1932

Abstract

There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060408-173330
2010-07-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/79/1/annurev-biochem-060408-173330.html?itemId=/content/journals/10.1146/annurev-biochem-060408-173330&mimeType=html&fmt=ahah

Literature Cited

  1. Spirin AS.1.  2002. Ribosome as a molecular machine. FEBS Lett. 514:2–10 [Google Scholar]
  2. Garai A, Chowdhury D, Ramakrishnan TV. 2.  2009. Stochastic kinetics of ribosomes: single motor properties and collective behavior. Phys. Rev. E. 80:011908 [Google Scholar]
  3. Spirin AS.3.  2009. The ribosome as a conveying thermal ratchet machine. J. Biol. Chem. 284:21103–19 [Google Scholar]
  4. Spirin AS.4.  2004. The ribosome as an RNA-based molecular machine. RNA Biol. 1:3–9 [Google Scholar]
  5. Astumian RD.5.  1997. Thermodynamics and kinetics of a Brownian motor. Science 276:917–22 [Google Scholar]
  6. Peskin CS, Odell GM, Oster GF, Cordova NJ, Ermentrout B. 6.  1993. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:316–24 [Google Scholar]
  7. Cordova NJ, Ermentrout B, Oster GF. 7.  1992. Dynamics of single-motor molecules: the thermal ratchet model. Proc. Natl. Acad. Sci. USA 89:339–43 [Google Scholar]
  8. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. 8.  2005. Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–65 [Google Scholar]
  9. Bai L, Shundrovsky A, Wang MD. 9.  2004. Sequence-dependent kinetic model for transcription elongation by RNA polymerase. J. Mol. Biol. 344:335–49 [Google Scholar]
  10. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. 10.  1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–95 [Google Scholar]
  11. Onuchic JN, Wolynes PG. 11.  2004. Theory of protein folding. Curr. Opin. Struct. Biol. 14:70–75 [Google Scholar]
  12. Shcherbakova I, Mitra S, Laederach A, Brenowitz M. 12.  2008. Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs. Curr. Opin. Chem. Biol. 12:655–66 [Google Scholar]
  13. Thirumalai D, Lee N, Woodson SA, Klimov D. 13.  2001. Early events in RNA folding. Annu. Rev. Phys. Chem. 52:751–62 [Google Scholar]
  14. Bokinsky G, Zhuang XW. 14.  2005. Single-molecule RNA folding. Acc. Chem. Res. 38:566–73 [Google Scholar]
  15. Chu VB, Herschlag D. 15.  2008. Unwinding RNA's secrets: advances in the biology, physics, and modeling of complex RNAs. Curr. Opin. Struct. Biol. 18:305–14 [Google Scholar]
  16. Treiber DK, Williamson JR. 16.  2001. Beyond kinetic traps in RNA folding. Curr. Opin. Struct. Biol. 11:309–14 [Google Scholar]
  17. Dill KA, Chan HS. 17.  1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10–19 [Google Scholar]
  18. Schnell JR, Dyson HJ, Wright PE. 18.  2004. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct. 33:119–40 [Google Scholar]
  19. Zhuang X, Kim H, Pereira MJ, Babcock HP, Walter NG, Chu S. 19.  2002. Correlating structural dynamics and function in single ribozyme molecules. Science 296:1473–76 [Google Scholar]
  20. Nagel ZD, Klinman JP. 20.  2006. Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 106:3095–118 [Google Scholar]
  21. Benkovic SJ, Hammes GG, Hammes-Schiffer S. 21.  2008. Free-energy landscape of enzyme catalysis. Biochemistry 47:3317–21 [Google Scholar]
  22. Hammes-Schiffer S, Benkovic SJ. 22.  2006. Relating protein motion to catalysis. Annu. Rev. Biochem. 75:519–41 [Google Scholar]
  23. Cole R, Loria JP. 23.  2002. Evidence for flexibility in the function of ribonuclease A. Biochemistry 41:6072–81 [Google Scholar]
  24. Das K, Bauman JD, Clark AD Jr, Frenkel YV, Lewi PJ. 24.  et al. 2008. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. USA 105:1466–71 [Google Scholar]
  25. Zhuang XW. 25.  2005. Single-molecule RNA science. Annu. Rev. Biophys. Biomol. Struct. 34:399–414 [Google Scholar]
  26. Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T. 26.  et al. 2000. A single-molecule study of RNA catalysis and folding. Science 288:2048–51 [Google Scholar]
  27. English BP, Min W, van Oijen AM, Lee KT, Luo G. 27.  et al. 2006. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat. Chem. Biol. 2:87–94 [Google Scholar]
  28. Boehr DD, McElheny D, Dyson HJ, Wright PE. 28.  2006. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–42 [Google Scholar]
  29. Munro JB, Sanbonmatsu KY, Spahn CM, Blanchard SC. 29.  2009. Navigating the ribosome's metastable energy landscape. Trends Biochem. Sci. 34:390–400 [Google Scholar]
