1932

Abstract

Strigolactones are a structurally diverse class of plant hormones that control many aspects of shoot and root growth. Strigolactones are also exuded by plants into the rhizosphere, where they promote symbiotic interactions with arbuscular mycorrhizal fungi and germination of root parasitic plants in the Orobanchaceae family. Therefore, understanding how strigolactones are made, transported, and perceived may lead to agricultural innovations as well as a deeper knowledge of how plants function. Substantial progress has been made in these areas over the past decade. In this review, we focus on the molecular mechanisms, core developmental roles, and evolutionary history of strigolactone signaling. We also propose potential translational applications of strigolactone research to agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-040925
2017-04-28
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/68/1/annurev-arplant-042916-040925.html?itemId=/content/journals/10.1146/annurev-arplant-042916-040925&mimeType=html&fmt=ahah

Literature Cited

  1. Abe S, Sado A, Tanaka K, Kisugi T, Asami K. 1.  et al. 2014. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. PNAS 111:18084–89 [Google Scholar]
  2. Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 2.  2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–72 [Google Scholar]
  3. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K. 2a.  et al. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. PNAS 108:20242–47 [Google Scholar]
  4. Akiyama K, Matsuzaki K, Hayashi H. 3.  2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27 [Google Scholar]
  5. Akiyama K, Ogasawara S, Ito S, Hayashi H. 4.  2010. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–17 [Google Scholar]
  6. Al-Babili S, Bouwmeester HJ. 5.  2015. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66:161–86 [Google Scholar]
  7. Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M. 6.  et al. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335:1348–51 [Google Scholar]
  8. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M. 7.  et al. 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–29 [Google Scholar]
  9. Arite T, Kameoka H, Kyozuka J. 8.  2012. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul. 31:165–72 [Google Scholar]
  10. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M. 9.  et al. 2009. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–24 [Google Scholar]
  11. Balla J, Kalousek P, Reinohl V, Friml J, Prochazka S. 10.  2011. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J 65:571–77 [Google Scholar]
  12. Belmondo S, Marschall R, Tudzynski P, López Ráez JA, Artuso E. 11.  et al. 2016. Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Curr. Genet. In press https://doi.org/10.1007/s00294-016-0626-y
  13. Bennett T, Hines G, Leyser O. 12.  2014. Canalization: What the flux?. Trends Genet. 30:41–48 [Google Scholar]
  14. Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG. 13.  et al. 2016. Connective auxin transport in the shoot facilitates communication between shoot apices. PLOS Biol 14:e1002446 [Google Scholar]
  15. Bennett T, Leyser O. 14.  2014. Strigolactone signalling: standing on the shoulders of DWARFs. Curr. Opin. Plant Biol. 22:7–13 [Google Scholar]
  16. Bennett T, Liang Y, Seale M, Ward SP, Müller D, Leyser O. 15.  2016. Strigolactone regulates shoot development through a core signalling pathway. Biol. Open 5:1806–20 [Google Scholar]
  17. Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. 16.  2006. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16:553–63 [Google Scholar]
  18. Berner DK, Kling JK, Singh BB. 17.  1995. Striga research and control: a perspective from Africa. Plant Dis 79:652–60 [Google Scholar]
  19. Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N. 18.  2008. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 148:402–13 [Google Scholar]
  20. Besserer A, Puech-Pagès V, Kiefer P, Gómez-Roldán V, Jauneau A. 19.  et al. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol. 4:e226 [Google Scholar]
  21. Beveridge CA, Ross JJ, Murfet IC. 20.  1996. Branching in pea (action of genes Rms3 and Rms4). Plant Physiol. 110:859–65 [Google Scholar]
  22. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. 21.  2004. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14:1232–38 [Google Scholar]
  23. Booker J, Sieberer T, Wright W, Williamson L, Willett B. 22.  et al. 2005. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8:443–49 [Google Scholar]
  24. Borghi L, Liu GW, Emonet A, Kretzschmar T, Martinoia E. 23.  2016. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta 243:1351–60 [Google Scholar]
  25. Bouwmeester HJ, Roux C, López-Ráez JA, Bécard G. 24.  2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–30 [Google Scholar]
  26. Bowman JL.25.  2013. Walkabout on the long branches of plant evolution. Curr. Opin. Plant. Biol. 16:70–77 [Google Scholar]
