1932

Abstract

Correct expression of specific sets of genes in time and space ensures the establishment and maintenance of cell identity, which is required for proper development of multicellular organisms. Polycomb and Trithorax group proteins form multisubunit complexes that antagonistically act in epigenetic gene repression and activation, respectively. The traditional view of Polycomb repressive complexes (PRCs) as executors of long-lasting and stable gene repression is being extended by evidence of flexible repression in response to developmental and environmental cues, increasing the complexity of mechanisms that ensure selective and properly timed PRC targeting and release of Polycomb repression. Here, we review advances in understanding of the composition, mechanisms of targeting, and function of plant PRCs and discuss the parallels and differences between plant and animal models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043014-115627
2015-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/66/1/annurev-arplant-043014-115627.html?itemId=/content/journals/10.1146/annurev-arplant-043014-115627&mimeType=html&fmt=ahah

Literature Cited

  1. Abed JA, Jones RS. 1.  2012. H3K36me3 key to Polycomb-mediated gene silencing in lineage specification. Nat. Struct. Mol. Biol. 19:1214–15 [Google Scholar]
  2. Ach RA, Taranto P, Gruissem W. 2.  1997. A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 9:1595–606 [Google Scholar]
  3. Aichinger E, Kornet N, Friedrich T, Laux T. 3.  2012. Plant stem cell niches. Annu. Rev. Plant Biol. 63:615–36 [Google Scholar]
  4. Aichinger E, Villar CB, Di Mambro R, Sabatini S, Köhler C. 4.  2011. The CHD3 chromatin remodeler PICKLE and Polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23:1047–60 [Google Scholar]
  5. Aichinger E, Villar CB, Farrona S, Reyes JC, Hennig L, Köhler C. 5.  2009. CHD3 proteins and Polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLOS Genet. 5:e1000605 [Google Scholar]
  6. Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K. 6.  et al. 2014. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16:281–93 [Google Scholar]
  7. Aloia L, Di Stefano B, Di Croce L. 7.  2013. Polycomb complexes in stem cells and embryonic development. Development 140:2525–34 [Google Scholar]
  8. Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A. 8.  et al. 2014. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol. Cell 55:383–96 [Google Scholar]
  9. Aubert D, Chen L, Moon YH, Martin D, Castle LA. 9.  et al. 2001. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13:1865–75 [Google Scholar]
  10. Banaszynski LA, Wen D, Dewell S, Whitcomb SJ, Lin M. 10.  et al. 2013. Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 155:107–20 [Google Scholar]
  11. Bantignies F, Cavalli G. 11.  2011. Polycomb group proteins: repression in 3D. Trends Genet. 27:454–64 [Google Scholar]
  12. Barrero JM, Gonzalez-Bayon R, Del Pozo JC, Ponce MR, Micol JL. 12.  2007. INCURVATA2 encodes the catalytic subunit of DNA polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19:2822–338 [Google Scholar]
  13. Beh LY, Colwell LJ, Francis NJ. 13.  2012. A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. PNAS 109:1063–71 [Google Scholar]
  14. Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C. 14.  et al. 2010. Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nat. Struct. Mol. Biol. 17:894–900 [Google Scholar]
  15. Bender LB, Cao R, Zhang Y, Strome S. 15.  2004. The MES-2/MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans. Curr. Biol. 14:1639–43 [Google Scholar]
  16. Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L. 16.  2011. Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23:4065–78 [Google Scholar]
  17. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ. 17.  et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26 [Google Scholar]
  18. Berr A, McCallum EJ, Menard R, Meyer D, Fuchs J. 18.  et al. 2010. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22:3232–48 [Google Scholar]
  19. Bouyer D, Roudier F, Heese M, Andersen ED, Gey D. 19.  et al. 2011. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLOS Genet. 7:e1002014Shows that PRC2 is required for the embryo-seedling transition but not during embryogenesis. [Google Scholar]