  30. Frank J, Agrawal RK. 30.  2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–22 [Google Scholar]
  31. Korostelev A, Ermolenko DN, Noller HF. 31.  2008. Structural dynamics of the ribosome. Curr. Opin. Chem. Biol. 12:674–83 [Google Scholar]
  32. Koshland DE Jr. 32.  1958. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44:98–104 [Google Scholar]
  33. Williamson JR.33.  2000. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7:834–37 [Google Scholar]
  34. Tsai CJ, Kumar S, Ma B, Nussinov R. 34.  1999. Folding funnels, binding funnels, and protein function. Protein Sci. 8:1181–90 [Google Scholar]
  35. Bosshard HR.35.  2001. Molecular recognition by induced fit: How fit is the concept?. News Physiol. Sci. 16:171–73 [Google Scholar]
  36. Wang C, Karpowich N, Hunt JF, Rance M, Palmer AG. 36.  2004. Dynamics of ATP-binding cassette contribute to allosteric control, nucleotide binding and energy transduction in ABC transporters. J. Mol. Biol. 342:525–37 [Google Scholar]
  37. Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH. 37.  et al. 2008. Following translation by single ribosomes one codon at a time. Nature 452:598–603 [Google Scholar]
  38. Blanchard SC, Kim HD, Gonzalez RL Jr, Puglisi JD, Chu S. 38.  2004. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101:12893–98 [Google Scholar]
  39. Blanchard SC, Gonzalez RL Jr, Kim HD, Chu S, Puglisi JD. 39.  2004. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11:1008–14 [Google Scholar]
  40. Fei J, Bronson JE, Hofman JM, Srinivas RL, Wiggins CH, Gonzalez RLJ. 40.  2009. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad. Sci. USA 106:15702–7 [Google Scholar]
  41. Fei J, Kosuri P, MacDougall DD, Gonzalez RL Jr. 41.  2008. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30:348–59 [Google Scholar]
  42. Cornish PV, Ermolenko DN, Staple DW, Hoang L, Hickerson RP. 42.  et al. 2009. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl. Acad. Sci. USA 106:2571–76 [Google Scholar]
  43. Cornish PV, Ermolenko DN, Noller HF, Ha T. 43.  2008. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30:578–88 [Google Scholar]
  44. Munro JB, Altman RB, O'Connor N, Blanchard SC. 44.  2007. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25:505–17 [Google Scholar]
  45. Marshall RA, Dorywalska M, Puglisi JD. 45.  2008. Irreversible chemical steps control intersubunit dynamics during translation. Proc. Natl. Acad. Sci. USA 105:15364–69 [Google Scholar]
  46. Wang Y, Qin H, Kudaravalli RD, Kirillov SV, Dempsey GT. 46.  et al. 2007. Single-molecule structural dynamics of EF-G–ribosome interaction during translocation. Biochemistry 46:10767–75 [Google Scholar]
  47. Uemura S, Dorywalska M, Lee TH, Kim HD, Puglisi JD, Chu S. 47.  2007. Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature 446:454–57 [Google Scholar]
  48. Marshall RA, Aitken CE, Puglisi JD. 48.  2009. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35:37–47 [Google Scholar]
  49. Vanzi F, Vladimirov S, Knudsen CR, Goldman YE, Cooperman BS. 49.  2003. Protein synthesis by single ribosomes. RNA 9:1174–79 [Google Scholar]
  50. Vanzi F, Takagi Y, Shuman H, Cooperman BS, Goldman YE. 50.  2005. Mechanical studies of single ribosome/mRNA complexes. Biophys. J. 89:1909–19 [Google Scholar]
  51. Dorywalska M, Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. 51.  2005. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33:182–89 [Google Scholar]
  52. Munro JB, Altman RB, Tung CS, Cate JH, Sanbonmatsu KY, Blanchard SC. 52.  2010. Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc. Natl. Acad. Sci. USA. 107:709–14 [Google Scholar]
  53. Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC. 53.  2010. A fast dynamic mode of the EF-G-bound ribosome. EMBO J. 29:770–81 [Google Scholar]
  54. Feldman MB, Terry DS, Altman RB, Blanchard SC. 54.  2009. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat. Chem. Biol. 6:54–62 [Google Scholar]
  55. Effraim PR, Wang J, Englander MT, Avins J, Leyh TS. 55.  et al. 2009. Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nat. Chem. Biol. 5:947–53 [Google Scholar]
  56. Gonzalez RL Jr, Chu S, Puglisi JD. 56.  2007. Thiostrepton inhibition of tRNA delivery to the ribosome. RNA 13:2091–97 [Google Scholar]
  57. Sternberg SH. Fei J, Prywes N, McGrath KA, Gonzalez RL Jr. 57.  2009. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 16:861–68 [Google Scholar]
