1932

Abstract

Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome (cyt ), and ATP synthase (FF). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, F and F, which do not slip against each other. The proton-driven F and the ATP-synthesizing F are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034124
2015-06-02
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034124.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034124&mimeType=html&fmt=ahah

Literature Cited

  1. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G. 1.  et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–9 [Google Scholar]
  2. Nelson N, Junge W. 2.  2015. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84:659–83 [Google Scholar]
  3. Pullman ME, Penefsky H, Racker E. 3.  1958. A soluble protein fraction required for coupling phosphorylation to oxidation in submitochondrial fragments of beef heart mitochondria. Arch. Biochem. Biophys. 76:227–30 [Google Scholar]
  4. Mitchell P. 4.  1961. Coupling of photophosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–48 [Google Scholar]
  5. Mitchell P. 5.  1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Physiol. Rev. 41:445–502 [Google Scholar]
  6. Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM. 6.  2001. Contribution of electric field (ΔΨ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ΔΨ and ΔpH by ionic strength. Biochemistry 40:1226–37 [Google Scholar]
  7. Takizawa K, Cruz JA, Kanazawa A, Kramer DM. 7.  2007. The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced PMF. Biochim. Biophys. Acta 1767:1233–44 [Google Scholar]
  8. Jagendorf AT, Uribe E. 8.  1966. ATP formation caused by acid–base transition of spinach chloroplast. PNAS 55:170–77 [Google Scholar]
  9. Junge W, Witt HT. 9.  1968. On the ion transport system of photosynthesis. Investigation on a molecular level. Z. Naturforsch. 23B:244–54 [Google Scholar]
  10. Junge W, Rumberg B, Schroeder H. 10.  1970. Necessity of an electric potential difference and its use for photophosphorylation in short flash groups. Eur. J. Biochem. 14:575–81 [Google Scholar]
  11. Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC. 11.  1977. Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 46:955–1026 [Google Scholar]
  12. Kayalar C, Rosing J, Boyer PD. 12.  1977. An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J. Biol. Chem. 252:2486–91 [Google Scholar]
  13. Boyer PD. 13.  1977. Conformational coupling in oxidative phosphorylation and photophosphorylation. Trends Biochem. Sci. 2:38–41 [Google Scholar]
  14. Boyer PD, Kohlbrenner WE. 14.  1981. The present status of the binding-change mechanism and its relation to ATP formation by chloroplasts. Energy Coupling in Photosynthesis BR Selman, S Selman-Reimer 231–41 Amsterdam: Elsevier [Google Scholar]
  15. Rao R, Senior AE. 15.  1987. The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs. J. Biol. Chem. 25:17450–54 [Google Scholar]
  16. Cross RL, Nalin CM. 16.  1982. Adenine nucleotide binding sites on beef heart F1-ATPase. Evidence for three exchangeable sites that are distinct from three noncatalytic sites. J. Biol. Chem. 257:2874–81 [Google Scholar]
  17. Weber J, Wilke-Mounts S, Senior AE. 17.  1994. Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. J. Biol. Chem. 269:20462–67 [Google Scholar]
  18. Walker JE, Fearnely IM, Gay NJ, Gibson BW, Northrop FD. 18.  et al. 1985. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J. Mol. Biol. 184:677–701 [Google Scholar]
  19. Junge W. 19.  2013. Half a century of molecular bioenergetics. Biochem. Soc. Trans. 41:1207–18 [Google Scholar]