  20. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. 20.  2006. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20:1123–36 [Google Scholar]
  21. Bratzel F, López-Torrejón G, Koch M, Del Pozo JC, Calonje M. 21.  2010. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr. Biol. 20:1853–59 [Google Scholar]
  22. Bratzel F, Yang C, Angelova A, López-Torrejón G, Koch M. 22.  et al. 2012. Regulation of the new Arabidopsis imprinted gene AtBMI1C requires the interplay of different epigenetic mechanisms. Mol. Plant 5:260–69 [Google Scholar]
  23. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F. 23.  et al. 2012. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22:1128–38 [Google Scholar]
  24. Butenko Y, Ohad N. 24.  2011. Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochim. Biophys. Acta 1809:395–406 [Google Scholar]
  25. Calonje M. 25.  2014. PRC1 marks the difference in plant PcG repression. Mol. Plant 7:459–71 [Google Scholar]
  26. Calonje M, Sanchez R, Chen L, Sung ZR. 26.  2008. EMBRYONIC FLOWER1 participates in Polycomb group-mediated AG gene silencing in Arabidopsis. Plant Cell 20:277–91 [Google Scholar]
  27. Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH. 27.  et al. 2004. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–76 [Google Scholar]
  28. Chen D, Molitor A, Liu C, Shen WH. 28.  2010. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 20:1332–44 [Google Scholar]
  29. Chen LJ, Diao ZY, Specht C, Sung ZR. 29.  2009. Molecular evolution of VEF-domain-containing PcG genes in plants. Mol. Plant 2:738–54 [Google Scholar]
  30. Cifuentes-Rojas C, Hernandez AJ, Sarma K, Lee JT. 30.  2014. Regulatory interactions between RNA and Polycomb Repressive Complex 2. Mol. Cell 55:171–85 [Google Scholar]
  31. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J. 31.  et al. 2014. Targeting Polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 7:1456–70 [Google Scholar]
  32. Crevillén P, Yang H, Cui X, Greeff C, Trick M. 32.  et al. 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515:587–90Demonstrates the role of active H3K27me3 removal in the epigenetic reprogramming of FLC expression during embryogenesis. [Google Scholar]
  33. Cui H, Benfey PN. 33.  2009. Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root. Plant J. 58:1016–27 [Google Scholar]
  34. Dangwal M, Kapoor S, Kapoor M. 34.  2014. The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens. Plant J. 77:589–603 [Google Scholar]
  35. Davidovich C, Zheng L, Goodrich KJ, Cech TR. 35.  2013. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20:1250–57 [Google Scholar]
  36. De Lucia F, Crevillen P, Jones AM, Greb T, Dean C. 36.  2008. A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization. PNAS 105:16831–36 [Google Scholar]
  37. del Olmo I, Lopez-Gonzalez L, Martin-Trillo MM, Martinez-Zapater JM, Pineiro M, Jarillo JA. 37.  2010. EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing. Plant J. 61:623–36 [Google Scholar]
  38. Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G. 38.  et al. 2012. Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLOS Genet. 8:e1003062 [Google Scholar]
  39. Deng W, Buzas DM, Ying H, Robertson M, Taylor J. 39.  et al. 2013. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics 14:593 [Google Scholar]
  40. Derkacheva M, Hennig L. 40.  2014. Variations on a theme: Polycomb group proteins in plants. J. Exp. Bot. 65:2769–84 [Google Scholar]
  41. Derkacheva M, Steinbach Y, Wildhaber T, Mozgova I, Mahrez W. 41.  et al. 2013. Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J. 32:2073–85Shows that LHP1 immunoprecipitates together with PRC2 components from Arabidopsis inflorescences. [Google Scholar]
  42. Di Croce L, Helin K. 42.  2013. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20:1147–55 [Google Scholar]
  43. Dumbliauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M. 43.  et al. 2011. The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain parental imprinting. EMBO J. 30:731–43 [Google Scholar]
  44. Engelhorn J, Blanvillain R, Carles CC. 44.  2014. Gene activation and cell fate control in plants: a chromatin perspective. Cell. Mol. Life Sci. 71:3119–37 [Google Scholar]
  45. Eskeland R, Leeb M, Grimes GR, Kress C, Boyle S. 45.  et al. 2010. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38:452–64 [Google Scholar]
