1932

Abstract

The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111153
2019-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-013118-111153.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111153&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M 2011. Evolution: tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194:165–75
    [Google Scholar]
  2. 2. 
    Pickett-Heaps JD. 1971. The autonomy of the centriole: fact or fallacy. ? Cytobios 3:205–14
    [Google Scholar]
  3. 3. 
    Gonczy P. 2012. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13:425–35
    [Google Scholar]
  4. 4. 
    Greenan GA, Keszthelyi B, Vale RD, Agard DA 2018. Insights into centriole geometry revealed by cryotomography of doublet and triplet centrioles. eLife 7:e36851
    [Google Scholar]
  5. 5. 
    Wang JT, Stearns T. 2017. The ABCs of centriole architecture: the form and function of triplet microtubules. Cold Spring Harb. Symp. Quant. Biol. 82:145–55
    [Google Scholar]
  6. 6. 
    Hori A, Toda T. 2017. Regulation of centriolar satellite integrity and its physiology. Cell Mol. Life Sci. 74:213–29
    [Google Scholar]
  7. 7. 
    Lopes CA, Prosser SL, Romio L, Hirst RA, O'Callaghan C et al. 2011. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J. Cell Sci. 124:600–12
    [Google Scholar]
  8. 8. 
    Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP et al. 2013. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–68
    [Google Scholar]
  9. 9. 
    Mazo G, Soplop N, Wang WJ, Uryu K, Tsou MF 2016. Spatial control of primary ciliogenesis by subdistal appendages alters sensation-associated properties of cilia. Dev. Cell 39:424–37
    [Google Scholar]
  10. 10. 
    Nigg EA, Holland AJ. 2018. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol. 19:297–312
    [Google Scholar]
  11. 11. 
    Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA 2005. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7:1140–46
    [Google Scholar]
  12. 12. 
    Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L et al. 2005. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15:2199–207
    [Google Scholar]
  13. 13. 
    Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA 2012. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1:965–76
    [Google Scholar]
  14. 14. 
    Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L et al. 2010. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191:731–39
    [Google Scholar]
  15. 15. 
    Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T 2010. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191:721–29
    [Google Scholar]
  16. 16. 
    Kim TS, Park JE, Shukla A, Choi S, Murugan RN et al. 2013. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. PNAS 110:E4849–57
    [Google Scholar]
  17. 17. 
    Park SY, Park JE, Kim TS, Kim JH, Kwak MJ et al. 2014. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat. Struct. Mol. Biol. 21:696–703
    [Google Scholar]
  18. 18. 
    Sonnen KF, Gabryjonczyk AM, Anselm E, Stierhof YD, Nigg EA 2013. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126:3223–33
    [Google Scholar]
  19. 19. 
    Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H et al. 2014. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5:5267
    [Google Scholar]
  20. 20. 
    Dzhindzhev NS, Tzolovsky G, Lipinszki Z, Abdelaziz M, Debski J et al. 2017. Two-step phosphorylation of Ana2 by Plk4 is required for the sequential loading of Ana2 and Sas6 to initiate procentriole formation. Open Biol 7:170247
    [Google Scholar]
  21. 21. 
    Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ 2015. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209:863–78
    [Google Scholar]
  22. 22. 
    Lopes CA, Jana SC, Cunha-Ferreira I, Zitouni S, Bento I et al. 2015. PLK4 trans-autoactivation controls centriole biogenesis in space. Dev. Cell 35:222–35
    [Google Scholar]
  23. 23. 
    Arquint C, Gabryjonczyk AM, Imseng S, Bohm R, Sauer E et al. 2015. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 4:e07888
    [Google Scholar]
  24. 24. 
    Dzhindzhev NS, Tzolovsky G, Lipinszki Z, Schneider S, Lattao R et al. 2014. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24:2526–32
    [Google Scholar]
  25. 25. 
    Kratz AS, Barenz F, Richter KT, Hoffmann I 2015. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4:370–77
    [Google Scholar]
  26. 26. 
    McLamarrah TA, Buster DW, Galletta BJ, Boese CJ, Ryniawec JM et al. 2018. An ordered pattern of Ana2 phosphorylation by Plk4 is required for centriole assembly. J. Cell Biol. 217:1217–31
    [Google Scholar]
  27. 27. 
    Hirono M. 2014. Cartwheel assembly. Philos. Trans. R. Soc. B 369:20130458
    [Google Scholar]
  28. 28. 
    Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D et al. 2011. Structural basis of the 9-fold symmetry of centrioles. Cell 144:364–75
    [Google Scholar]
  29. 29. 
    van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S et al. 2011. Structures of SAS-6 suggest its organization in centrioles. Science 331:1196–99
    [Google Scholar]
  30. 30. 
    van Breugel M, Wilcken R, McLaughlin SH, Rutherford TJ, Johnson CM 2014. Structure of the SAS-6 cartwheel hub from Leishmania major. eLife 3:e01812
    [Google Scholar]
  31. 31. 
    Cottee MA, Muschalik N, Johnson S, Leveson J, Raff JW, Lea SM 2015. The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies. eLife 4:e07236
    [Google Scholar]
  32. 32. 
    Guichard P, Hamel V, Le Guennec M, Banterle N, Iacovache I et al. 2017. Cell-free reconstitution reveals centriole cartwheel assembly mechanisms. Nat. Commun. 8:14813
    [Google Scholar]
  33. 33. 
    Aydogan MG, Wainman A, Saurya S, Steinacker TL, Caballe A et al. 2018. A homeostatic clock sets daughter centriole size in flies. J. Cell Biol. 217:1233–48
    [Google Scholar]
  34. 34. 
    Wang WJ, Acehan D, Kao CH, Jane WN, Uryu K, Tsou MF 2015. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. eLife 4:e10586
    [Google Scholar]
  35. 35. 