  20. Boyer PD. 20.  1997. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66:717–49 [Google Scholar]
  21. Junge W, Lill H, Engelbrecht S. 21.  1997. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22:420–23 [Google Scholar]
  22. Kinosita K Jr, Adachi K, Itoh H. 22.  2004. Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct. 33:245–68 [Google Scholar]
  23. von Ballmoos C, Wiedenmann A, Dimroth P. 23.  2009. Essentials for ATP synthesis by F1FO ATP synthases. Annu. Rev. Biochem. 78:649–72 [Google Scholar]
  24. Walker JE. 24.  2013. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41:1–16 [Google Scholar]
  25. Junge W, Sielaff H, Engelbrecht S. 25.  2009. Torque generation and elastic power transmission in the rotary FOF1-ATPase 3. Nature 459:364–70 [Google Scholar]
  26. Schliephake W, Junge W, Witt HT. 26.  1968. Correlation between field formation, proton translocation, and the light reactions in photosynthesis. Z. Naturforsch. 23:1571–78 [Google Scholar]
  27. Hope AB, Rich PR. 27.  1989. Proton uptake by the chloroplast cytochrome bf complex. Biochim. Biophys. Acta 975:96–103 [Google Scholar]
  28. Stolz B, Walz D. 28.  1988. The absorption spectrum of single blebs and the specific surface of thylakoids. Mol. Cell. Biol. 7:83–88 [Google Scholar]
  29. Menke W. 29.  1962. Structure and chemistry of plastids. Annu. Rev. Plant Physiol. 13:27–44 [Google Scholar]
  30. Schönknecht G, Althoff G, Junge W. 30.  1990. The electric unit size of thylakoid membranes. FEBS Lett. 277:65–68 [Google Scholar]
  31. Paolillo DJ Jr. 31.  1970. The three-dimensional arrangement of intergranal lamellae in chloroplasts. J. Cell Sci. 6:243–55 [Google Scholar]
  32. Mustardy L, Buttle K, Steinbach G, Garab G. 32.  2008. The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum–stroma assembly. Plant Cell 20:2552–57 [Google Scholar]
  33. Austin JR 2nd, Staehelin LA. 33.  2011. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography. Plant Physiol. 155:1601–11 [Google Scholar]
  34. Daum B, Kühlbrandt W. 34.  2011. Electron tomography of plant thylakoid membranes. J. Exp. Bot. 62:2393–402 [Google Scholar]
  35. Andersson B, Anderson JM. 35.  1980. Lateral heterogeneity in the distribution of chlorophyll–protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593:427–40 [Google Scholar]
  36. Staehelin LA. 36.  1975. Chloroplast membrane structure. Intramembranous particles of different sizes make contact in stacked membrane regions. Biochim. Biophys. Acta 408:1–11 [Google Scholar]
  37. Daum B, Nicastro D, Austin J, McIntosh JR, Kühlbrandt W. 37.  2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–312 [Google Scholar]
  38. Albertsson P. 38.  2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6:349–58 [Google Scholar]
  39. Trissl HW, Wilhelm C. 39.  1993. Why do thylakoid membranes from higher plants form grana stacks?. Trends Biochem. Sci. 18:415–19 [Google Scholar]
  40. Anderson JM, Andersson B. 40.  1988. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13:351–55 [Google Scholar]
  41. Abrahams JP, Leslie AG, Lutter R, Walker JE. 41.  1994. The structure of F1-ATPase from bovine heart mitochondria determined at 2.8 Å resolution. Nature 370:621–28 [Google Scholar]
  42. Bowler MW, Montgomery MG, Leslie AG, Walker JE. 42.  2007. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J. Biol. Chem. 282:14238–42 [Google Scholar]
  43. Walker JE, Saraste M, Gay NJ. 43.  1982. E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Nature 298:867–69 [Google Scholar]
  44. Kötting C, Blessenohl M, Suveyzdis Y, Goody RS, Wittinghofer A, Gerwert K. 44.  2006. A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein. PNAS 103:13911–16 [Google Scholar]