  58. Kim HD, Puglisi J, Chu S. 58.  2007. Fluctuations of transfer RNAs between classical and hybrid states. Biophys. J. 93:3575–82 [Google Scholar]
  59. Lee TH, Blanchard SC, Kim HD, Puglisi JD, Chu S. 59.  2007. The role of fluctuations in tRNA selection by the ribosome. Proc. Natl. Acad. Sci. USA 104:13661–65 [Google Scholar]
  60. Bronson JE, Fei J, Hofman JM, Gonzalez RL Jr, Wiggins CH. 60.  2009. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97:3196–205 [Google Scholar]
  61. Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT. 61.  et al. 2009. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. USA 106:1063–68 [Google Scholar]
  62. Julian P, Konevega AL, Scheres SH, Lazaro M, Gil D. 62.  et al. 2008. Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc. Natl. Acad. Sci. USA 105:16924–27 [Google Scholar]
  63. Valle M, Zavialov AV, Sengupta J, Rawat U, Ehrenberg M, Frank J. 63.  2003. Locking and unlocking of ribosomal motions. Cell 114:123–34 [Google Scholar]
  64. Valle M, Zavialov A, Li W, Stagg SM, Sengupta J. 64.  et al. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10:899–906 [Google Scholar]
  65. Li W, Agirrezabala X, Lei J, Bouakaz L, Brunelle JL. 65.  et al. 2008. Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM. EMBO J. 27:3322–31 [Google Scholar]
  66. Stark H, Rodnina MV, Wieden HJ, Zemlin F, Wintermeyer W, van Heel M. 66.  2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9:849–54 [Google Scholar]
  67. Stark H, Rodnina MV, Wieden HJ, van Heel M, Wintermeyer W. 67.  2000. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100:301–9 [Google Scholar]
  68. Agirrezabala X, Lei J, Brunelle JL, Ortiz-Meoz RF, Green R, Frank J. 68.  2008. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32:190–97 [Google Scholar]
  69. Schuette JC, Murphy FV 4th, Kelley AC, Weir JR, Giesebrecht J. 69.  et al. 2009. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28:755–65 [Google Scholar]
  70. Schmeing TM, Seila AC, Hansen JL, Freeborn B, Soukup JK. 70.  et al. 2002. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat. Struct. Biol. 9:225–30 [Google Scholar]
  71. Korostelev A, Trakhanov S, Laurberg M, Noller HF. 71.  2006. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–77 [Google Scholar]
  72. Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S. 72.  et al. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–42 [Google Scholar]
  73. Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. 73.  2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–32 [Google Scholar]
  74. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. 74.  2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902 [Google Scholar]
  75. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 75.  2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics (see comments). Nature 407:340–48 [Google Scholar]
  76. Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP. 76.  et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39 (also comment pp. 306–7) [Google Scholar]
  77. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN. 77.  et al. 2001. Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–96 [Google Scholar]
  78. Yusupova GZ, Yusupov MM, Cate JH, Noller HF. 78.  2001. The path of messenger RNA through the ribosome. Cell 106:233–41 [Google Scholar]
  79. Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HF. 79.  1999. X-ray crystal structures of 70S ribosome functional complexes. Science 285:2095–104 [Google Scholar]
  80. Schmeing TM, Moore PB, Steitz TA. 80.  2003. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9:1345–52 [Google Scholar]
  81. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 81.  2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–20 [Google Scholar]
  82. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. 82.  2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30 [Google Scholar]
  83. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S. 83.  et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–88 [Google Scholar]
  84. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M. 84.  et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–23 [Google Scholar]
  85. Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV 4th. 85.  et al. 2009. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688–94 [Google Scholar]
  86. Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. 86.  2009. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–99 [Google Scholar]
