF. 129.  et al. 2011. Arabidopsis PLETHORA transcription factors control phyllotaxis. Curr. Biol. 21:1123–28 [Google Scholar]
  130. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T. 130.  et al. 2009. Control of bud activation by an auxin transport switch. PNAS 106:17431–36 [Google Scholar]
  131. Qian Q, Guo L, Smith SM, Li J. 131.  2016. Breeding high-yield superior quality hybrid super rice by rational design. Natl. Sci. Rev. 3:283–94 [Google Scholar]
  132. Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. 132.  2014. Multiple pathways regulate shoot branching. Front. Plant Sci. 5:741 [Google Scholar]
  133. Ranocha P, Dima O, Nagy R, Felten J, Corratge-Faillie C. 133.  et al. 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 4:2625 [Google Scholar]
  134. Rebocho AB, Bliek M, Kusters E, Castel R, Procissi A. 134.  et al. 2008. Role of EVERGREEN in the development of the cymose petunia inflorescence. Dev. Cell 15:437–47 [Google Scholar]
  135. Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. 135.  2003. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–83 [Google Scholar]
  136. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K. 136.  et al. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:255–60 [Google Scholar]
  137. Rellan-Alvarez R, Lobet G, Dinneny JR. 137.  2016. Environmental control of root system biology. Annu. Rev. Plant Biol. 67:619–42 [Google Scholar]
  138. Sachs T, Thimann V. 138.  1967. Role of auxins and cytokinins in release of buds from dominance. Am. J. Bot. 54:136–44 [Google Scholar]
  139. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S. 139.  et al. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotech. 24:105–9 [Google Scholar]
  140. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z. 140.  et al. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–16 [Google Scholar]
  141. Sanchez P, Nehlin L, Greb T. 141.  2012. From thin to thick: major transitions during stem development. Trends Plant Sci 17:113–21 [Google Scholar]
  142. Sang D, Chen D, Liu G, Liang Y, Huang L. 142.  et al. 2014. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. PNAS 111:11199–204 [Google Scholar]
  143. Sato Y, Hong SK, Tagiri A, Kitano H, Yamamoto N. 143.  et al. 1996. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. PNAS 93:8117–22 [Google Scholar]
  144. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. 144.  2006. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–30 [Google Scholar]
  145. Schenck D, Christian M, Jones A, Luthen H. 145.  2010. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiol 152:1183–85 [Google Scholar]
  146. Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K. 146.  2002. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. PNAS 99:1064–69 [Google Scholar]
  147. Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. 147.  1999. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. PNAS 96:290–95 [Google Scholar]
  148. Seale M, Bennett T, Leyser O. 148.  2017. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development 144:1661–73Shows that bud outgrowth is repressed by BRC1 but can occur or be inhibited in its presence or absence, respectively. [Google Scholar]
  149. Sena G, Wang X, Liu HY, Hofhuis H, Birnbaum KD. 149.  2009. Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150–53 [Google Scholar]
  150. Shinohara N, Taylor C, Leyser O. 150.  2013. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biol 11:e1001474 [Google Scholar]
  151. Sibout R, Plantegenet S, Hardtke CS. 151.  2008. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr. Biol. 18:458–63 [Google Scholar]
  152. Smith SM, Li J. 152.  2014. Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21:23–29 [Google Scholar]
  153. Somerville C.153.  2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78 [Google Scholar]
  154. Song X, Lu Z, Yu H, Shao G, Xiong J. 154.  et al. 2017. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res 27:1128–41Identifies IPA1 as the direct downstream transcription factor of D53 in SL signaling in rice. [Google Scholar]
  155. Souer E, Rebocho AB, Bliek M, Kusters E, de Bruin RA, Koes R. 155.  2008. Patterning of inflorescences and flowers by the F-box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20:2033–48 [Google Scholar]
  156. Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP. 156.  et al. 2015. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–59 [Google Scholar]
  157. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. 157.  2011. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet 43:1160–63 [Google Scholar]
  158. Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S. 158.  et al. 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23:3276–87 [Google Scholar]
  159. Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N. 159.  et al. 2013. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3:2149 [Google Scholar]
  160. Tameshige T, Ikematsu S, Torii KU, Uchida N. 160.  2017. Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem. J. Exp. Bot. 68:45–53 [Google Scholar]
  161. Tan L, Li X, Liu F, Sun X, Li C. 161.  et al. 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40:1360–64 [Google Scholar]
  162. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S. 162.  et al. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–90 [Google Scholar]
  163. Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. 163.  2006. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–36 [Google Scholar]
  164. Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T. 164.  et al. 2015. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell 27:1173–84 [Google Scholar]
  165. Tanaka W, Pautler M, Jackson D, Hirano HY. 165.  2013. Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 54:313–24 [Google Scholar]
  166. Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T. 166.  et al. 2017. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29:1984–99 [Google Scholar]
  167. Tong H, Jin Y, Liu W, Li F, Fang J. 167.  et al. 2009. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–16 [Google Scholar]
  168. Toyota M, Gilroy S. 168.  2013. Gravitropism and mechanical signaling in plants. Am. J. Bot. 100:111–25 [Google Scholar]
  169. Traas J.169.  2013. Phyllotaxis. Development 140:249–53 [Google Scholar]