  45. Menz RI, Walker JE, Leslie AG. 45.  2001. Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106:331–41 [Google Scholar]
  46. Rees DM, Montgomery MG, Leslie AG, Walker JE. 46.  2012. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria. PNAS 109:11139–43 [Google Scholar]
  47. Groth G, Pohl E. 47.  2001. The structure of the chloroplast F1-ATPase at 3.2 Å resolution. J. Biol. Chem. 276:1345–52 [Google Scholar]
  48. Stocker A, Keis S, Vonck J, Cook GM, Dimroth P. 48.  2007. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase. Structure 15:904–14 [Google Scholar]
  49. Kabaleeswaran V, Shen H, Symersky J, Walker JE, Leslie AG, Mueller DM. 49.  2009. Asymmetric structure of the yeast F1-ATPase in the absence of bound nucleotides. J. Biol. Chem. 284:10546–51 [Google Scholar]
  50. Cingolani G, Duncan TM. 50.  2011. Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat. Struct. Mol. Biol. 18:701–7 [Google Scholar]
  51. Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML, Cross RL. 51.  1995. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. PNAS 92:10964–68 [Google Scholar]
  52. Sabbert D, Engelbrecht S, Junge W. 52.  1996. Intersubunit rotation in active F-ATPase. Nature 381:623–25 [Google Scholar]
  53. Sabbert D, Engelbrecht S, Junge W. 53.  1997. Functional and idling rotatory motion within F1-ATPase. PNAS 94:4401–5 [Google Scholar]
  54. Noji H, Yasuda R, Yoshida M, Kinosita K. 54.  1997. Direct observation of the rotation of F-ATPase. Nature 386:299–302 [Google Scholar]
  55. Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H. 55.  2001. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904 [Google Scholar]
  56. Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M. 56.  2003. Catalysis and rotation of F1 motor: Cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. PNAS 100:14731–36 [Google Scholar]
  57. Ueno H, Suzuki T, Kinosita K Jr, Yoshida M. 57.  2005. ATP-driven stepwise rotation of FOF1-ATP synthase. PNAS 102:1333–38 [Google Scholar]
  58. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H. 58.  et al. 2007. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–21 [Google Scholar]
  59. Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T. 59.  2008. Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80 degrees and 40 degrees substep rotations. Nat. Struct. Mol. Biol. 15:1326–33 [Google Scholar]
  60. Sekiya M, Hosokawa H, Nakanishi-Matsui M, Al-Shawi MK, Nakamoto RK, Futai M. 60.  2010. Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285:42058–67 [Google Scholar]
  61. Watanabe R, Iino R, Noji H. 61.  2010. Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat. Chem. Biol. 6:814–20 [Google Scholar]
  62. Watanabe R, Noji H. 62.  2014. Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation. Sci. Rep. 4:4962 [Google Scholar]
  63. Noji H, Häsler K, Junge W, Kinosita K, Yoshida M, Engelbrecht S. 63.  1999. Rotation of Escherichia coli F1-ATPase. Biochem. Biophys. Res. Commun. 260:597–99 [Google Scholar]
  64. Bilyard T, Nakanishi-Matsui M, Steel BC, Pilizota T, Nord AL. 64.  et al. 2013. High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase. Philos. Trans. R. Soc. Lond. B 368:20120023 [Google Scholar]
  65. Sielaff H, Rennekamp H, Wächter A, Xie H, Hilbers F. 65.  et al. 2008. Domain compliance and elastic power transmission in rotary FOF1-ATPase. PNAS 105:17760–65 [Google Scholar]
  66. Sielaff H, Rennekamp H, Engelbrecht S, Junge W. 66.  2008. Functional halt positions of rotary FOF1-ATPase correlated with crystal structures. Biophys. J. 95:4979–87 [Google Scholar]