  46. Exner V, Aichinger E, Shu H, Wildhaber T, Alfarano P. 46.  et al. 2009. The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development. PLOS ONE 4:e5335 [Google Scholar]
  47. Farrona S, Thorpe FL, Engelhorn J, Adrian J, Dong X. 47.  et al. 2011. Tissue-specific expression of FLOWERING LOCUS T in Arabidopsis is maintained independently of Polycomb group protein repression. Plant Cell 23:3204–14 [Google Scholar]
  48. Francis NJ, Follmer NE, Simon MD, Aghia G, Butler JD. 48.  2009. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137:110–22 [Google Scholar]
  49. Francis NJ, Kingston RE, Woodcock CL. 49.  2004. Chromatin compaction by a Polycomb group protein complex. Science 306:1574–77 [Google Scholar]
  50. Gaudin V, Libault M, Pouteau S, Juul T, Zhao G. 50.  et al. 2001. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128:4847–58 [Google Scholar]
  51. Gendall AR, Levy YY, Wilson A, Dean C. 51.  2001. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–35 [Google Scholar]
  52. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G. 52.  1997. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44–51 [Google Scholar]
  53. Grau DJ, Chapman BA, Garlick JD, Borowsky M, Francis NJ, Kingston RE. 53.  2011. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev. 25:2210–21 [Google Scholar]
  54. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB. 54.  1998. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:446–50 [Google Scholar]
  55. Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE. 55.  et al. 2004. Identification of new members of FERTILISATION INDEPENDENT SEED Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–81 [Google Scholar]
  56. Gurard-Levin ZA, Quivy JP, Almouzni G. 56.  2014. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83:487–517 [Google Scholar]
  57. Gutierrez L, Oktaba K, Scheuermann JC, Gambetta MC, Ly-Hartig N, Müller J. 57.  2012. The role of the histone H2A ubiquitinase Sce in Polycomb repression. Development 139:117–27 [Google Scholar]
  58. Hagarman JA, Motley MP, Kristjansdottir K, Soloway PD. 58.  2013. Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLOS ONE 8:e53880 [Google Scholar]
  59. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS. 59.  et al. 2008. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10:1291–300 [Google Scholar]
  60. He C, Chen X, Huang H, Xu L. 60.  2012. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLOS Genet. 8:e1002911 [Google Scholar]
  61. He G, Zhu X, Elling AA, Chen L, Wang X. 61.  et al. 2010. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33 [Google Scholar]
  62. Helliwell CA, Robertson M, Finnegan EJ, Buzas DM, Dennis ES. 62.  2011. Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PLOS ONE 6:e21513 [Google Scholar]
  63. Hennig L, Taranto P, Walser M, Schönrock N, Gruissem W. 63.  2003. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555–65 [Google Scholar]
  64. Heo JB, Sung S. 64.  2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79 [Google Scholar]
  65. Hyun Y, Yun H, Park K, Ohr H, Lee O. 65.  et al. 2013. The catalytic subunit of Arabidopsis DNA polymerase alpha ensures stable maintenance of histone modification. Development 140:156–66 [Google Scholar]
  66. Jackson JP, Lindroth AM, Cao X, Jacobsen SE. 66.  2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–60 [Google Scholar]
  67. Jamieson K, Rountree MR, Lewis ZA, Stajich JE, Selker EU. 67.  2013. Regional control of histone H3 lysine 27 methylation in Neurospora. PNAS 110:6027–32 [Google Scholar]
  68. Jeong CW, Roh H, Dang TV, Choi YD, Fischer RL. 68.  et al. 2011. An E3 ligase complex regulates SET-domain Polycomb group protein activity in Arabidopsis thaliana. PNAS 108:8036–41 [Google Scholar]
  69. Jermann P, Hoerner L, Burger L, Schübeler D. 69.  2014. Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. PNAS 111:E3415–21 [Google Scholar]
  70. Jiang D, Wang Y, Wang Y, He Y. 70.  2008. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLOS ONE 3:e3404 [Google Scholar]
  71. Kallin EM, Cao R, Jothi R, Xia K, Cui K. 71.  et al. 2009. Genome-wide uH2A localization analysis highlights Bmi1-dependent deposition of the mark at repressed genes. PLOS Genet. 5:e1000506 [Google Scholar]