    Hilbert M, Noga A, Frey D, Hamel V, Guichard P et al. 2016. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. Nat. Cell Biol. 18:393–403
    [Google Scholar]
  36. 36. 
    Comartin D, Gupta GD, Fussner E, Coyaud E, Hasegan M et al. 2013. CEP120 and SPICE1 cooperate with CPAP in centriole elongation. Curr. Biol. 23:1360–66
    [Google Scholar]
  37. 37. 
    Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK 2009. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11:825–31
    [Google Scholar]
  38. 38. 
    Kohlmaier G, Loncarek J, Meng X, McEwen BF, Mogensen MM et al. 2009. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19:1012–18
    [Google Scholar]
  39. 39. 
    Lin YC, Chang CW, Hsu WB, Tang CJ, Lin YN et al. 2013. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J 32:1141–54
    [Google Scholar]
  40. 40. 
    Lin YN, Wu CT, Lin YC, Hsu WB, Tang CJ et al. 2013. CEP120 interacts with CPAP and positively regulates centriole elongation. J. Cell Biol. 202:211–19
    [Google Scholar]
  41. 41. 
    Dahl KD, Sankaran DG, Bayless BA, Pinter ME, Galati DF et al. 2015. A Short CEP135 splice isoform controls centriole duplication. Curr. Biol. 25:2591–96
    [Google Scholar]
  42. 42. 
    Piperno G, Fuller MT. 1985. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101:2085–94
    [Google Scholar]
  43. 43. 
    Edde B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, Denoulet P 1990. Posttranslational glutamylation of alpha-tubulin. Science 247:83–85
    [Google Scholar]
  44. 44. 
    Kochanski RS, Borisy GG. 1990. Mode of centriole duplication and distribution. J. Cell Biol. 110:1599–605
    [Google Scholar]
  45. 45. 
    Breslow DK, Hoogendoorn S, Kopp AR, Morgens DW, Vu BK et al. 2018. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat. Genet. 50:460–71
    [Google Scholar]
  46. 46. 
    Wang JT, Kong D, Hoerner CR, Loncarek J, Stearns T 2017. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. eLife 6:329061
    [Google Scholar]
  47. 47. 
    Sharma A, Aher A, Dynes NJ, Frey D, Katrukha EA et al. 2016. Centriolar CPAP/SAS-4 imparts slow processive microtubule growth. Dev. Cell 37:362–76
    [Google Scholar]
  48. 48. 
    Zheng X, Ramani A, Soni K, Gottardo M, Zheng S et al. 2016. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length. Nat. Commun. 7:11874
    [Google Scholar]
  49. 49. 
    Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB et al. 2009. Control of centriole length by CPAP and CP110. Curr. Biol. 19:1005–11
    [Google Scholar]
  50. 50. 
    Keller LC, Geimer S, Romijn E, Yates J3rd, Zamora I, Marshall WF 2009. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol. Biol. Cell 20:1150–66
    [Google Scholar]
  51. 51. 
    Azimzadeh J, Hergert P, Delouvee A, Euteneuer U, Formstecher E et al. 2009. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J. Cell Biol. 185:101–14
    [Google Scholar]
  52. 52. 
    Galletta BJ, Jacobs KC, Fagerstrom CJ, Rusan NM 2016. Asterless is required for centriole length control and sperm development. J. Cell Biol. 213:435–50
    [Google Scholar]
  53. 53. 
    Chang CW, Hsu WB, Tsai JJ, Tang CJ, Tang TK 2016. CEP295 interacts with microtubules and is required for centriole elongation. J. Cell Sci. 129:2501–13
    [Google Scholar]
  54. 54. 
    Saurya S, Roque H, Novak ZA, Wainman A, Aydogan MG et al. 2016. Drosophila Ana1 is required for centrosome assembly and centriole elongation. J. Cell Sci. 129:2514–25
    [Google Scholar]
  55. 55. 
    Spektor A, Tsang WY, Khoo D, Dynlacht BD 2007. Cep97 and CP110 suppress a cilia assembly program. Cell 130:678–90
    [Google Scholar]
  56. 56. 
    Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD 2011. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145:914–25
    [Google Scholar]
  57. 57. 
    Tsang WY, Bossard C, Khanna H, Peranen J, Swaroop A et al. 2008. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev. Cell 15:187–97
    [Google Scholar]
  58. 58. 
    Loncarek J, Hergert P, Magidson V, Khodjakov A 2008. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10:322–28
    [Google Scholar]
  59. 59. 
    Szollosi D, Calarco P, Donahue RP 1972. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11:521–41
    [Google Scholar]
  60. 60. 
    La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A 2005. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168:713–22
    [Google Scholar]
  61. 61. 
    Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S et al. 2007. Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176:173–82
    [Google Scholar]
  62. 62. 
    Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL 2002. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158:1171–81
    [Google Scholar]
  63. 63. 
    Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M et al. 2015. p53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210:63–77
    [Google Scholar]
  64. 64. 
    Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA 2007. Plk4-induced centriole biogenesis in human cells. Dev. Cell 13:190–202
    [Google Scholar]
  65. 65. 
    Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC 2012. The structure of the Plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 20:1905–17
    [Google Scholar]
  66. 66. 
    Shimanovskaya E, Viscardi V, Lesigang J, Lettman MM, Qiao R et al. 2014. Structure of the C. elegans ZYG-1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases. Structure 22:1090–104
    [Google Scholar]
  67. 67. 
    Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M et al. 2013. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr. Biol. 23:2245–54
    [Google Scholar]
  68. 68. 
    Holland AJ, Lan W, Niessen S, Hoover H, Cleveland DW 2010. Polo-like kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188:191–98
    [Google Scholar]
  69. 69. 
    Klebba JE, Buster DW, Nguyen AL, Swatkoski S, Gucek M et al. 2013. Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron. Curr. Biol. 23:2255–61
    [Google Scholar]
  70. 70. 