  67. Suzuki T, Tanaka K, Wakabayashi C, Furuike S, Saita E. 67.  et al. 2014. Chemo-mechanical coupling of human mitochondrial F1-ATPase motor. Nat. Chem. Biol. 10:930–36 [Google Scholar]
  68. York J, Spetzler D, Hornung T, Ishmukhametov R, Martin J, Frasch WD. 68.  2007. Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes. J. Bioenerg. Biomembr. 39:435–39 [Google Scholar]
  69. Hornung T, Martin J, Spetzler D, Ishmukhametov R, Frasch WD. 69.  2011. Microsecond resolution of single-molecule rotation catalyzed by molecular motors. Methods Mol. Biol. 778:273–89 [Google Scholar]
  70. Martin JL, Ishmukhametov R, Hornung T, Ahmad Z, Frasch WD. 70.  2014. Anatomy of F1-ATPase powered rotation. PNAS 111:3715–20 [Google Scholar]
  71. Okuno D, Fujisawa R, Iino R, Hirono-Hara Y, Imamura H, Noji H. 71.  2008. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation 1. PNAS 105:20722–27 [Google Scholar]
  72. Shimo-Kon R, Muneyuki E, Sakai H, Adachi K, Yoshida M, Kinosita K Jr. 72.  2010. Chemo-mechanical coupling in F1-ATPase revealed by catalytic site occupancy during catalysis. Biophys. J. 98:1227–36 [Google Scholar]
  73. Kabaleeswaran V, Puri N, Walker JE, Leslie AG, Mueller DM. 73.  2006. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1-ATPase. EMBO J. 25:5433–42 [Google Scholar]
  74. Okazaki K, Hummer G. 74.  2013. Phosphate release coupled to rotary motion of F1-ATPase. PNAS 110:16468–73 [Google Scholar]
  75. Weber J, Wilke-Mounts S, Lee RSF, Grell E, Senior AE. 75.  1993. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: Maximal ATP hydrolysis occurs with three sites occupied. J. Biol. Chem. 268:20126–33 [Google Scholar]
  76. Weber J, Bowman C, Senior AE. 76.  1996. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis. J. Biol. Chem. 271:18711–18 [Google Scholar]
  77. Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E. 77.  et al. 2004. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol. 11:142–48 [Google Scholar]
  78. Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R. 78.  et al. 2004. Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–68 [Google Scholar]
  79. Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H. 79.  et al. 2005. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773–77 [Google Scholar]
  80. Uchihashi T, Iino R, Ando T, Noji H. 80.  2011. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–58 [Google Scholar]
  81. Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV. 81.  2007. Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat. Rev. Microbiol. 5:892–99 [Google Scholar]
  82. Müller M, Pänke O, Junge W, Engelbrecht S. 82.  2002. F1-ATPase, the C-terminal end of subunit γ, is not required for ATP hydrolysis–driven rotation. J. Biol. Chem. 277:23308–13 [Google Scholar]
  83. Hossain MD, Furuike S, Maki Y, Adachi K, Suzuki T. 83.  et al. 2008. Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys. J. 95:4837–44 [Google Scholar]
  84. Kohori A, Chiwata R, Hossain MD, Furuike S, Shiroguchi K. 84.  et al. 2011. Torque generation in F1-ATPase devoid of the entire amino-terminal helix of the rotor that fills half of the stator orifice. Biophys. J. 101:188–95 [Google Scholar]
  85. Usukura E, Suzuki T, Furuike S, Soga N, Saita E. 85.  et al. 2012. Torque generation and utilization in motor enzyme FOF1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP synthesis by half-torque FOF1. J. Biol. Chem. 287:1884–91 [Google Scholar]
  86. Chiwata R, Kohori A, Kawakami T, Shiroguchi K, Furuike S. 86.  et al. 2014. None of the rotor residues of F1-ATPase are essential for torque generation. Biophys. J. 106:2166–74 [Google Scholar]