  72. Kaneko S, Son J, Shen SS, Reinberg D, Bonasio R. 72.  2013. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 20:1258–64 [Google Scholar]
  73. Katz A, Oliva M, Mosquna A, Hakim O, Ohad N. 73.  2004. FIE and CURLY LEAF Polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 37:707–19 [Google Scholar]
  74. Ketel CS, Andersen EF, Vargas ML, Suh J, Strome S, Simon JA. 74.  2005. Subunit contributions to histone methyltransferase activities of fly and worm Polycomb group complexes. Mol. Cell. Biol. 25:6857–68 [Google Scholar]
  75. Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR. 75.  2012. EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLOS Genet. 8:e1002512 [Google Scholar]
  76. Kim SY, Zhu T, Sung ZR. 76.  2010. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol. 152:516–28 [Google Scholar]
  77. Kinoshita T, Harada JJ, Goldberg RB, Fischer RL. 77.  2001. Polycomb repression of flowering during early plant development. PNAS 98:14156–61 [Google Scholar]
  78. Köhler C, Hennig L. 78.  2010. Regulation of cell identity by plant Polycomb and trithorax group proteins. Curr. Opin. Genet. Dev. 20:541–47 [Google Scholar]
  79. Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W. 79.  2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22:4804–14 [Google Scholar]
  80. Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U. 80.  2003. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17:1540–53 [Google Scholar]
  81. Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K. 81.  2003. Arabidopsis TERMINAL FLOWER 2 gene encodes a LIKE HETEROCHROMATIN PROTEIN 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol. 44:555–64 [Google Scholar]
  82. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M. 82.  et al. 2008. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLOS Genet. 4:e1000242 [Google Scholar]
  83. Kuwabara A, Gruissem W. 83.  2014. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development. J. Exp. Bot. 65:2667–76 [Google Scholar]
  84. Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. 84.  2011. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLOS Genet. 7:e1002040 [Google Scholar]
  85. Lagarou A, Mohd-Sarip A, Moshkin YM, Chalkley GE, Bezstarosti K. 85.  et al. 2008. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22:2799–810 [Google Scholar]
  86. Lanzuolo C, Lo Sardo F, Diamantini A, Orlando V. 86.  2011. PcG complexes set the stage for epigenetic inheritance of gene silencing in early S phase before replication. PLOS Genet. 7:e1002370 [Google Scholar]
  87. Lanzuolo C, Lo Sardo F, Orlando V. 87.  2012. Concerted epigenetic signatures inheritance at PcG targets through replication. Cell Cycle 11:1296–300 [Google Scholar]
  88. Lanzuolo C, Orlando V. 88.  2012. Memories from the Polycomb group proteins. Annu. Rev. Genet. 46:561–89 [Google Scholar]
  89. Latrasse D, Germann S, Houba-Herin N, Dubois E, Bui-Prodhomme D. 89.  et al. 2011. Control of flowering and cell fate by LIF2, an RNA binding partner of the Polycomb complex component LHP1. PLOS ONE 6:e16592 [Google Scholar]
  90. Laugesen A, Helin K. 90.  2014. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14:735–51 [Google Scholar]
  91. Lee E, Lucas JR, Goodrich J, Sack FD. 91.  2014. Arabidopsis guard cell integrity involves the epigenetic stabilization of the FLP and LMA transcription factor genes. Plant J. 78:566–77 [Google Scholar]
  92. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS. 92.  et al. 2006. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–13 [Google Scholar]
  93. Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M. 93.  2012. Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J. Biol. Chem. 287:35784–94 [Google Scholar]
  94. Leung KH, Abou El Hassan M, Bremner R. 94.  2013. A rapid and efficient method to purify proteins at replication forks under native conditions. Biotechniques 55:204–6 [Google Scholar]
  95. Lewis EB. 95.  1978. A gene complex controlling segmentation in Drosophila. Nature 276:565–70 [Google Scholar]
  96. Li H, Luan S. 96.  2011. The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes. Mol Plant 4:748–58 [Google Scholar]
  97. Li T, Chen X, Zhong X, Zhao Y, Liu X. 97.  et al. 2013. Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice. Plant Cell 25:4725–36 [Google Scholar]