    Guderian G, Westendorf J, Uldschmid A, Nigg EA 2010. Plk4 trans-autophosphorylation regulates centriole number by controlling βTrCP-mediated degradation. J. Cell Sci. 123:2163–69
    [Google Scholar]
  71. 71. 
    Yamamoto S, Kitagawa D. 2018. Self-organization of Plk4 regulates symmetry breaking in centriole duplication. bioRxiv. https://doi.org/10.1101/313635
    [Crossref]
  72. 72. 
    Montenegro Gouveia S, Zitouni S, Kong D, Duarte P, Ferreira Gomes B et al. 2019. PLK4 is a microtubule-associated protein that self assembles promoting de novo MTOC formation. J. Cell Sci. In press. https://doi.org/10.1242/jcs.219501
    [Crossref] [Google Scholar]
  73. 73. 
    Goryachev AB, Pokhilko AV. 2008. Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Lett 582:1437–43
    [Google Scholar]
  74. 74. 
    Howell AS, Savage NS, Johnson SA, Bose I, Wagner AW et al. 2009. Singularity in polarization: rewiring yeast cells to make two buds. Cell 139:731–43
    [Google Scholar]
  75. 75. 
    Leda M, Holland AJ, Goryachev AB 2018. Autoamplification and competition drive symmetry breaking: initiation of centriole duplication by the PLK4-STIL network. iScience 8:222–35
    [Google Scholar]
  76. 76. 
    Dippell RV. 1968. The development of basal bodies in paramecium. PNAS 61:461–68
    [Google Scholar]
  77. 77. 
    Iftode F, Fleury-Aubusson A. 2003. Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission. Biol. Cell 95:39–51
    [Google Scholar]
  78. 78. 
    O'Toole ET, Dutcher SK. 2014. Site-specific basal body duplication in Chlamydomonas. . Cytoskeleton 71:108–18
    [Google Scholar]
  79. 79. 
    Wloga D, Frankel J. 2012. From molecules to morphology: cellular organization of Tetrahymena thermophila. . Methods Cell Biol 109:83–140
    [Google Scholar]
  80. 80. 
    Wong C, Stearns T. 2003. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5:539–44
    [Google Scholar]
  81. 81. 
    Kim M, O'Rourke BP, Soni RK, Jallepalli PV, Hendrickson RC, Tsou MF 2016. Promotion and suppression of centriole duplication are catalytically coupled through PLK4 to ensure centriole homeostasis. Cell Rep 16:1195–203
    [Google Scholar]
  82. 82. 
    Tsou MF, Stearns T. 2006. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–51
    [Google Scholar]
  83. 83. 
    Tsou MF, Wang WJ, George KA, Uryu K, Stearns T, Jallepalli PV 2009. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17:344–54
    [Google Scholar]
  84. 84. 
    Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M 2012. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr. Biol. 22:915–21
    [Google Scholar]
  85. 85. 
    Lee K, Rhee K. 2012. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11:2476–85
    [Google Scholar]
  86. 86. 
    Shukla A, Kong D, Sharma M, Magidson V, Loncarek J 2015. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat. Commun. 6:8077
    [Google Scholar]
  87. 87. 
    Kong D, Farmer V, Shukla A, James J, Gruskin R et al. 2014. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J. Cell Biol. 206:855–65
    [Google Scholar]
  88. 88. 
    Kim J, Lee K, Rhee K 2015. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat. Commun. 6:10076
    [Google Scholar]
  89. 89. 
    Wang WJ, Soni RK, Uryu K, Tsou MF 2011. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell Biol. 193:727–39
    [Google Scholar]
  90. 90. 
    Novak ZA, Wainman A, Gartenmann L, Raff JW 2016. Cdk1 phosphorylates Drosophila Sas-4 to recruit Polo to daughter centrioles and convert them to centrosomes. Dev. Cell 37:545–57
    [Google Scholar]
  91. 91. 
    Novak ZA, Conduit PT, Wainman A, Raff JW 2014. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr. Biol. 24:1276–82
    [Google Scholar]
  92. 92. 
    Izquierdo D, Wang WJ, Uryu K, Tsou MF 2014. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep 8:957–65
    [Google Scholar]
  93. 93. 
    Tsuchiya Y, Yoshiba S, Gupta A, Watanabe K, Kitagawa D 2016. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat. Commun. 7:12567
    [Google Scholar]
  94. 94. 
    Fu J, Lipinszki Z, Rangone H, Min M, Mykura C et al. 2016. Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18:87–99
    [Google Scholar]
  95. 95. 
    Sugioka K, Hamill DR, Lowry JB, McNeely ME, Enrick M et al. 2017. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation. eLife 6:e20353
    [Google Scholar]
  96. 96. 
    Lacey KR, Jackson PK, Stearns T 1999. Cyclin-dependent kinase control of centrosome duplication. PNAS 96:2817–22
    [Google Scholar]
  97. 97. 
    Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G 1999. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–54
    [Google Scholar]
  98. 98. 
    Matsumoto Y, Hayashi K, Nishida E 1999. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9:429–32
    [Google Scholar]
  99. 99. 
    Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA 1999. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1:88–93
    [Google Scholar]
  100. 100. 
    Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S 2006. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25:2943–49
    [Google Scholar]
  101. 101. 
    Zitouni S, Francia ME, Leal F, Montenegro Gouveia S, Nabais C et al. 2016. CDK1 prevents unscheduled PLK4-STIL complex assembly in centriole biogenesis. Curr. Biol. 26:1127–37
    [Google Scholar]
  102. 102. 
    Spassky N, Meunier A. 2017. The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18:423–36
    [Google Scholar]
  103. 103. 