  87. Czub J, Grubmüller H. 87.  2014. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F1-ATPase. J. Am. Chem. Soc. 136:6960–68 [Google Scholar]
  88. Wang H, Oster G. 88.  1998. Energy transduction in the F1 motor of ATP synthase. Nature 396:279–82 [Google Scholar]
  89. Cherepanov DA, Junge W. 89.  2001. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque. Biophys. J. 81:1234–44 [Google Scholar]
  90. Pänke O, Cherepanov DA, Gumbiowski K, Engelbrecht S, Junge W. 90.  2001. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: torque profile of the enzyme. Biophys. J. 81:1220–33 [Google Scholar]
  91. Feniouk BA, Mulkidjanian AY, Junge W. 91.  2005. Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. Biochim. Biophys. Acta 1706:184–94 [Google Scholar]
  92. Groth G, Junge W. 92.  1993. Proton slip of chloroplast ATPase: its nucleotide dependence, energetic threshold and relation to an alternating site mechanism of catalysis. Biochemistry 32:8103–11 [Google Scholar]
  93. Mukherjee S, Warshel A. 93.  2011. Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase. PNAS 108:20550–55 [Google Scholar]
  94. Pu J, Karplus M. 94.  2008. How subunit coupling produces the γ-subunit rotary motion in F1-ATPase. PNAS 105:1192–97 [Google Scholar]
  95. Meier T, Polzer P, Diederichs K, Welte W, Dimroth P. 95.  2005. Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–62 [Google Scholar]
  96. Stock D, Leslie AG, Walker JE. 96.  1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–5 [Google Scholar]
  97. Vollmar M, Schlieper D, Winn M, Buchner C, Groth G. 97.  2009. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J. Biol. Chem. 284:18228–35 [Google Scholar]
  98. Hakulinen JK, Klyszejko AL, Hoffmann J, Eckhardt-Strelau L, Brutschy B. 98.  et al. 2012. Structural study on the architecture of the bacterial ATP synthase FO motor. PNAS 109:e2050–56 [Google Scholar]
  99. Lau WC, Rubinstein JL. 99.  2012. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481:214–18 [Google Scholar]
  100. Schneider E, Altendorf K. 100.  1985. All three subunits are required for the reconstitution of an active proton channel (FO) of Escherichia coli ATP synthase (F1FO). EMBO J. 4:515–18 [Google Scholar]
  101. Preiss L, Yildiz O, Hicks DB, Krulwich TA, Meier T. 101.  2010. A new type of proton coordination in an F1FO-ATP synthase rotor ring. PLOS Biol. 8:e1000443 [Google Scholar]
  102. Meier T, Matthey U, Henzen F, Dimroth P, Müller DJ. 102.  2001. The central plug in the reconstituted undecameric cylinder of a bacterial ATP synthase consists of phospholipids. FEBS Lett. 505:353–56 [Google Scholar]
  103. Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE. 103.  2010. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. PNAS 107:16823–27 [Google Scholar]
  104. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ. 104.  2000. Proton-powered turbine of a plant motor. Nature 405:418–19 [Google Scholar]
  105. Jiang W, Hermolin J, Fillingame RH. 105.  2001. The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. PNAS 98:4966–71 [Google Scholar]
  106. Mitome N, Suzuki T, Hayashi S, Yoshida M. 106.  2004. Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic coupling. PNAS 101:12159–64 [Google Scholar]
  107. Stahlberg H, Müller DJ, Suda K, Fotiadis D, Engel A. 107.  et al. 2001. Bacterial Na+-ATP synthase has an undecameric rotor. EMBO Rep. 2:229–33 [Google Scholar]
  108. Meier T, Morgner N, Matthies D, Pogoryelov D, Keis S. 108.  et al. 2007. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential. Mol. Microbiol. 65:1181–92 [Google Scholar]