  87. Frank J.87.  2006. Three-Dimensional Electron Microscopy of Macromolecular Assemblies New York: Oxford Univ. Press
  88. Glaeser R, Downing K, DeRosier D, Chiu W, Frank J. 88.  2007. Electron Crystallography of Biological Macromolecules New York: Oxford Univ. Press
  89. Mitra K, Frank J. 89.  2006. Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct. 35:299–317 [Google Scholar]
  90. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K. 90.  2008. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–83 [Google Scholar]
  91. Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A. 91.  et al. 2005. Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–34 [Google Scholar]
  92. Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T. 92.  et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498–501 [Google Scholar]
  93. Zhang W, Dunkle JA, Cate JH. 93.  2009. Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–17 [Google Scholar]
  94. Ha T. 94.  2001. Single-molecule fluorescence resonance energy. Methods 25:78–86 [Google Scholar]
  95. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. 95.  2008. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77:51–76 [Google Scholar]
  96. Clamme JP, Deniz AA. 96.  2005. Three-color single-molecule fluorescence resonance energy transfer. ChemPhysChem 6:74–77 [Google Scholar]
  97. Hohng S, Joo C, Ha T. 97.  2004. Single-molecule three-color FRET. Biophys. J. 87:1328–37 [Google Scholar]
  98. Clegg RM. 98.  1992. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211:353–88 [Google Scholar]
  99. Frank J, Gao H, Sengupta J, Gao N, Taylor DJ. 99.  2007. The process of mRNA-tRNA translocation. Proc. Natl. Acad. Sci. USA 104:19671–78 [Google Scholar]
  100. Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J. 100.  2007. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26:2421–31 [Google Scholar]
  101. Rodnina MV, Gromadski KB, Kothe U, Wieden HJ. 101.  2005. Recognition and selection of tRNA in translation. FEBS Lett. 579:938–42 [Google Scholar]
  102. Beringer M, Rodnina MV. 102.  2007. The ribosomal peptidyl transferase. Mol. Cell 26:311–21 [Google Scholar]
  103. Shoji S, Walker SE, Fredrick K. 103.  2009. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem. Biol. 4:93–107 [Google Scholar]
  104. Daviter T, Gromadski KB, Rodnina MV. 104.  2006. The ribosome's response to codon-anticodon mismatches. Biochimie 88:1001–11 [Google Scholar]
  105. Hopfield JJ. 105.  1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71:4135–39 [Google Scholar]
  106. Rodnina MV, Wintermeyer W. 106.  2001. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 26:124–30 [Google Scholar]
  107. Zaher HS, Green R. 107.  2009. Fidelity at the molecular level: lessons from protein synthesis. Cell 136:746–62 [Google Scholar]
  108. Fourmy D, Recht MI, Blanchard SC, Puglisi JD. 108.  1996. Structure of the A site of E. coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–71 [Google Scholar]
  109. Fourmy D, Yoshizawa S, Puglisi JD. 109.  1998. Paromomycin binding induces a local conformational change in the A site of 16S rRNA. J. Mol. Biol. 277:333–45 [Google Scholar]
  110. Gromadski KB, Rodnina MV. 110.  2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13:191–200 [Google Scholar]
  111. Gromadski KB, Daviter T, Rodnina MV. 111.  2006. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell 21:369–77 [Google Scholar]
  112. Thomas LK, Dix DB, Thompson RC. 112.  1988. Codon choice and gene expression: Synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro. Proc. Natl. Acad. Sci. USA 85:4242–46 [Google Scholar]
  113. Dix DB, Thompson RC. 113.  1989. Codon choice and gene expression: Synonymous codons differ in translational accuracy. Proc. Natl. Acad. Sci. USA 86:6888–92 [Google Scholar]
  114. Wolf H, Chinali G, Parmeggiani A. 114.  1977. Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75:67–75 [Google Scholar]
  115. Parmeggiani A, Swart GW. 115.  1985. Mechanism of action of kirromycin-like antibiotics. Annu. Rev. Microbiol. 39:557–77 [Google Scholar]
  116. Stark H, Rodnina MV, Rinke-Appel J, Brimacombe R, Wintermeyer W, van Heel M. 116.  1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389:403–6 [Google Scholar]
  117. Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N. 117.  et al. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21:3557–67 [Google Scholar]