  27. Boyer FD, de Saint Germain A, Pillot JP, Pouvreau JB, Chen VX. 26.  et al. 2012. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159:1524–44 [Google Scholar]
  28. Boyer FD, de Saint Germain A, Pouvreau JB, Clavé G, Pillot JP. 27.  et al. 2014. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol. Plant 7:675–90 [Google Scholar]
  29. Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M. 28.  et al. 2012. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–38 [Google Scholar]
  30. Bravo A, York T, Pumplin N, Mueller LA, Harrison MJ. 29.  2016. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2:15208 [Google Scholar]
  31. Breakspear A, Liu C, Roy S, Stacey N, Rogers C. 30.  et al. 2014. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26:4680–701 [Google Scholar]
  32. Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA. 31.  2009. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–93 [Google Scholar]
  33. Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA. 32.  2015. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol 168:1820–29 [Google Scholar]
  34. Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A. 33.  et al. 2016. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. PNAS 113:6301–6 [Google Scholar]
  35. Bu Q, Lv T, Shen H, Luong P, Wang J. 34.  et al. 2014. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164:424–39 [Google Scholar]
  36. Bythell-Douglas R, Waters MT, Scaffidi A, Flematti GR, Smith SM, Bond CS. 35.  2013. The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLOS ONE 8:e54758 [Google Scholar]
  37. Cardoso C, Charnikhova T, Jamil M, Delaux PM, Verstappen F. 36.  et al. 2014. Differential activity of Striga hermonthica seed germination stimulants and Gigaspora rosea hyphal branching factors in rice and their contribution to underground communication. PLOS ONE 9:e104201 [Google Scholar]
  38. Causier B, Ashworth M, Guo W, Davies B. 37.  2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–38 [Google Scholar]
  39. Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O. 38.  2013. A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol 161:1885–902 [Google Scholar]
  40. Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M. 39.  et al. 2014. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 26:1134–50 [Google Scholar]
  41. Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B. 40.  et al. 2015. Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349:540–43Describes the discovery of a clade of KAI2 proteins that are responsible for SL perception in parasitic weeds and models how they evolved. [Google Scholar]
  42. Conn CE, Nelson DC. 41.  2015. Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci. 6:1219 [Google Scholar]
  43. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 42.  1966. Germination of witchweed (Striga lutea Lour. ): isolation and properties of a potent stimulant Science 154:1189–90 [Google Scholar]
  44. Crawford S, Shinohara N, Sieberer T, Williamson L, George G. 43.  et al. 2010. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–13 [Google Scholar]
  45. De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B. 44.  et al. 2015. From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J. Exp. Bot. 66:137–46 [Google Scholar]
  46. de Saint Germain A, Bonhomme S, Boyer FD, Rameau C. 45.  2013. Novel insights into strigolactone distribution and signalling. Curr. Opin. Plant Biol. 16:583–89 [Google Scholar]
  47. de Saint Germain A, Clavé G, Badet-Denisot MA, Pillot JP, Cornu D. 46.  et al. 2016. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat. Chem. Biol. 12:787–94Elucidates the enzymatic mechanism of RMS3, the pea homolog of D14, revealing the formation of a covalently linked intermediate molecule. [Google Scholar]
  48. Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ane JM. 47.  2014. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLOS Genet 10:e1004487 [Google Scholar]
  49. Delaux PM, Xie X, Timme RE, Puech-Pagès V, Dunand C. 48.  et al. 2012. Origin of strigolactones in the green lineage. New Phytol. 195:857–71 [Google Scholar]
  50. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M. 49.  et al. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–84 [Google Scholar]
  51. Domagalska MA, Leyser O. 50.  2011. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12:211–21 [Google Scholar]
  52. Dor E, Yoneyama K, Wininger S, Kapulnik Y, Yoneyama K. 51.  et al. 2011. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 101:213–22 [Google Scholar]
  53. Drummond RSM, Martínez-Sánchez NM, Janssen BJ, Templeton KR, Simons JL. 52.  et al. 2009.. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol. 151:1867–77 [Google Scholar]
  54. Drummond RSM, Sheehan H, Simons JL, Martínez-Sánchez NM, Turner RM. 53.  et al. 2011. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front. Plant Sci. 2:115 [Google Scholar]