  109. Preiss L, Klyszejko AL, Hicks DB, Liu J, Fackelmayer OJ. 109.  et al. 2013. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. PNAS 110:7874–79 [Google Scholar]
  110. Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Müller DJ. 110.  2005. The c15 ring of the Spirulina platensis F-ATP synthase: F1FO symmetry mismatch is not obligatory. EMBO Rep. 6:1040–44 [Google Scholar]
  111. Pogoryelov D, Klyszejko AL, Krasnoselska GO, Heller EM, Leone V. 111.  et al. 2012. Engineering rotor ring stoichiometries in the ATP synthase. PNAS 109:e1599–608 [Google Scholar]
  112. Junge W, Pänke O, Cherepanov DA, Gumbiowski K, Müller M, Engelbrecht S. 112.  2001. Inter-subunit rotation and elastic power transmission in FOF1-ATPase. FEBS Lett. 504:152–60 [Google Scholar]
  113. Hoppe J, Schairer HU, Friedl P, Sebald W. 113.  1982. An Asp–Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett. 145:21–29 [Google Scholar]
  114. Lightowlers RN, Howitt SM, Hatch L, Gibson F, Cox GB. 114.  1987. The proton pore in the Escherichia coli FOF1-ATPase: a requirement for arginine at position 210 of the α-subunit. Biochim. Biophys. Acta 894:399–406 [Google Scholar]
  115. Vik SB, Antonio BJ. 115.  1994. A mechanism of proton translocation by F1FO-ATPase synthases suggested by double mutants of the α subunit. J. Biol. Chem. 269:30364–69 [Google Scholar]
  116. Meister M, Lowe G, Berg HC. 116.  1987. The proton flux through the bacterial flagellar motor. Cell 49:643–50 [Google Scholar]
  117. Elston T, Wang H, Oster G. 117.  1998. Energy transduction in ATP synthase. Nature 391:510–14 [Google Scholar]
  118. Miller MJ, Oldenburg M, Fillingame RH. 118.  1990. The essential carboxyl group in subunit c of the F1FO-ATPase synthase can be moved and H+-translocating function retained. PNAS 87:4900–4 [Google Scholar]
  119. Hatch LP, Cox GB, Howitt SM. 119.  1995. The essential arginine residue at position 210 in the α subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J. Biol. Chem. 270:29407–12 [Google Scholar]
  120. Langemeyer L, Engelbrecht S. 120.  2007. Essential arginine in subunit a and aspartate in subunit c of FOF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit c. Biochim. Biophys. Acta 1767:998–1005 [Google Scholar]
  121. Mitchell P. 121.  1977. Epilogue: from energetic abstraction to biochemical mechanism. Symp. Soc. Gen. Microbiol. 27:383–423 [Google Scholar]
  122. DeLeon-Rangel J, Ishmukhametov RR, Jiang W, Fillingame RH, Vik SB. 122.  2013. Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking. FEBS Lett. 587:892–97 [Google Scholar]
  123. Jiang WP, Fillingame RH. 123.  1998. Interacting helical faces of subunits a and c in the F1FO ATP synthase of Escherichia coli defined by disulfide cross-linking. PNAS 95:6607–12 [Google Scholar]
  124. Fillingame RH, Steed PR. 124.  2014. Half channels mediating H transport and the mechanism of gating in the F sector of Escherichia coli FF ATP synthase. Biochim. Biophys. Acta 1837:11305–10 [Google Scholar]
  125. Steed PR, Fillingame RH. 125.  2014. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J. Biol. Chem. 289:2127–38 [Google Scholar]
  126. Gohlke H, Schlieper D, Groth G. 126.  2012. Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations. J. Biol. Chem. 287:36536–43 [Google Scholar]
  127. Emrich HM, Junge W, Witt HT. 127.  1969. Artificial indicator for electric phenomena in biological membranes and interfaces. Naturwissenschaften 56:514–15 [Google Scholar]
  128. Schönknecht G, Junge W, Lill H, Engelbrecht S. 128.  1986. Complete tracking of proton flow in thylakoids—the unit conductance of CFO is greater than 10 fS. FEBS Lett. 203:289–94 [Google Scholar]