  118. LeBarron J, Grassucci RA, Shaikh TR, Baxter WT, Sengupta J, Frank J. 118.  2008. Exploration of parameters in cryo-EM leading to an improved density map of the E. coli ribosome. J. Struct. Biol. 164:24–32 [Google Scholar]
  119. Frank J, Sengupta J, Gao H, Li W, Valle M. 119.  et al. 2005. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett. 579:959–62 [Google Scholar]
  120. Shi H, Moore PB. 120.  2000. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 6:1091–105 [Google Scholar]
  121. Piepenburg O, Pape T, Pleiss JA, Wintermeyer W, Uhlenbeck OC, Rodnina MV. 121.  2000. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39:1734–38 [Google Scholar]
  122. Cochella L, Green R. 122.  2005. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308:1178–80 [Google Scholar]
  123. Ledoux S, Olejniczak M, Uhlenbeck OC. 123.  2009. A sequence element that tunes Escherichia coli tRNAGGCAla to ensure accurate decoding. Nat. Struct. Mol. Biol. 16:359–64 [Google Scholar]
  124. Murakami H, Ohta A, Suga H. 124.  2009. Bases in the anticodon loop of tRNAAlaGGC prevent misreading. Nat. Struct. Mol. Biol. 16:353–58 [Google Scholar]
  125. Yarus M, Valle M, Frank J. 125.  2003. A twisted tRNA intermediate sets the threshold for decoding. RNA 9:384–85 [Google Scholar]
  126. Brunelle JL, Youngman EM, Sharma D, Green R. 126.  2006. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12:33–39 [Google Scholar]
  127. Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA. 127.  2004. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11:1101–6 [Google Scholar]
  128. Youngman EM, Brunelle JL, Kochaniak AB, Green R. 128.  2004. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117:589–99 [Google Scholar]
  129. Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. 129.  2009. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16:528–33 [Google Scholar]
  130. Agrawal RK, Penczek P, Grassucci RA, Frank J. 130.  1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95:6134–38 [Google Scholar]
  131. Agrawal RK, Heagle AB, Penczek P, Grassucci RA, Frank J. 131.  1999. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat. Struct. Biol. 6:643–47 [Google Scholar]
  132. Bretscher MS. 132.  1968. Translocation in protein synthesis: a hybrid structure model. Nature 218:675–77 [Google Scholar]
  133. Spirin AS. 133.  1969. A model of the functioning ribosome: locking and unlocking of the ribosome subparticles. Cold Spring Harb. Symp. Quant. Biol. 34:197–207 [Google Scholar]
  134. Moazed D, Noller HF. 134.  1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142–48 [Google Scholar]
  135. Odom OW, Picking WD, Hardesty B. 135.  1990. Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomes. Biochemistry 29:10734–44 [Google Scholar]
  136. Ermolenko DN, Spiegel PC, Majumdar ZK, Hickerson RP, Clegg RM, Noller HF. 136.  2007. The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat. Struct. Mol. Biol. 14:493–97 [Google Scholar]
  137. Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF. 137.  2007. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 370:530–40 [Google Scholar]
  138. Wang Y, Rader AJ, Bahar I, Jernigan RL. 138.  2004. Global ribosome motions revealed with elastic network model. J. Struct. Biol. 147:302–14 [Google Scholar]
  139. Berk V, Zhang W, Pai RD, Cate JH. 139.  2006. Structural basis for mRNA and tRNA positioning on the ribosome. Proc. Natl. Acad. Sci. USA 103:15830–34 [Google Scholar]
  140. Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K. 140.  et al. 2007. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25:751–64 [Google Scholar]
  141. Tama F, Miyashita O, Brooks CL 3rd. 141.  2004. Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. J. Struct. Biol. 147:315–26 [Google Scholar]
  142. Blaha G, Stanley RE, Steitz TA. 142.  2009. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325:966–70 [Google Scholar]
  143. Zavialov AV, Ehrenberg M. 143.  2003. Peptidyl-tRNA regulates the GTPase activity of translation factors. Cell 114:113–22 [Google Scholar]
  144. Spahn CM, Gomez-Lorenzo MG, Grassucci RA, Jorgensen R, Andersen GR. 144.  et al. 2004. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23:1008–19 [Google Scholar]
  145. Sharma D, Southworth DR, Green R. 145.  2004. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA 10:102–13 [Google Scholar]
  146. Aitken CE, Petrov A, Puglisi JD. 146.  2010. Single ribosome dynamics and the mechanism of translation. Annu. Rev. Biophys. 39:491–513 [Google Scholar]