  98. Li W, Wang Z, Li J, Yang H, Cui S. 98.  et al. 2011. Overexpression of AtBMI1C, a Polycomb group protein gene, accelerates flowering in Arabidopsis. PLOS ONE 6:e21364 [Google Scholar]
  99. Libault M, Tessadori F, Germann S, Snijder B, Fransz P, Gaudin V. 99.  2005. The Arabidopsis LHP1 protein is a component of euchromatin. Planta 222:910–25 [Google Scholar]
  100. Lindner M, Simonini S, Kooiker M, Gagliardini V, Somssich M. 100.  et al. 2013. TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development. Dev. Biol. 379:28–37 [Google Scholar]
  101. Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM. 101.  et al. 2008. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLOS Genet. 4:e1000145 [Google Scholar]
  102. Liu C, Xi W, Shen L, Tan C, Yu H. 102.  2009. Regulation of floral patterning by flowering time genes. Dev. Cell 16:711–22 [Google Scholar]
  103. Liu T, Rechtsteiner A, Egelhofer TA, Vielle A, Latorre I. 103.  et al. 2011. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21:227–36 [Google Scholar]
  104. Liu X, Kim YJ, Muller R, Yumul RE, Liu C. 104.  et al. 2011. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb group proteins. Plant Cell 23:3654–70 [Google Scholar]
  105. Liu Y, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD. 105.  2007. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 21:1530–45 [Google Scholar]
  106. Lodha M, Marco CF, Timmermans MC. 106.  2013. The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes Dev. 27:596–601Shows AS1/AS2-mediated recruitment of EMF subunits to KNOX genes. [Google Scholar]
  107. Lu F, Cui X, Zhang S, Jenuwein T, Cao X. 107.  2011. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 43:715–19 [Google Scholar]
  108. Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. 108.  2000. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. PNAS 97:10637–42 [Google Scholar]
  109. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM. 109.  1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. PNAS 96:296–301 [Google Scholar]
  110. Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES. 110.  2009. Expression, imprinting, and evolution of rice homologs of the Polycomb group genes. Mol. Plant 2:711–23 [Google Scholar]
  111. Lynch MD, Smith AJ, De Gobbi M, Flenley M, Hughes JR. 111.  et al. 2012. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J. 31:317–29 [Google Scholar]
  112. Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O. 112.  et al. 2006. Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep. 7:947–52 [Google Scholar]
  113. Makarevitch I, Eichten SR, Briskine R, Waters AJ, Danilevskaya ON. 113.  et al. 2013. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27. Plant Cell 25:780–93 [Google Scholar]
  114. Margueron R, Justin N, Ohno K, Sharpe ML, Son J. 114.  et al. 2009. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–67 [Google Scholar]
  115. Mathieu O, Probst AV, Paszkowski J. 115.  2005. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J. 24:2783–91 [Google Scholar]
  116. Mohd-Sarip A, van der Knapp JA, Wyman C, Kanaar R, Schedl P, Verrijzer CP. 116.  2006. Architecture of a Polycomb nucleoprotein complex. Mol. Cell 24:91–100 [Google Scholar]
  117. Molitor AM, Bu Z, Yu Y, Shen WH. 117.  2014. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLOS Genet. 10:e1004091Identifies PHD-finger ALFIN-LIKE proteins as interactors with AtRING1/AtBMI1 proteins. [Google Scholar]
  118. Molitor AM, Shen WH. 118.  2013. The Polycomb complex PRC1: composition and function in plants. J. Genet. Genomics 40:231–38 [Google Scholar]
  119. Moon YH, Chen L, Pan RL, Chang HS, Zhu T. 119.  et al. 2003. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15:681–93 [Google Scholar]
  120. Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N. 120.  2009. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–44 [Google Scholar]
  121. Mosquna A, Katz A, Shochat S, Grafi G, Ohad N. 121.  2004. Interaction of FIE, a Polycomb protein, with pRB: a possible mechanism regulating endosperm development. Mol. Genet. Genomics 271:651–57 [Google Scholar]
  122. Muller-Xing R, Clarenz O, Pokorny L, Goodrich J, Schubert D. 122.  2014. Polycomb-group proteins and FLOWERING LOCUS T maintain commitment to flowering in Arabidopsis thaliana. Plant Cell 26:2457–71 [Google Scholar]