  55. Dun EA, de Saint Germain A, Rameau C, Beveridge CA. 54.  2012. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487–98 [Google Scholar]
  56. Esvelt KM, Smidler AL, Catteruccia F, Church GM. 55.  2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401 [Google Scholar]
  57. Evidente A, Fernández-Aparicio M, Cimmino A, Rubiales D, Andolfi A, Motta A. 56.  2009. Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett 50:6955–58 [Google Scholar]
  58. Fernández-Aparicio M, Flores F, Rubiales D. 57.  2009. Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann. Bot. 103:423–31 [Google Scholar]
  59. Fernández-Aparicio M, Kisugi T, Xie X, Rubiales D, Yoneyama K. 58.  2014. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J. Agric. Food Chem. 62:7063–71 [Google Scholar]
  60. Fernández-Aparicio M, Reboud X, Gibot-Leclerc S. 59.  2016. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front. Plant Sci. 7:135 [Google Scholar]
  61. Fernández-Aparicio M, Yoneyama K, Rubiales D. 60.  2011. The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci. Res. 21:55–61 [Google Scholar]
  62. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 61.  2004. A compound from smoke that promotes seed germination. Science 305:977 [Google Scholar]
  63. Flematti GR, Scaffidi A, Waters MT, Smith SM. 62.  2016. Stereospecificity in strigolactone biosynthesis and perception. Planta 243:1361–73 [Google Scholar]
  64. Flematti GR, Waters MT, Scaffidi A, Merritt DJ, Ghisalberti EL. 63.  et al. 2013. Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol. Plant 6:29–37 [Google Scholar]
  65. Foo E.64.  2013. Auxin influences strigolactones in pea mycorrhizal symbiosis. J. Plant Physiol. 170:523–28 [Google Scholar]
  66. Foo E, Davies NW. 65.  2011. Strigolactones promote nodulation in pea. Planta 234:1073–81 [Google Scholar]
  67. Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB. 66.  2013. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol. Plant 6:76–87 [Google Scholar]
  68. Fridlender M, Lace B, Wininger S, Dam A, Kumari P. 67.  et al. 2015. Influx and efflux of strigolactones are actively regulated and involve the cell-trafficking system. Mol. Plant 8:1809–12 [Google Scholar]
  69. Fukui K, Ito S, Asami T. 68.  2013. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol. Plant 6:88–99 [Google Scholar]
  70. Gantz VM, Bier E. 69.  2015. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348:442–44 [Google Scholar]
  71. Gao Z, Qian Q, Liu X, Yan M, Feng Q. 70.  et al. 2009. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol. Biol. 71:265–76 [Google Scholar]
  72. Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M. 71.  et al. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 198:190–202 [Google Scholar]
  73. Ghebrehiwot HM, Kulkarni MG, Szalai G, Soos V, Balazs E, Van Staden J. 72.  2013. Karrikinolide residues in grassland soils following fire: implications on germination activity. S. Afr. J. Bot. 88:419–24 [Google Scholar]
  74. Gómez-Roldán V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA. 73.  et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94 [Google Scholar]
  75. Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S. 74.  et al. 2012. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol 160:1303–17 [Google Scholar]
  76. Guo Y, Zheng Z, La Clair J, Chory J, Noel J. 75.  2013. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. PNAS 110:8284–89 [Google Scholar]
  77. Gutjahr C.76.  2014. Phytohormone signaling in arbuscular mycorhiza development. Curr. Opin. Plant Biol. 20:26–34 [Google Scholar]
  78. Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG. 77.  et al. 2015. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350:1521–24Demonstrates that KAI2/D14L is essential for AM symbiosis in rice, whereas D14 and SLs are dispensable. [Google Scholar]
  79. Gutjahr C, Parniske M. 78.  2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29:593–617 [Google Scholar]
  80. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H. 79.  et al. 2012. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–20 [Google Scholar]
  81. Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R. 80.  et al. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. PNAS 111:851–56 [Google Scholar]
  82. Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM. 81.  et al. 2012. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22:2032–36 [Google Scholar]
  83. He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 82.  2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194:751–59 [Google Scholar]
  84. Hoffmann B, Proust H, Belcram K, Labrune C, Boyer FD. 83.  et al. 2014. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PLOS ONE 9:e99206 [Google Scholar]
  85. Holbrook-Smith D, Toh S, Tsuchiya Y, McCourt P. 84.  2016. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat. Chem. Biol. 12:724–29 [Google Scholar]