    Klos Dehring DA, Vladar EK, Werner ME, Mitchell JW, Hwang P, Mitchell BJ 2013. Deuterosome-mediated centriole biogenesis. Dev. Cell 27:103–12
    [Google Scholar]
  104. 104. 
    Zhao H, Zhu L, Zhu Y, Cao J, Li S et al. 2013. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat. Cell Biol. 15:1434–44
    [Google Scholar]
  105. 105. 
    Al Jord A, Lemaitre AI, Delgehyr N, Faucourt M, Spassky N, Meunier A 2014. Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature 516:104–7
    [Google Scholar]
  106. 106. 
    Zhao H, Chen Q, Huang Q, Yan X, Zhu X 2018. Mother centrioles are dispensable for deuterosome formation and function during basal body amplification. bioRxiv . https://doi.org/10.1101/373662
    [Crossref]
  107. 107. 
    Al Jord A, Shihavuddin A, Servignat d'Aout R, Faucourt M, Genovesio A et al. 2017. Calibrated mitotic oscillator drives motile ciliogenesis. Science 358:803–6
    [Google Scholar]
  108. 108. 
    Vladar EK, Stratton MB, Saal ML, Salazar-De Simone G, Wang X et al. 2018. Cyclin-dependent kinase control of motile ciliogenesis. eLife 7:e36375
    [Google Scholar]
  109. 109. 
    Pimenta-Marques A, Bento I, Lopes CA, Duarte P, Jana SC, Bettencourt-Dias M 2016. A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science 353:aaf4866
    [Google Scholar]
  110. 110. 
    Werner S, Pimenta-Marques A, Bettencourt-Dias M 2017. Maintaining centrosomes and cilia. J. Cell Sci. 130:3789–800
    [Google Scholar]
  111. 111. 
    Tassin AM, Maro B, Bornens M 1985. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100:35–46
    [Google Scholar]
  112. 112. 
    Connolly JA, Kiosses BW, Kalnins VI 1986. Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro. Eur. J. Cell Biol. 39:341–45
    [Google Scholar]
  113. 113. 
    Conduit PT, Wainman A, Raff JW 2015. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16:611–24
    [Google Scholar]
  114. 114. 
    Woodruff JB, Wueseke O, Hyman AA 2014. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. B 369:20130459
    [Google Scholar]
  115. 115. 
    Fu J, Glover DM. 2012. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2:120104
    [Google Scholar]
  116. 116. 
    Jana SC, Marteil G, Bettencourt-Dias M 2014. Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr. Opin. Cell Biol. 26:96–106
    [Google Scholar]
  117. 117. 
    Lawo S, Hasegan M, Gupta GD, Pelletier L 2012. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14:1148–58
    [Google Scholar]
  118. 118. 
    Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F et al. 2012. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14:1159–68
    [Google Scholar]
  119. 119. 
    Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA 2012. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1:965–76
    [Google Scholar]
  120. 120. 
    Haren L, Stearns T, Luders J 2009. Plk1-dependent recruitment of γ-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLOS ONE 4:e5976
    [Google Scholar]
  121. 121. 
    Lee K, Rhee K. 2011. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195:1093–101
    [Google Scholar]
  122. 122. 
    Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A et al. 2014. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28:659–69
    [Google Scholar]
  123. 123. 
    Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD et al. 2015. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348:808–12
    [Google Scholar]
  124. 124. 
    Dobbelaere J, Josue F, Suijkerbuijk S, Baum B, Tapon N, Raff J 2008. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. . PLOS Biol 6:e224
    [Google Scholar]
  125. 125. 
    Fong KW, Choi YK, Rattner JB, Qi RZ 2008. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Mol. Biol. Cell 19:115–25
    [Google Scholar]
  126. 126. 
    Gomez-Ferreria MA, Bashkurov M, Helbig AO, Larsen B, Pawson T et al. 2012. Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly. J. Cell Sci. 125:3745–51
    [Google Scholar]
  127. 127. 
    Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ 2004. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15:3642–57
    [Google Scholar]
  128. 128. 
    Feng Z, Caballe A, Wainman A, Johnson S, Haensele AFM et al. 2017. Structural basis for mitotic centrosome assembly in flies. Cell 169:1078–89.e13
    [Google Scholar]
  129. 129. 
    Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC et al. 2014. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3:e03399
    [Google Scholar]
  130. 130. 
    Conduit PT, Raff JW. 2015. Different Drosophila cell types exhibit differences in mitotic centrosome assembly dynamics. Curr. Biol. 25:R650–51
    [Google Scholar]
  131. 131. 
    Laos T, Cabral G, Dammermann A 2015. Isotropic incorporation of SPD-5 underlies centrosome assembly in C. elegans. Curr. Biol. 25:R648–49
    [Google Scholar]
  132. 132. 
    Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA 2017. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169:1066–77.e10
    [Google Scholar]
  133. 133. 
    Prosser SL, Pelletier L. 2017. Mitotic spindle assembly in animal cells: a fine balancing act. Nat. Rev. Mol. Cell Biol. 18:187–201
    [Google Scholar]
  134. 134. 
    Lambrus BG, Daggubati V, Uetake Y, Scott PM, Clutario KM et al. 2016. A USP28–53BP1–p53–p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214:143–53
    [Google Scholar]
  135. 135. 
    Fong CS, Mazo G, Das T, Goodman J, Kim M et al. 2016. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 5:e16270
    [Google Scholar]
  136. 136. 
    Meitinger F, Anzola JV, Kaulich M, Richardson A, Stender JD et al. 2016. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214:155–66
    [Google Scholar]
  137. 137. 
    Bazzi H, Anderson KV. 2014. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. PNAS 111:E1491–500
    [Google Scholar]
  138. 138. 
    Lambrus BG, Holland AJ. 2017. A new mode of mitotic surveillance. Trends Cell Biol 27:314–21
    [Google Scholar]
  139. 139. 
    Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG et al. 2006. Flies without centrioles. Cell 125:1375–86
    [Google Scholar]
  140. 140. 
    Lattao R, Kovacs L, Glover DM 2017. The centrioles, centrosomes, basal bodies, and cilia of Drosophila melanogaster. . Genetics 206:33–53
    [Google Scholar]
  141. 141. 
    Chan JY. 2011. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7:1122–44
    [Google Scholar]
  142. 142. 
    Sercin O, Larsimont JC, Karambelas AE, Marthiens V, Moers V et al. 2016. Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat. Cell Biol. 18:100–10
    [Google Scholar]
  143. 143. 
    Levine MS, Bakker B, Boeckx B, Moyett J, Lu J et al. 2017. Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev. Cell 40:313–22.e5
    [Google Scholar]
  144. 144. 
    Coelho PA, Bury L, Shahbazi MN, Liakath-Ali K, Tate PH et al. 2015. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5:150209
    [Google Scholar]
  145. 145. 
    Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV et al. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58
    [Google Scholar]
  146. 146. 
    Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:179–84
    [Google Scholar]
  147. 147. 
    Silkworth WT, Nardi IK, Scholl LM, Cimini D 2009. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLOS ONE 4:e6564
    [Google Scholar]
  148. 148. 
    Ganem NJ, Godinho SA, Pellman D 2009. A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–82
    [Google Scholar]
  149. 149. 
    Godinho SA, Picone R, Burute M, Dagher R, Su Y et al. 2014. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–71
    [Google Scholar]
  150. 150. 
    Ganier O, Schnerch D, Oertle P, Lim RY, Plodinec M, Nigg EA 2018. Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J 37:e98576
    [Google Scholar]
  151. 151. 
    Jayaraman D, Bae BI, Walsh CA 2018. The genetics of primary microcephaly. Annu. Rev. Genom. Hum. Genet. 19:177–200
    [Google Scholar]
  152. 152. 
    Insolera R, Bazzi H, Shao W, Anderson KV, Shi SH 2014. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci. 17:1528–35
    [Google Scholar]
  153. 153. 
    Marjanovic M, Sanchez-Huertas C, Terre B, Gomez R, Scheel JF et al. 2015. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nat. Commun. 6:7676
    [Google Scholar]
  154. 154. 
    Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ 2011. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat. Cell Biol. 13:1325–34
    [Google Scholar]
  155. 155. 
    Pilaz LJ, McMahon JJ, Miller EE, Lennox AL, Suzuki A et al. 2016. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89:83–99
    [Google Scholar]
  156. 156. 
    Nachury MV, Seeley ES, Jin H 2010. Trafficking to the ciliary membrane: How to get across the periciliary diffusion barrier. ? Annu. Rev. Cell Dev. Biol. 26:59–87
    [Google Scholar]
  157. 157. 
    Reiter JF, Blacque OE, Leroux MR 2012. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13:608–18
    [Google Scholar]
  158. 158. 
    Jensen VL, Leroux MR. 2017. Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Curr. Opin. Cell Biol. 47:83–91
    [Google Scholar]
  159. 159. 
    Garcia-Gonzalo FR, Reiter JF. 2017. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9:a028134
    [Google Scholar]
  160. 160. 
    Benmerah A. 2013. The ciliary pocket. Curr. Opin. Cell Biol. 25:78–84
    [Google Scholar]
  161. 161. 
    Mitchell DR. 2017. Evolution of cilia. Cold Spring Harb. Perspect. Biol. 9:a028290
    [Google Scholar]
  162. 162. 
    Meunier A, Azimzadeh J. 2016. Multiciliated cells in animals. Cold Spring Harb. Perspect. Biol. 8:a028233
    [Google Scholar]
  163. 163. 
    Ishikawa T. 2017. Axoneme structure from motile cilia. Cold Spring Harb. Perspect. Biol. 9:a028076
    [Google Scholar]
  164. 164. 
    Tucker RW, Pardee AB, Fujiwara K 1979. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17:527–35
    [Google Scholar]
  165. 165. 
    Rieder CL, Jensen CG, Jensen LC 1979. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J. Ultrastruct. Res. 68:173–85
    [Google Scholar]
  166. 166. 
    Rasi MQ, Parker JD, Feldman JL, Marshall WF, Quarmby LM 2009. Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas. Mol. Biol. Cell 20:379–88
    [Google Scholar]
  167. 167. 
    Sorokin S. 1962. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15:363–77
    [Google Scholar]
  168. 168. 
    Sorokin SP. 1968. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3:207–30
    [Google Scholar]
  169. 169. 
    Wu CT, Chen HY, Tang TK 2018. Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat. Cell Biol. 20:175–85
    [Google Scholar]
  170. 170. 
    Lu Q, Insinna C, Ott C, Stauffer J, Pintado PA et al. 2015. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17:228–40
    [Google Scholar]
  171. 171. 
    Knodler A, Feng S, Zhang J, Zhang X, Das A et al. 2010. Coordination of Rab8 and Rab11 in primary ciliogenesis. PNAS 107:6346–51
    [Google Scholar]
  172. 172. 
    Mukhopadhyay S, Badgandi HB, Hwang SH, Somatilaka B, Shimada IS, Pal K 2017. Trafficking to the primary cilium membrane. Mol. Biol. Cell 28:233–39
    [Google Scholar]
  173. 173. 
    Pitaval A, Tseng Q, Bornens M, Thery M 2010. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 191:303–12
    [Google Scholar]
  174. 174. 
    Pitaval A, Senger F, Letort G, Gidrol X, Guyon L et al. 2017. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 216:3713–28
    [Google Scholar]
  175. 175. 
    Francis SS, Sfakianos J, Lo B, Mellman I 2011. A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J. Cell Biol. 193:219–33
    [Google Scholar]
  176. 176. 
    Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K et al. 2010. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–51
    [Google Scholar]
  177. 177. 
    Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C et al. 2010. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123:1785–95
    [Google Scholar]
  178. 178. 
    Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE et al. 2011. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. PNAS 108:2759–64
    [Google Scholar]
  179. 179. 
    Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–13
    [Google Scholar]
  180. 180. 
    Sato T, Iwano T, Kunii M, Matsuda S, Mizuguchi R et al. 2014. Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J. Cell Sci. 127:422–31
    [Google Scholar]
  181. 181. 
    Goetz SC, Liem KF Jr., Anderson KV 2012. The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 151:847–58
    [Google Scholar]
  182. 182. 
    Cajanek L, Nigg EA. 2014. Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. PNAS 111:E2841–50
    [Google Scholar]
  183. 183. 
    Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N et al. 2015. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J. Cell Biol. 210:737–51
    [Google Scholar]
  184. 184. 
    Taschner M, Lorentzen E. 2016. The intraflagellar transport machinery. Cold Spring Harb. Perspect. Biol. 8:a028092
    [Google Scholar]
  185. 185. 
    Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS et al. 2010. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev 24:2180–93
    [Google Scholar]
  186. 186. 
    Nachury MV. 2018. The molecular machines that traffic signaling receptors into and out of cilia. Curr. Opin. Cell Biol. 51:124–31
    [Google Scholar]
  187. 187. 
    Gilula NB, Satir P. 1972. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53:494–509
    [Google Scholar]
  188. 188. 
    Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ et al. 2011. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–28
    [Google Scholar]
  189. 189. 
    Williams CL, Li C, Kida K, Inglis PN, Mohan S et al. 2011. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192:1023–41
    [Google Scholar]
  190. 190. 
    Reiter JF, Leroux MR. 2017. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18:533–47
    [Google Scholar]
  191. 191. 
    Braun DA, Hildebrandt F. 2017. Ciliopathies. Cold Spring Harb. Perspect. Biol. 9:a028191
    [Google Scholar]
  192. 192. 
    Ishikawa H, Marshall WF. 2017. Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect. Biol. 9:a021998
    [Google Scholar]
  193. 193. 
    Hendel NL, Thomson M, Marshall WF 2018. Diffusion as a ruler: modeling kinesin diffusion as a length sensor for intraflagellar transport. Biophys. J. 114:663–74
    [Google Scholar]
  194. 194. 
    Marshall WF, Rosenbaum JL. 2001. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J. Cell Biol. 155:405–14
    [Google Scholar]
  195. 195. 
    He M, Subramanian R, Bangs F, Omelchenko T, Liem KF Jr. et al. 2014. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16:663–72
    [Google Scholar]
  196. 196. 
    Nager AR, Goldstein JS, Herranz-Perez V, Portran D, Ye F et al. 2017. An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168:252–63.e14
    [Google Scholar]
  197. 197. 
    Phua SC, Chiba S, Suzuki M, Su E, Roberson EC et al. 2017. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168:264–79.e15
    [Google Scholar]
  198. 198. 
    Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A 2017. Dynamics of the IFT machinery at the ciliary tip. eLife 6:e28606
    [Google Scholar]
  199. 199. 
    Parker JD, Hilton LK, Diener DR, Rasi MQ, Mahjoub MR et al. 2010. Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton 67:425–30
    [Google Scholar]
  200. 200. 
    Fritz-Laylin LK, Lord SJ, Mullins RD 2017. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J. Cell Biol. 216:1673–88
    [Google Scholar]
  201. 201. 
    Mirvis M, Siemers KA, Nelson WJ, Stearns T 2018. Primary cilium disassembly in mammalian cells occurs predominantly by whole-cilium shedding. bioRxiv 433144 . https://doi.org/10.1101/433144
    [Crossref]
  202. 202. 
    Das RM, Storey KG. 2014. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 343:200–4
    [Google Scholar]
  203. 203. 
    Kasioulis I, Das RM, Storey KG 2017. Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination. eLife 6:e26215
    [Google Scholar]
  204. 204. 
    Paridaen JT, Wilsch-Brauninger M, Huttner WB 2013. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155:333–44
    [Google Scholar]
  205. 205. 
    Saito M, Otsu W, Hsu KS, Chuang JZ, Yanagisawa T et al. 2017. Tctex-1 controls ciliary resorption by regulating branched actin polymerization and endocytosis. EMBO Rep 18:1460–72
    [Google Scholar]
  206. 206. 
    Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA 2007. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129:1351–63
    [Google Scholar]
  207. 207. 
    Piao T, Luo M, Wang L, Guo Y, Li D et al. 2009. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. . PNAS 106:4713–18
    [Google Scholar]
  208. 208. 
    Miyamoto T, Hosoba K, Ochiai H, Royba E, Izumi H et al. 2015. The microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep 10:664–73
    [Google Scholar]
  209. 209. 
    Kim S, Lee K, Choi JH, Ringstad N, Dynlacht BD 2015. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat. Commun. 6:8087
    [Google Scholar]
  210. 210. 
    Kohli P, Hohne M, Jungst C, Bertsch S, Ebert LK et al. 2017. The ciliary membrane-associated proteome reveals actin-binding proteins as key components of cilia. EMBO Rep 18:1521–35
    [Google Scholar]
  211. 211. 
    Pan J, Snell WJ. 2005. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev. Cell 9:431–38
    [Google Scholar]
  212. 212. 
    Huang K, Diener DR, Rosenbaum JL 2009. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J. Cell Biol. 186:601–13
    [Google Scholar]
  213. 213. 
    Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C et al. 2011. Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat. Cell Biol. 13:402–11
    [Google Scholar]
  214. 214. 
    Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S et al. 2011. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat. Cell Biol. 13:351–60
    [Google Scholar]
  215. 215. 