  129. Franklin MJ, Brusilow WS, Woodbury DJ. 129.  2004. Determination of proton flux and conductance at pH 6.8 through single FO sectors from Escherichia coli. Biophys. J. 87:3594–99 [Google Scholar]
  130. Feniouk BA, Kozlova MA, Knorre DA, Cherepanov D, Mulkidjanian A, Junge W. 130.  2004. The proton driven rotor of ATP synthase: ohmic conductance (10 fS) and absence of voltage gating. Biophys. J. 86:4094–109 [Google Scholar]
  131. Xing J, Wang H, von Ballmoos C, Dimroth P, Oster G. 131.  2004. Torque generation by the FO motor of the sodium ATPase. Biophys. J. 87:2148–63 [Google Scholar]
  132. Deckers-Hebestreit G. 132.  2013. Assembly of the Escherichia coli FOF1 ATP synthase involves distinct subcomplex formation. Biochem. Soc. Trans. 41:1288–93 [Google Scholar]
  133. Hilbers F, Eggers R, Pradela K, Friedrich K, Herkenhoff-Hesselmann B. 133.  et al. 2013. Subunit δ is the key player for assembly of the H+-translocating unit of Escherichia coli FOF1 ATP synthase. J. Biol. Chem. 288:25880–94 [Google Scholar]
  134. Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A. 134.  et al. 1999. Mechanical rotation of the c subunit oligomer in ATP synthase (FOF1): direct observation. Science 286:1722–24 [Google Scholar]
  135. Pänke O, Gumbiowski K, Junge W, Engelbrecht S. 135.  2000. F-ATPase: specific observation of the rotating c subunit oligomer of EFOEF1. FEBS Lett. 472:34–38 [Google Scholar]
  136. Börsch M, Diez M, Zimmermann B, Reuter R, Gräber P. 136.  2002. Stepwise rotation of the γ-subunit of EFOEF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett. 527:147–52 [Google Scholar]
  137. Diez M, Zimmermann B, Börsch M, Konig M, Schweinberger E. 137.  et al. 2004. Proton-powered subunit rotation in single-membrane-bound FOF1-ATP synthase. Nat. Struct. Mol. Biol. 11:135–41 [Google Scholar]
  138. Düser MG, Zarrabi N, Cipriano DJ, Ernst S, Glick GD. 138.  et al. 2009. 36 degrees step size of proton-driven c-ring rotation in FoF1-ATP synthase 2. EMBO J. 28:2689–96 [Google Scholar]
  139. Ishmukhametov R, Hornung T, Spetzler D, Frasch WD. 139.  2010. Direct observation of stepped proteolipid ring rotation in E. coli FOF1-ATP synthase. EMBO J. 29:3911–23 [Google Scholar]
  140. Dimroth P, Wang H, Grabe M, Oster G. 140.  1999. Energy transduction in the sodium F-ATPase of Propionigenium modestum. PNAS 96:4924–28 [Google Scholar]
  141. Aksimentiev A, Balabin IA, Fillingame RH, Schulten K. 141.  2004. Insights into the molecular mechanism of rotation in the FO sector of ATP synthase. Biophys. J. 86:1332–44 [Google Scholar]
  142. Pogoryelov D, Krah A, Langer JD, Yildiz O, Faraldo-Gómez JD, Meier T. 142.  2010. Microscopic rotary mechanism of ion translocation in the FO complex of ATP synthases. Nat. Chem. Biol. 6:891–99 [Google Scholar]
  143. Mukherjee S, Warshel A. 143.  2012. Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the FO-ATPase. PNAS 109:14876–81 [Google Scholar]
  144. Petersen J, Forster K, Turina P, Gräber P. 144.  2012. Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. PNAS 109:11150–55 [Google Scholar]
  145. Laubinger W, Deckers-Hebestreit G, Altendorf K, Dimroth P. 145.  1990. A hybrid adenosine triphosphatase composed of F1 of Escherichia coli and FO of Propionigenium modestum is a functional sodium ion pump. Biochemistry 29:5458–63 [Google Scholar]
  146. Cherepanov DA, Mulkidjanian A, Junge W. 146.  1999. Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett. 449:1–6 [Google Scholar]
  147. Pänke O, Rumberg B. 147.  1999. Kinetic modeling of rotary CFOF1-ATP synthase: storage of elastic energy during energy transduction. Biochim. Biophys. Acta 1412:118–28 [Google Scholar]