  86. Hu Z, Yan H, Yang J, Yamaguchi S, Maekawa M. 85.  et al. 2010. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol 51:1136–42 [Google Scholar]
  87. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. 86.  2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86 [Google Scholar]
  88. Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ. 87.  2012. Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235:473–84 [Google Scholar]
  89. Jamil M, Rodenburg J, Charnikhova T, Bouwmeester HJ. 88.  2011. Pre-attachment Striga hermonthica resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol. 192:964–75 [Google Scholar]
  90. Javot H, Pumplin N, Harrison MJ. 89.  2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–22 [Google Scholar]
  91. Jia KP, Luo Q, He SB, Lu XD, Yang HQ. 90.  2014. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol. Plant 7:528–40 [Google Scholar]
  92. Jiang L, Liu X, Xiong G, Liu H, Chen F. 91.  et al. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–5Together with Ref. 198, describes the identification of D53 as a target of D14- and MAX2-mediated SL signaling. [Google Scholar]
  93. Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L. 92.  et al. 2016. Strigolactones spatially influence lateral root development through the cytokinin signaling network. J. Exp. Bot. 67:379–89 [Google Scholar]
  94. Joel DM, Chaudhuri SK, Plakhine D, Ziadna H, Steffens JC. 93.  2011. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana. Phytochemistry 72:624–34 [Google Scholar]
  95. Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K. 94.  et al. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142:1014–26 [Google Scholar]
  96. Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J. 95.  et al. 2013. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–60 [Google Scholar]
  97. Kameoka H, Kyozuka J. 96.  2015. Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. J. Genet. Genom. 42:119–24 [Google Scholar]
  98. Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S. 97.  et al. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–16 [Google Scholar]
  99. Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S. 98.  et al. 2011. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J. Exp. Bot. 62:2915–24 [Google Scholar]
  100. Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyama K. 99.  et al. 2014. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry 103:85–88 [Google Scholar]
  101. Kochanek J, Long RL, Lisle AT, Flematti GR. 100.  2016. Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLOS ONE 11:e0161234 [Google Scholar]
  102. Kohlen W, Charnikhova T, Lammers M, Pollina T, Toth P. 101.  et al. 2012. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol. 196:535–47 [Google Scholar]
  103. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA. 102.  et al. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–87 [Google Scholar]
  104. Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N. 103.  et al. 2010. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. J. Exp. Bot. 61:1739–49 [Google Scholar]
  105. Koren D, Resnick N, Mayzlish Gati E, Belausov E, Weininger S. 104.  et al. 2013. Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytol. 198:866–74 [Google Scholar]
  106. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M. 105.  et al. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–44Identifies an SL transporter involved in the regulation of shoot branching and AM symbiosis in petunia. [Google Scholar]
  107. Lauressergues D, Andre O, Peng J, Wen J, Chen R. 106.  et al. 2014. Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. J. Exp. Bot. 66:1237–44 [Google Scholar]
  108. Liang Y, Ward S, Li P, Bennett T, Leyser O. 107.  2016. SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell 28:1581–601 [Google Scholar]
  109. Lin H, Wang R, Qian Q, Yan M, Meng X. 108.  et al. 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–25 [Google Scholar]
  110. Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S. 109.  et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–65 [Google Scholar]
  111. Liu W, Wu C, Fu Y, Hu G, Si H. 110.  et al. 2009. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–58 [Google Scholar]
  112. Long JA, Ohno C, Smith ZR, Meyerowitz EM. 111.  2006. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–23 [Google Scholar]
  113. Lopez-Obando M, Conn CE, Hoffmann B, Bythell-Douglas R, Nelson DC. 112.  et al. 2016. Structural modelling and transcriptional responses highlight a clade of PpKAI2-LIKE genes as candidate receptors for strigolactones in Physcomitrella patens. Planta 243:1441–53 [Google Scholar]
  114. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W. 113.  et al. 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178:863–74 [Google Scholar]