  147. Frank J, Zhu J, Penczek P, Li Y, Srivastava S. 147.  et al. 1995. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–44 [Google Scholar]
  148. Tama F, Valle M, Frank J, Brooks CL 3rd. 148.  2003. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 100:9319–23 [Google Scholar]
  149. Wriggers W, Agrawal RK, Drew DL, McCammon A, Frank J. 149.  2000. Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures. Biophys. J. 79:1670–78 [Google Scholar]
  150. Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. 150.  2005. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121:703–12 [Google Scholar]
  151. Myasnikov AG, Marzi S, Simonetti A, Giuliodori AM, Gualerzi CO. 151.  et al. 2005. Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat. Struct. Mol. Biol. 12:1145–49 [Google Scholar]
  152. Klaholz BP, Myasnikov AG, Van Heel M. 152.  2004. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427:862–65 [Google Scholar]
  153. Gao H, Zhou Z, Rawat U, Huang C, Bouakaz L. 153.  et al. 2007. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129:929–41 [Google Scholar]
  154. Agrawal RK, Sharma MR, Kiel MC, Hirokawa G, Booth TM. 154.  et al. 2004. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc. Natl. Acad. Sci. USA 101:8900–5 [Google Scholar]
  155. Gao N, Zavialov AV, Li W, Sengupta J, Valle M. 155.  et al. 2005. Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol. Cell 18:663–74 [Google Scholar]
  156. Fu J, Kenney D, Munro JB, Lei J, Blanchard SC, Frank J. 156.  2009. The P-site tRNA reaches the P/E position through intermediate positions. J. Biomol. Struct. Dyn. 26:794–95 [Google Scholar]
  157. Pan D, Kirillov S, Zhang CM, Hou YM, Cooperman BS. 157.  2006. Rapid ribosomal translocation depends on the conserved 18–55 base pair in P-site transfer RNA. Nat. Struct. Mol. Biol. 13:354–59 [Google Scholar]
  158. Pan D, Kirillov SV, Cooperman BS. 158.  2007. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25:519–29 [Google Scholar]
  159. Shoji S, Walker SE, Fredrick K. 159.  2006. Reverse translocation of tRNA in the ribosome. Mol. Cell 24:931–42 [Google Scholar]
  160. Konevega AL, Fischer N, Semenkov YP, Stark H, Wintermeyer W, Rodnina MV. 160.  2007. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat. Struct. Mol. Biol. 14:318–24 [Google Scholar]
  161. Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E. 161.  et al. 2006. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127:721–33 [Google Scholar]
  162. Scheres SH, Valle M, Grob P, Nogales E, Carazo JM. 162.  2009. Maximum likelihood refinement of electron microscopy data with normalization errors. J. Struct. Biol. 166:234–40 [Google Scholar]
  163. Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP. 163.  et al. 2007. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4:27–29 [Google Scholar]
  164. Zhang W, Kimmel M, Spahn CM, Penczek PA. 164.  2008. Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770–76 [Google Scholar]
  165. Penczek PA, Yang C, Frank J, Spahn CM. 165.  2006. Estimation of variance in single-particle reconstruction using the bootstrap technique. J. Struct. Biol. 154:168–83 [Google Scholar]
  166. Shaikh TR, Barnard D, Meng X, Wagenknecht T. 166.  2009. Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. J. Struct. Biol. 165:184–89 [Google Scholar]
  167. Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H. 167.  et al. 2009. Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168:388–95 [Google Scholar]
  168. Cornish PV, Ha T. 168.  2007. A survey of single-molecule techniques in chemical biology. ACS Chem. Biol. 2:53–61 [Google Scholar]
  169. McKinney SA, Joo C, Ha T. 169.  2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91:1941–51 [Google Scholar]
  170. Qin F, Auerbach A, Sachs F. 170.  2000. A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys. J. 79:1915–27 [Google Scholar]
  171. Andrec M, Levy RM, Talaga DS. 171.  2003. Direct determination of kinetic rates from single-molecule photon arrival trajectories using hidden Markov models. J. Phys. Chem. A 107:7454–64 [Google Scholar]
  172. Qin F, Auerbach A, Sachs F. 172.  2000. Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys. J. 79:1928–44 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060408-173330
Loading
/content/journals/10.1146/annurev-biochem-060408-173330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error