    Inaba H, Goto H, Kasahara K, Kumamoto K, Yonemura S et al. 2016. Ndel1 suppresses ciliogenesis in proliferating cells by regulating the trichoplein-Aurora A pathway. J. Cell Biol. 212:409–23
    [Google Scholar]
  216. 216. 
    Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y et al. 2012. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J. Cell Biol. 197:391–405
    [Google Scholar]
  217. 217. 
    Gabriel E, Wason A, Ramani A, Gooi LM, Keller P et al. 2016. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J 35:803–19
    [Google Scholar]
  218. 218. 
    Tucker RW, Scher CD, Stiles CD 1979. Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40. Cell 18:1065–72
    [Google Scholar]
  219. 219. 
    Nielsen BS, Malinda RR, Schmid FM, Pedersen SF, Christensen ST, Pedersen LB 2015. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ and AURKA dependent mechanism. J. Cell Sci. 128:3543–49
    [Google Scholar]
  220. 220. 
    Kasahara K, Aoki H, Kiyono T, Wang S, Kagiwada H et al. 2018. EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat. Commun. 9:758
    [Google Scholar]
  221. 221. 
    Spalluto C, Wilson DI, Hearn T 2012. Nek2 localises to the distal portion of the mother centriole/basal body and is required for timely cilium disassembly at the G2/M transition. Eur. J. Cell Biol. 91:675–86
    [Google Scholar]
  222. 222. 
    Lee KH, Johmura Y, Yu LR, Park JE, Gao Y et al. 2012. Identification of a novel Wnt5a–CK1ε–Dvl2–Plk1-mediated primary cilia disassembly pathway. EMBO J 31:3104–17
    [Google Scholar]
  223. 223. 
    Pan J, Wang Q, Snell WJ 2004. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev. Cell 6:445–51
    [Google Scholar]
  224. 224. 
    Bradley BA, Quarmby LM. 2005. A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J. Cell Sci. 118:3317–26
    [Google Scholar]
  225. 225. 
    Ford MJ, Yeyati PL, Mali GR, Keighren MA, Waddell SH et al. 2018. A cell/cilia cycle biosensor for single-cell kinetics reveals persistence of cilia after G1/S transition is a general property in cells and mice. Dev. Cell 47:509–23
    [Google Scholar]
  226. 226. 
    Bangs FK, Schrode N, Hadjantonakis AK, Anderson KV 2015. Lineage specificity of primary cilia in the mouse embryo. Nat. Cell Biol. 17:113–22
    [Google Scholar]
  227. 227. 
    Prosser SL, Morrison CG. 2015. Centrin2 regulates CP110 removal in primary cilium formation. J. Cell Biol. 208:693–701
    [Google Scholar]
  228. 228. 
    Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM 2006. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–65
    [Google Scholar]
  229. 229. 
    Stinchcombe JC, Randzavola LO, Angus KL, Mantell JM, Verkade P, Griffiths GM 2015. Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis. Curr. Biol. 25:3239–44
    [Google Scholar]
  230. 230. 
    de la Roche M, Asano Y, Griffiths GM 2016. Origins of the cytolytic synapse. Nat. Rev. Immunol. 16:421–32
    [Google Scholar]
  231. 231. 
    Finetti F, Onnis A, Baldari CT 2015. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 16:241–49
    [Google Scholar]
  232. 232. 
    Stephen LA, ElMaghloob Y, McIlwraith MJ, Yelland T, Castro Sanchez P et al. 2018. The ciliary machinery is repurposed for T cell immune synapse trafficking of LCK. Dev. Cell 47:122–32
    [Google Scholar]
  233. 233. 
    Bangs F, Anderson KV. 2017. Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9:a028175
    [Google Scholar]
  234. 234. 
    Nachury MV. 2014. How do cilia organize signalling cascades. ? Philos. Trans. R. Soc. B 369:20130465
    [Google Scholar]
  235. 235. 
    Ma M, Gallagher AR, Somlo S 2017. Ciliary mechanisms of cyst formation in polycystic kidney disease. Cold Spring Harb. Perspect. Biol. 9:a028209
    [Google Scholar]
  236. 236. 
    Mykytyn K, Askwith C. 2017. G-protein-coupled receptor signaling in cilia. Cold Spring Harb. Perspect. Biol. 9:a028183
    [Google Scholar]
  237. 237. 
    Pala R, Alomari N, Nauli SM 2017. Primary cilium-dependent signaling mechanisms. Int. J. Mol. Sci. 18:2272
    [Google Scholar]
  238. 238. 
    Hilgendorf KI, Johnson CT, Jackson PK 2016. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr. Opin. Cell Biol. 39:84–92
    [Google Scholar]
  239. 239. 
    Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS et al. 2015. Proteomics of primary cilia by proximity labeling. Dev. Cell 35:497–512
    [Google Scholar]
  240. 240. 
    Siljee JE, Wang Y, Bernard AA, Ersoy BA, Zhang S et al. 2018. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50:180–85
    [Google Scholar]
  241. 241. 
    Nozawa YI, Lin C, Chuang PT 2013. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr. Opin. Genet. Dev. 23:429–37
    [Google Scholar]
  242. 242. 
    Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE 2013. Primary cilia are specialized calcium signalling organelles. Nature 504:311–14
    [Google Scholar]
  243. 243. 
    Moore BS, Stepanchick AN, Tewson PH, Hartle CM, Zhang J et al. 2016. Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics. PNAS 113:13069–74
    [Google Scholar]
  244. 244. 
    Wang Q, Pan J, Snell WJ 2006. Intraflagellar transport particles participate directly in cilium-generated signaling in Chlamydomonas. . Cell 125:549–62
    [Google Scholar]
  245. 245. 
    Klena NT, Gibbs BC, Lo CW 2017. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb. Perspect. Biol. 9:a028266
    [Google Scholar]
  246. 246. 