  115. López-Ráez JA, Fernández I, García JM, Berrio E, Bonfante P. 114.  et al. 2015. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Sci 230:59–69 [Google Scholar]
  116. Marzec M, Gruszka D, Tylec P, Szarejko I. 115.  2016. Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol. Plant 158:341–55 [Google Scholar]
  117. Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K. 116.  et al. 2009. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 73:2460–65 [Google Scholar]
  118. Matthys C, Walton A, Struk S, Stes E, Boyer FD. 117.  et al. 2016. The Whats, the Wheres and the Hows of strigolactone action in the roots. Planta 243:1327–37 [Google Scholar]
  119. Mayzlish-Gati E, De Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M. 118.  et al. 2012. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol 160:1329–41 [Google Scholar]
  120. Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L. 119.  et al. 2010. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127–35 [Google Scholar]
  121. Morffy N, Faure L, Nelson DC. 120.  2016. Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling. Trends Genet 32:176–88 [Google Scholar]
  122. Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K. 121.  2016. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98 [Google Scholar]
  123. Müller D, Waldie T, Miyawaki K, To JP, Melnyk CW. 122.  et al. 2015. Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82:874–86 [Google Scholar]
  124. Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T. 123.  et al. 2015. Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling. Plant Cell Physiol 56:2100–9 [Google Scholar]
  125. Nakamura H, Asami T. 124.  2014. Target sites for chemical regulation of strigolactone signaling. Front. Plant Sci. 5:623 [Google Scholar]
  126. Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM. 125.  et al. 2013. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4:2613 [Google Scholar]
  127. Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM. 126.  2012. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 63:107–30 [Google Scholar]
  128. Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM. 127.  2010. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. PNAS 107:7095–100 [Google Scholar]
  129. Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL. 128.  et al. 2009. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol 149:863–73 [Google Scholar]
  130. Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR. 129.  et al. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. PNAS 108:8897–902 [Google Scholar]
  131. Nomura S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y. 130.  2013. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep 32:829–38 [Google Scholar]
  132. Oldroyd GE, Downie JA. 131.  2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59:519–46 [Google Scholar]
  133. Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D. 132.  et al. 2014. Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol. 202:1184–96 [Google Scholar]
  134. Parniske M.133.  2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763–75 [Google Scholar]
  135. Pavan S, Schiavulli A, Marcotrigiano AR, Bardaro N, Bracuto V. 134.  et al. 2016. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol. Plant-Microbe. Interact. 29:743–49 [Google Scholar]
  136. Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ. 135.  et al. 2004. Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–911 [Google Scholar]
  137. Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S. 136.  et al. 2008. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–72 [Google Scholar]
  138. Prandi C, Ghigo G, Occhiato EG, Scarpi D, Begliomini S. 137.  et al. 2014. Tailoring fluorescent strigolactones for in vivo investigations: a computational and experimental study. Org. Biomol. Chem. 12:2960–68 [Google Scholar]
  139. Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG. 138.  et al. 2011. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 138:1531–39 [Google Scholar]
  140. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T. 139.  et al. 2009. Control of bud activation by an auxin transport switch. PNAS 106:17431–36 [Google Scholar]
  141. Rasmussen A, Heugebaert T, Matthys C, Van Deun R, Boyer FD. 140.  et al. 2013. A fluorescent alternative to the synthetic strigolactone GR24. Mol. Plant 6:100–12 [Google Scholar]
  142. Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S. 141.  et al. 2012. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–87 [Google Scholar]
  143. Ruiz-Lozano JM, Aroca R, Zamarreño AM, Molina S, Andreo-Jiménez B. 142.  et al. 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–52 [Google Scholar]
  144. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L. 143.  et al. 2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiol 155:721–34 [Google Scholar]
  145. Sang D, Chen D, Liu G, Liang Y, Huang L. 143a.  et al. 2014. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. PNAS 111:11199–204 [Google Scholar]