  123. Nakahigashi K, Jasencakova Z, Schubert I, Goto K. 123.  2005. The Arabidopsis HETEROCHROMATIN PROTEIN 1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin. Plant Cell Physiol. 46:1747–56 [Google Scholar]
  124. Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C. 124.  et al. 2013. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell 155:121–34 [Google Scholar]
  125. Ogas J, Kaufmann S, Henderson J, Somerville C. 125.  1999. Pickle is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. PNAS 96:13839–44 [Google Scholar]
  126. Oh S, Park S, van Nocker S. 126.  2008. Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLOS Genet. 4:e1000077 [Google Scholar]
  127. Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D. 127.  et al. 1999. Mutations in FIE, a WD Polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–16 [Google Scholar]
  128. Okano Y, Aono N, Hiwatashi Y, Murata T, Nishiyama T. 128.  et al. 2009. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. PNAS 106:16321–26 [Google Scholar]
  129. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP. 129.  et al. 2010. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464:306–10 [Google Scholar]
  130. Patel T, Tursun B, Rahe DP, Hobert O. 130.  2012. Removal of Polycomb repressive complex 2 makes C. elegans germ cells susceptible to direct conversion into specific somatic cell types. Cell Rep. 2:1178–86 [Google Scholar]
  131. Pazhouhandeh M, Molinier J, Berr A, Genschik P. 131.  2011. MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. PNAS 108:3430–35 [Google Scholar]
  132. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y. 132.  et al. 2009. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139:1290–302 [Google Scholar]
  133. Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL. 133.  et al. 2012. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–33 [Google Scholar]
  134. Reddington JP, Perricone SM, Nestor CE, Reichmann J, Youngson NA. 134.  et al. 2013. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol. 14:R25 [Google Scholar]
  135. Reddington JP, Sproul D, Meehan RR. 135.  2014. DNA methylation reprogramming in cancer: Does it act by re-configuring the binding landscape of Polycomb repressive complexes?. BioEssays 36:134–40 [Google Scholar]
  136. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K. 136.  2014. Gene silencing triggers Polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55:347–60 [Google Scholar]
  137. Rosa S, De Lucia F, Mylne JS, Zhu D, Ohmido N. 137.  et al. 2013. Physical clustering of alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev. 27:1845–50 [Google Scholar]
  138. Roszak P, Köhler C. 138.  2011. Polycomb group proteins are required to couple seed coat initiation to fertilization. PNAS 108:20826–31 [Google Scholar]
  139. Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T. 139.  et al. 2011. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30:1928–38 [Google Scholar]
  140. Saleh A, Al-Abdallat A, Ndamukong I, Alvarez-Venegas R, Avramova Z. 140.  2007. The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish “bivalent chromatin marks” at the silent AGAMOUS locus. Nucleic Acids Res. 35:6290–96 [Google Scholar]
  141. Sanchez-Pulido L, Devos D, Sung ZR, Calonje M. 141.  2008. RAWUL: a new ubiquitin-like domain in PRC1 ring finger proteins that unveils putative plant and worm PRC1 orthologs. BMC Genomics 9:308Describes the in silico identification of Arabidopsis RING-finger homologs defined by the presence of RING-finger and RAWUL domains. [Google Scholar]
  142. Schatlowski N, Stahl Y, Hohenstatt ML, Goodrich J, Schubert D. 142.  2010. The CURLY LEAF interacting protein BLISTER controls expression of Polycomb-group target genes and cellular differentiation of Arabidopsis thaliana. Plant Cell 22:2291–305 [Google Scholar]
  143. Scheuermann JC, Gutierrez L, Muller J. 143.  2012. Histone H2A monoubiquitination and Polycomb repression: the missing pieces of the puzzle. Fly 6:162–68 [Google Scholar]
  144. Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM. 144.  et al. 2011. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42:330–41 [Google Scholar]