  148. Wächter A, Bi Y, Dunn SD, Cain BD, Sielaff H. 148.  et al. 2011. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. PNAS 108:3924–29 [Google Scholar]
  149. Saroussi S, Schushan M, Ben-Tal N, Junge W, Nelson N. 149.  2012. Structure and flexibility of the c-ring in the electromotor of rotary FOF1-ATP of pea chloroplasts. PLOS ONE 7:e43045 [Google Scholar]
  150. Czub J, Grubmüller H. 150.  2011. Torsional elasticity and energetics of F1-ATPase. PNAS 108:7408–13 [Google Scholar]
  151. Rieger B, Junge W, Busch KB. 151.  2014. Lateral pH gradient between OXPHOS complex IV and FOF1 ATP-synthase in folded mitochondrial membranes. Nat. Commun. 5:3103 [Google Scholar]
  152. Cherepanov DA, Junge W, Mulkidjanian AY. 152.  2004. Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys. J. 86:665–80 [Google Scholar]
  153. Junge W. 153.  1987. Complete tracking of transient proton flow through active chloroplast ATP synthase. PNAS 84:7084–88 [Google Scholar]
  154. Rumberg B, Becher U. 154.  1984. Multiple ΔpH control of H+-ATP synthase function in chloroplasts. H+-ATPase (ATP Synthase): Structure, Function, Biogenesis. The FOF1 Complex of Coupling Membranes S Papa, K Altendorf, L Ernster, L Packer 421–30 Bari, Italy: Adriat. Ed. [Google Scholar]
  155. Junesch U, Gräber P. 155.  1987. Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport-coupled ATP synthesis/hydrolysis. Biochim. Biophys. Acta 893:275–88 [Google Scholar]
  156. Mills JD, Mitchell P. 156.  1982. Modulation of coupling factor ATPase activity in intact chloroplasts, reversal of thiol modulation in the dark. Biochim. Biophys. Acta 679:75–83 [Google Scholar]
  157. Werner-Grüne S, Gunkel D, Schumann J, Strotmann H. 157.  1994. Insertion of a “chloroplast-like” regulatory segment responsible for thiol modulation into γ-subunit of FOF1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC. Mol. Gen. Genet. 244:144–50 [Google Scholar]
  158. Bald D, Noji H, Stumpp MT, Yoshida M, Hisabori T. 158.  2000. ATPase activity of a highly stable α3β3γ subcomplex of thermophilic F1 can be regulated by the introduced regulatory region of γ subunit of chloroplast F1. J. Biol. Chem. 275:12757–62 [Google Scholar]
  159. Bald D, Noji H, Yoshida M, Hirono-Hara Y, Hisabori T. 159.  2001. Redox regulation of the rotation of F1-ATP synthase. J. Biol. Chem. 276:39505–7 [Google Scholar]
  160. Konno H, Nakane T, Yoshida M, Ueoka-Nakanishi H, Hara S, Hisabori T. 160.  2012. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes. Plant Cell Physiol. 53:626–34 [Google Scholar]
  161. Khalili-Araghi F, Jogini V, Yarov-Yarovoy V, Tajkhorshid E, Roux B, Schulten K. 161.  2010. Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel. Biophys. J. 98:2189–98 [Google Scholar]
  162. Pullman ME, Monroy GC. 162.  1963. A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J. Biol. Chem. 238:3762–69 [Google Scholar]
  163. Runswick MJ, Bason JV, Montgomery MG, Robinson GC, Fearnley IM, Walker JE. 163.  2013. The affinity purification and characterization of ATP synthase complexes from mitochondria. Open Biol. 3:120160 [Google Scholar]
  164. Bason JV, Montgomery MG, Leslie AG, Walker JE. 164.  2014. Pathway of binding of the intrinsically disordered mitochondrial inhibitorprotein to F1-ATPase. PNAS 111:11305–10 [Google Scholar]
  165. Nelson N. 165.  1992. Evolution of organellar proton-ATPases. Biochim. Biophys. Acta 1100:109–24 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034124
Loading
/content/journals/10.1146/annurev-biochem-060614-034124
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error