  146. Sasse J, Simon S, Gubeli C, Liu GW, Cheng X. 144.  et al. 2015. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr. Biol. 25:647–55 [Google Scholar]
  147. Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V. 145.  et al. 2006. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–11 [Google Scholar]
  148. Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM. 146.  2013. Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J 76:1–9 [Google Scholar]
  149. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW. 147.  et al. 2014. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165:1221–32 [Google Scholar]
  150. Scarpella E, Marcos D, Friml J, Berleth T. 148.  2006. Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–27 [Google Scholar]
  151. Screpanti C, Yoneyama K, Bouwmeester HJ. 149.  2016. Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone strigol: status and outlook. Pest Manag. Sci. 72:2013–15 [Google Scholar]
  152. Shen H, Luong P, Huq E. 150.  2007. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–83 [Google Scholar]
  153. Shen H, Zhu L, Bu QY, Huq E. 151.  2012. MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant 5:750–62 [Google Scholar]
  154. Shinohara N, Taylor C, Leyser O. 152.  2013. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLOS Biol 11:e1001474 [Google Scholar]
  155. Smith SM, Waters MT. 153.  2012. Strigolactones: destruction-dependent perception?. Curr. Biol. 22:R924–27 [Google Scholar]
  156. Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM. 153a.  et al. 2005. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–59 [Google Scholar]
  157. Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K. 154.  et al. 2003. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17:1469–74 [Google Scholar]
  158. Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP. 155.  et al. 2015. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27:3143–59 [Google Scholar]
  159. Stanga JP, Morffy N, Nelson DC. 156.  2016. Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta 243:1397–406 [Google Scholar]
  160. Stanga JP, Smith SM, Briggs WR, Nelson DC. 157.  2013. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol 163:318–30 [Google Scholar]
  161. Stirnberg P, van De Sande K, Leyser HM. 158.  2002. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–41 [Google Scholar]
  162. Sun XD, Ni M. 159.  2011. HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol. Plant 4:116–26 [Google Scholar]
  163. Sun Z, Hans J, Walter MH, Matusova R, Beekwilder J. 160.  et al. 2008. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions. Planta 228:789–801 [Google Scholar]
  164. Szemenyei H, Hannon M, Long JA. 161.  2008. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–86 [Google Scholar]
  165. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K. 162.  et al. 2012. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol. 193:755–69 [Google Scholar]
  166. Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S. 163.  et al. 2015. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350:203–7Demonstrates SL receptor activity of several KAI2/HTL proteins in S. hermonthica through cross-species complementation assays and solves one receptor's structure. [Google Scholar]
  167. Toh S, Holbrook-Smith D, Stokes ME, Tsuchiya Y, McCourt P. 164.  2014. Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem. Biol. 21:988–98 [Google Scholar]
  168. Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y. 165.  2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–17 [Google Scholar]
  169. Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E. 166.  et al. 2010. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6:741–49 [Google Scholar]
  170. Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S. 167.  et al. 2015. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349:864–68Describes a profluorescent probe to determine SL affinities of KAI2/HTL in S. hermonthica, providing biochemical evidence that they are receptors. [Google Scholar]
  171. Ueda H, Kusaba M. 167a.  2015. Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol. 169:138–47 [Google Scholar]
  172. Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H. 168.  et al. 2014. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108:122–28 [Google Scholar]
  173. Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y. 169.  et al. 2015. Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol 56:1059–72 [Google Scholar]
  174. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T. 170.  et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 [Google Scholar]
  175. van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang WC. 171.  et al. 2015. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol 15:260 [Google Scholar]