  145. Schönrock N, Bouveret R, Leroy O, Borghi L, Köhler C. 145.  et al. 2006. Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes Dev. 20:1667–78 [Google Scholar]
  146. Schubert D, Clarenz O, Goodrich J. 146.  2005. Epigenetic control of plant development by Polycomb-group proteins. Curr. Opin. Plant Biol. 8:553–61 [Google Scholar]
  147. Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J. 147.  et al. 2006. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 25:4638–49 [Google Scholar]
  148. Schuettengruber B, Cavalli G. 148.  2009. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531–42 [Google Scholar]
  149. Schuettengruber B, Martinez AM, Iovino N, Cavalli G. 149.  2011. Trithorax group proteins: switching genes on and keeping them active. Nat. Rev. Mol. Cell Biol. 12:799–814 [Google Scholar]
  150. Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R. 150.  et al. 2006. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38:700–5 [Google Scholar]
  151. Schwartz YB, Pirrotta V. 151.  2013. A new world of Polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet. 14:853–64 [Google Scholar]
  152. Schwartz YB, Pirrotta V. 152.  2014. Ruled by ubiquitylation: a new order for Polycomb recruitment. Cell Rep. 8:321–25Reviews three recent publications on PRC1-mediated PRC2 recruitment. [Google Scholar]
  153. Sequeira-Mendes J, Aragüez I, Peiró R, Mendez-Giraldez R, Zhang X. 153.  et al. 2014. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26:2351–66Defines nine states of chromatin in Arabidopsis and identifies genome-wide overlap between H3K27me3 and H3K4me3. [Google Scholar]
  154. Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H. 154.  2010. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5:301–12 [Google Scholar]
  155. She W, Grimanelli D, Rutowicz K, Whitehead MW, Puzio M. 155.  et al. 2013. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:4008–19 [Google Scholar]
  156. Sheldon CC, Conn AB, Dennis ES, Peacock WJ. 156.  2002. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527–37 [Google Scholar]
  157. Sheldon CC, Finnegan EJ, Peacock WJ, Dennis ES. 157.  2009. Mechanisms of gene repression by vernalization in Arabidopsis. Plant J. 59:488–98 [Google Scholar]
  158. Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y. 158.  et al. 2009. Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139:1303–14 [Google Scholar]
  159. Shu H, Wildhaber T, Siretskiy A, Gruissem W, Hennig L. 159.  2012. Distinct modes of DNA accessibility in plant chromatin. Nat. Commun. 3:1281 [Google Scholar]
  160. Sieburth LE, Meyerowitz EM. 160.  1997. Molecular dissection of the control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–65 [Google Scholar]
  161. Simon JA, Kingston RE. 161.  2013. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49:808–24 [Google Scholar]
  162. Son J, Shen SS, Margueron R, Reinberg D. 162.  2013. Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes Dev. 27:2663–77 [Google Scholar]
  163. Spillane C, MacDougall C, Stock C, Köhler C, Vielle-Calzada J. 163.  et al. 2000. Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr. Biol. 10:1535–38 [Google Scholar]
  164. Spillane C, Schmid KJ, Laoueille-Duprat S, Pien S, Escobar-Restrepo JM. 164.  et al. 2007. Positive Darwinian selection at the imprinted locus in plants. Nature 448:349–52 [Google Scholar]
  165. Steffen PA, Ringrose L. 165.  2014. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell Biol. 15:340–56 [Google Scholar]
  166. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M. 166.  et al. 2007. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat. Cell Biol. 9:1428–35 [Google Scholar]
  167. Sugimoto K, Jiao Y, Meyerowitz EM. 167.  2010. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18:463–71 [Google Scholar]
  168. Sun B, Looi LS, Guo S, He Z, Gan ES. 168.  et al. 2014. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science 343:1248559Shows that eviction of H3K27me3 and activation of PcG target KNU are cell division dependent. [Google Scholar]
  169. Sun B, Xu Y, Ng KH, Ito T. 169.  2009. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 23:1791–804 [Google Scholar]
  170. Swigut T, Wysocka J. 170.  2007. H3K27 demethylases, at long last. Cell 131:29–32 [Google Scholar]