  170. Tucker MR, Laux T. 170.  2007. Connecting the paths in plant stem cell regulation. Trends Cell Biol 17:403–10 [Google Scholar]
  171. Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R. 171.  et al. 2012. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. PNAS 109:6337–42 [Google Scholar]
  172. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T. 172.  et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 [Google Scholar]
  173. van der Knaap E, Kim JH, Kende H. 173.  2000. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704 [Google Scholar]
  174. Vollbrecht E, Springer PS, Goh L, Buckler ES IV, Martienssen R. 174.  2005. Architecture of floral branch systems in maize and related grasses. Nature 436:1119–26 [Google Scholar]
  175. Wallner ES, Lopez-Salmeron V, Belevich I, Poschet G, Jung I. 175.  et al. 2017. Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr. Biol. 27:1241–47 [Google Scholar]
  176. Wang B, Wang H. 176.  2017. IPA1: a new “green revolution” gene?. Mol. Plant 10:779–81 [Google Scholar]
  177. Wang J, Yu H, Xiong G, Lu Z, Jiao Y. 177.  et al. 2017. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29:697–707 [Google Scholar]
  178. Wang L, Wang B, Jiang L, Liu X, Li X. 178.  et al. 2015. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–42 [Google Scholar]
  179. Wang L, Xu Y, Zhang C, Ma Q, Joo SH. 179.  et al. 2008. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLOS ONE 3:e3521 [Google Scholar]
  180. Wang L, Xu Y-Y, Ma Q-B, Li D, Xu Z-H, Chong K. 180.  2006. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res 16:916–22 [Google Scholar]
  181. Wang S, Wu K, Qian Q, Liu Q, Li Q. 181.  et al. 2017. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res 27:1142–56 [Google Scholar]
  182. Wang Y, Li J. 182.  2008. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59:253–79 [Google Scholar]
  183. Wang Y, Li J. 183.  2011. Branching in rice. Curr. Opin. Plant Biol. 14:94–99 [Google Scholar]
  184. Wang ZY, Bai MY, Oh E, Zhu JY. 184.  2012. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu. Rev. Genet. 46:701–24 [Google Scholar]
  185. Waters MT, Gutjahr C, Bennett T, Nelson DC. 185.  2017. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68:291–322 [Google Scholar]
  186. Weijers D, Wagner D. 186.  2016. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67:539–74 [Google Scholar]
  187. Wu X, Tang D, Li M, Wang K, Cheng Z. 187.  2013. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161:317–29 [Google Scholar]
  188. Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu YH. 188.  et al. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 47:784–92 [Google Scholar]
  189. Xu C, Wang Y, Yu Y, Duan J, Liao Z. 189.  et al. 2012. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat. Commun. 3:750 [Google Scholar]
  190. Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B. 190.  2006. A molecular framework for plant regeneration. Science 311:385–88 [Google Scholar]
  191. Xue W, Xing Y, Weng X, Zhao Y, Tang W. 191.  et al. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40:761–67 [Google Scholar]
  192. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S. 192.  et al. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–605 [Google Scholar]
  193. Yang F, Bui HT, Pautler M, Llaca V, Johnston R. 193.  et al. 2015. A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell 27:121–31 [Google Scholar]
  194. Yang J, Zhao X, Cheng K, Du H, Ouyang Y. 194.  et al. 2012. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337:1336–40 [Google Scholar]
  195. Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. 195.  2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–29 [Google Scholar]
  196. Yao C, Finlayson SA. 196.  2015. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiol 169:611–26 [Google Scholar]
  197. Yao R, Li J, Xie D. 197.  2017. Recent advances in molecular basis for strigolactone action. Sci. China Life Sci. http://doi.org/10.1007/s11427-017-9195-x [Crossref]
  198. Yeager AF.198.  1927. Determinate growth in the tomato. J. Hered. 18:263–65 [Google Scholar]
  199. Yin K, Gao C, Qiu JL. 199.  2017. Progress and prospects in plant genome editing. Nat. Plants 3:17107 [Google Scholar]
  200. Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y. 200.  et al. 2013. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. PNAS 110:767–72 [Google Scholar]
  201. Yoshihara T, Iino M. 201.  2007. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48:678–88 [Google Scholar]
  202. Yoshihara T, Spalding EP, Iino M. 202.  2013. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–79 [Google Scholar]
  203. Yu B, Lin Z, Li H, Li X, Li J. 203.  et al. 2007. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–98 [Google Scholar]
  204. Yuan L.204.  1987. The strategic idea on hybrid rice breeding. Hybrid Rice 1:1–3 [Google Scholar]
  205. Yuan L.205.  2014. Development of hybrid rice to ensure food security. Rice Sci 21:1–2 [Google Scholar]
  206. Yue E, Li C, Li Y, Liu Z, Xu JH. 206.  2017. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol. Biol. 94:469–80 [Google Scholar]
  207. Zhang B, Liu X, Xu W, Chang J, Li A. 207.  et al. 2015. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci. Rep. 5:12211 [Google Scholar]
  208. Zhang D, Yuan Z. 208.  2014. Molecular control of grass inflorescence development. Annu. Rev. Plant Biol. 65:553–78 [Google Scholar]
  209. Zhang L, Yu H, Ma B, Liu G, Wang J. 209.  et al. 2017. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8:14789Shows that fine-tuning tissue-specific expression of IPA1 could optimize plant architecture and achieve high yield potential. [Google Scholar]
  210. Zhang LY, Bai MY, Wu J, Zhu JY, Wang H. 210.  et al. 2009. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21:3767–80 [Google Scholar]
  211. Zhang SH, Hu WJ, Wang LP, Lin CF, Cong B. 211.  et al. 2005. TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–408 [Google Scholar]
  212. Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S. 212.  et al. 2013. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytol 197:490–502 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040422
Loading
/content/journals/10.1146/annurev-arplant-042817-040422
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error