  176. Vermeer JE, von Wangenheim D, Barberon M, Lee Y, Stelzer EH. 172.  et al. 2014. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–83 [Google Scholar]
  177. Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W. 173.  et al. 2010. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–11 [Google Scholar]
  178. Walton A, Stes E, Goeminne G, Braem L, Vuylsteke M. 174.  et al. 2016. The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis. Mol. Cell Proteom. 15:2744–55 [Google Scholar]
  179. Wang L, Wang B, Jiang L, Liu X, Li X. 175.  et al. 2015. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27:3128–42 [Google Scholar]
  180. Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. 176.  2013. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell 27:681–88 [Google Scholar]
  181. Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA. 177.  2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–85 [Google Scholar]
  182. Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK. 178.  et al. 2012. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139:1285–95Establishes that SLs and KARs are perceived by the related α/β-hydrolases D14 and KAI2, which collectively account for MAX2 activities. [Google Scholar]
  183. Waters MT, Scaffidi A, Flematti G, Smith SM. 179.  2015. Substrate-induced degradation of the α/β-fold hydrolase KARRIKIN INSENSITIVE2 requires a functional catalytic triad but is independent of MAX2. Mol. Plant 8:814–17 [Google Scholar]
  184. Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM. 180.  2015. A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell 27:1925–44 [Google Scholar]
  185. Wei CQ, Chien CW, Ai LF, Zhao J, Zhang Z. 181.  et al. 2016. The Arabidopsis B-BOX protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. J. Genet. Genom. 43:555–63 [Google Scholar]
  186. Woo HR, Chung KM, Park JH, Oh SA, Ahn T. 182.  et al. 2001. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–90 [Google Scholar]
  187. Xie X, Yoneyama K, Yoneyama K. 183.  2010. The strigolactone story. Annu. Rev. Phytopathol. 48:93–117 [Google Scholar]
  188. Xie X, Yoneyama K, Kisugi T, Nomura T, Akiyama K. 184.  et al. 2015. Strigolactones are transported from roots to shoots, although not through the xylem. J. Pestic. Sci. 40:214–16 [Google Scholar]
  189. Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S. 185.  et al. 2013. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant 6:153–63 [Google Scholar]
  190. Xu Y, Miyakawa T, Nakamura H, Nakamura A, Imamura Y. 186.  et al. 2016. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. Sci. Rep. 6:31386 [Google Scholar]
  191. Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M. 186a.  2014. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–40 [Google Scholar]
  192. Yao R, Ming Z, Yan L, Li S, Wang F. 187.  et al. 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536:469–73Solves the structure of a D14-MAX2-ASK1 protein complex, which is stabilized by a conformational change of D14 upon SL hydrolysis. [Google Scholar]
  193. Yoder JI, Scholes JD. 188.  2010. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13:478–84 [Google Scholar]
  194. Yoneyama K, Arakawa R, Ishimoto K, Kim HI, Kisugi T. 189.  et al. 2015. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol. 206:983–89 [Google Scholar]
  195. Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. 190.  2007. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–38 [Google Scholar]
  196. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y. 191.  et al. 2007. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–32 [Google Scholar]
  197. Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M. 192.  et al. 2012. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol. 196:1208–16 [Google Scholar]
  198. Yoshida S, Shirasu K. 193.  2009. Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. New Phytol. 183:180–89 [Google Scholar]
  199. Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M. 194.  et al. 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10:1028–33 [Google Scholar]
  200. Zhao J, Wang T, Wang M, Liu Y, Yuan S. 195.  et al. 2014. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol 55:1096–109 [Google Scholar]
  201. Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y. 196.  et al. 2013. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23:436–39 [Google Scholar]
  202. Zhao LH, Zhou XE, Yi W, Wu Z, Liu Y. 197.  et al. 2015. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res 25:1219–36 [Google Scholar]
  203. Zhou F, Lin Q, Zhu L, Ren Y, Zhou K. 198.  et al. 2013. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–10Together with Ref. 91, describes the identification of D53 as a target of D14- and MAX2-mediated SL signaling. [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-040925
Loading
/content/journals/10.1146/annurev-arplant-042916-040925
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error