  171. Takada S, Goto K. 171.  2003. TERMINAL FLOWER 2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN 1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15:2856–65 [Google Scholar]
  172. Tang X, Lim MH, Pelletier J, Tang M, Nguyen V. 172.  et al. 2012. Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. J. Exp. Bot. 63:1391–404 [Google Scholar]
  173. Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W. 173.  et al. 2006. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 38:694–99 [Google Scholar]
  174. Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E. 174.  et al. 2007. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLOS Genet. 3:0855–66 [Google Scholar]
  175. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M. 175.  et al. 2006. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–74 [Google Scholar]
  176. Wang D, Tyson MD, Jackson SS, Yadegari R. 176.  2006. Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. PNAS 103:13244–49 [Google Scholar]
  177. Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS. 177.  2004. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell 14:637–46 [Google Scholar]
  178. Wang X, Elling AA, Li X, Li N, Peng Z. 178.  et al. 2009. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–69 [Google Scholar]
  179. Wang Y, Gu X, Yuan W, Schmitz RJ, He Y. 179.  2014. Photoperiodic control of the floral transition through a distinct Polycomb repressive complex. Dev. Cell 28:727–36Describes an EMF1 complex containing LHP1, histone demethylases, and AtRING1/AtBMI1 and recruitment to DNA via interaction with TFs. [Google Scholar]
  180. Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C. 180.  2010. H3K27me3 profiling of the endosperm implies exclusion of Polycomb group protein targeting by DNA methylation. PLOS Genet. 6:e1001152 [Google Scholar]
  181. Whitcomb SJ, Basu A, Allis CD, Bernstein E. 181.  2007. Polycomb group proteins: an evolutionary perspective. Trends Genet. 23:494–502 [Google Scholar]
  182. Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA. 182.  2006. The Arabidopsis thaliana vernalization response requires a Polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. PNAS 103:14631–36 [Google Scholar]
  183. Wu MF, Sang Y, Bezhani S, Yamaguchi N, Han SK. 183.  et al. 2012. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. PNAS 109:3576–81 [Google Scholar]
  184. Xu L, Fong Y, Strome S. 184.  2001. The Caenorhabditis elegans maternal-effect sterile proteins, MES-2, MES-3, and MES-6, are associated in a complex in embryos. PNAS 98:5061–66 [Google Scholar]
  185. Xu L, Shen WH. 185.  2008. Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr. Biol. 18:1966–71 [Google Scholar]
  186. Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A. 186.  et al. 2000. Mutations in the FIE and MEA genes that encode interacting Polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–82 [Google Scholar]
  187. Yang C, Bratzel F, Hohmann N, Koch M, Turck F, Calonje M. 187.  2013. VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis. Curr. Biol. 23:1324–29Shows the dependency of repression of some PcG targets on H2Aub mediated by TF-recruited AtBMI1. [Google Scholar]
  188. Yang CH, Chen LJ, Sung ZR. 188.  1995. Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Dev. Biol. 169:421–35 [Google Scholar]
  189. Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J. 189.  et al. 2001. EMBRYONIC FLOWER2, a novel Polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471–81 [Google Scholar]
  190. Yuan W, Wu T, Fu H, Dai C, Wu H. 190.  et al. 2012. Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337:971–75 [Google Scholar]
  191. Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. 191.  2009. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10:R62 [Google Scholar]
  192. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M. 192.  et al. 2007. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLOS Biol. 5:1026–35 [Google Scholar]
  193. Zhang X, Germann S, Blus BJ, Khorasanizadeh S, Gaudin V, Jacobsen SE. 193.  2007. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat. Struct. Mol. Biol. 14:869–71 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043014-115627
Loading
/content/journals/10.1146/annurev-arplant-043014-115627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error