    Bujakowska KM, Liu Q, Pierce EA 2017. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb. Perspect. Biol. 9:a028274
    [Google Scholar]
  247. 247. 
    Kopinke D, Roberson EC, Reiter JF 2017. Ciliary Hedgehog signaling restricts injury-induced adipogenesis. Cell 170:340–51.e12
    [Google Scholar]
  248. 248. 
    Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK et al. 2009. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15:1055–61
    [Google Scholar]
  249. 249. 
    Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A 2009. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15:1062–65
    [Google Scholar]
  250. 250. 
    Liu H, Kiseleva AA, Golemis EA 2018. Ciliary signalling in cancer. Nat. Rev. Cancer 18:511–24
    [Google Scholar]
  251. 251. 
    Seeley ES, Carriere C, Goetze T, Longnecker DS, Korc M 2009. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69:422–30
    [Google Scholar]
  252. 252. 
    Kim J, Dabiri S, Seeley ES 2011. Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLOS ONE 6:e27410
    [Google Scholar]
  253. 253. 
    Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF 2013. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 73:2259–70
    [Google Scholar]
  254. 254. 
    Menzl I, Lebeau L, Pandey R, Hassounah NB, Li FW et al. 2014. Loss of primary cilia occurs early in breast cancer development. Cilia 3:7
    [Google Scholar]
  255. 255. 
    Zingg D, Debbache J, Pena-Hernandez R, Antunes AT, Schaefer SM et al. 2018. EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34:69–84.e14
    [Google Scholar]
  256. 256. 
    Zhao X, Pak E, Ornell KJ, Pazyra-Murphy MF, MacKenzie EL et al. 2017. A transposon screen identifies loss of primary cilia as a mechanism of resistance to SMO inhibitors. Cancer Discov 7:1436–49
    [Google Scholar]
  257. 257. 
    Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y et al. 2015. Identification and characterization of essential genes in the human genome. Science 350:1096–101
    [Google Scholar]
  258. 258. 
    Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR et al. 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163:1515–26
    [Google Scholar]
  259. 259. 
    Pusapati GV, Kong JH, Patel BB, Krishnan A, Sagner A et al. 2018. CRISPR screens uncover genes that regulate target cell sensitivity to the morphogen Sonic Hedgehog. Dev. Cell 44:113–29.e8
    [Google Scholar]
  260. 260. 
    Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE et al. 2017. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49:1779–84
    [Google Scholar]
  261. 261. 
    Wang T, Yu H, Hughes NW, Liu B, Kendirli A et al. 2017. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168:890–903.e15
    [Google Scholar]
  262. 262. 
    Pan J, Meyers RM, Michel BC, Mashtalir N, Sizemore AE et al. 2018. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. Cell Syst 6:555–68.e7
    [Google Scholar]
  263. 263. 
    Kim E, Dede M, Lenoir WF, Wang G, Srinivasan S et al. 2018. Hierarchical organization of the human cell from a cancer coessentiality network. bioRxiv 328880 . https://doi.org/10.1101/328880
    [Crossref]
  264. 264. 
    Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–74
    [Google Scholar]
  265. 265. 
    Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E et al. 2011. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J 30:1520–35
    [Google Scholar]
  266. 266. 
    Ishikawa H, Thompson J, Yates JR 3rd, Marshall WF 2012. Proteomic analysis of mammalian primary cilia. Curr. Biol. 22:414–19
    [Google Scholar]
  267. 267. 
    Keller LC, Romijn EP, Zamora I, Yates JR3rd, Marshall WF 2005. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15:1090–98
    [Google Scholar]
  268. 268. 
    Kilburn CL, Pearson CG, Romijn EP, Meehl JB, Giddings TH Jr. et al. 2007. New Tetrahymena basal body protein components identify basal body domain structure. J. Cell Biol. 178:905–12
    [Google Scholar]
  269. 269. 
    Pazour GJ, Agrin N, Leszyk J, Witman GB 2005. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170:103–13
    [Google Scholar]
  270. 270. 
    Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK et al. 2017. Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Dev. Cell 43:744–62.e11
    [Google Scholar]
  271. 271. 
    Kim DI, Roux KJ. 2016. Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol 26:804–17
    [Google Scholar]
  272. 272. 
    Han S, Li J, Ting AY 2018. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol. 50:17–23
    [Google Scholar]
  273. 273. 
    Gupta GD, Coyaud E, Goncalves J, Mojarad BA, Liu Y et al. 2015. A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163:1484–99
    [Google Scholar]
  274. 274. 
    Shi X, Garcia G3rd, Van De Weghe JC, McGorty R, Pazour GJ et al. 2017. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 19:1178–88
    [Google Scholar]
  275. 275. 
    Yang TT, Chong WM, Wang WJ, Mazo G, Tanos B et al. 2018. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9:2023
    [Google Scholar]
  276. 276. 
    Gambarotto D, Zwettlerr FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D 2019. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 1671–74
  277. 277. 
    Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T et al. 2012. Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151:1029–41
    [Google Scholar]
  278. 278. 
    Stepanek L, Pigino G. 2016. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352:721–24
    [Google Scholar]
  279. 279. 
    Lin J, Nicastro D. 2018. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360:eaar1968
    [Google Scholar]
  280. 280. 
    Jana SC, Mendonca S, Machado P, Werner S, Rocha J et al. 2018. Differential regulation of transition zone and centriole proteins contributes to ciliary base diversity. Nat. Cell Biol. 20:928–41
    [Google Scholar]
  281. 281. 
    Jordan MA, Diener DR, Stepanek L, Pigino G 2018. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20:1250–55
    [Google Scholar]
  282. 282. 
    Guichard P, Desfosses A, Maheshwari A, Hachet V, Dietrich C et al. 2012. Cartwheel architecture of Trichonympha basal body. Science 337:553
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111153
Loading
/content/journals/10.1146/annurev-biochem-013118-111153
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error