1932

Abstract

Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on 13C- and 15N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and 1H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron–nuclear transitions. DNP boosts NMR signal intensities by factors of 102 to 103, thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, 1H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively 2H-labeled proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034206
2015-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034206.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034206&mimeType=html&fmt=ahah

Literature Cited

  1. Comellas G, Rienstra CM. 1.  2013. Protein structure determination by magic-angle spinning solid-state NMR, and insights into the formation, structure, and stability of amyloid fibrils. Annu. Rev. Biophys. 42:515–36 [Google Scholar]
  2. Hong M, Zhang Y, Hu F. 2.  2012. Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63:1–24 [Google Scholar]
  3. McDermott A. 3.  2009. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 38:385–403 [Google Scholar]
  4. Yan S, Suiter CL, Hou G, Zhang H, Polenova T. 4.  2013. Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy. Acc. Chem. Res. 46:2047–58 [Google Scholar]
  5. Tycko R. 5.  2011. Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62:279–99 [Google Scholar]
  6. Weingarth M, Baldus M. 6.  2013. Solid-state NMR-based approaches for supramolecular structure elucidation. Acc. Chem. Res. 46:2037–46 [Google Scholar]
  7. Barnes AB, De Paëpe G, van der Wel PC, Hu KN, Joo CG. 7.  et al. 2008. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl. Magn. Reson. 34:237–63 [Google Scholar]
  8. Cheng CY, Han S. 8.  2013. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems. Annu. Rev. Phys. Chem. 64:507–32 [Google Scholar]
  9. Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK. 9.  et al. 2013. High frequency dynamic nuclear polarization. Acc. Chem. Res. 46:1933–41 [Google Scholar]
  10. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J. 10.  2008. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. PNAS 105:883–88 [Google Scholar]
  11. Hu KN. 11.  2011. Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids. Solid State Nucl. Magn. Reson. 40:31–41 [Google Scholar]
  12. Bodenhausen G, Ruben DJ. 12.  1980. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69:185–89 [Google Scholar]
  13. Bax A, Sparks SW, Torchia DA. 13.  1989. Detection of insensitive nuclei. Methods Enzymol. 176:134–50 [Google Scholar]
  14. Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L. 14.  et al. 2012. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. PNAS 109:11095–100 [Google Scholar]
  15. Nieuwkoop AJ, Wylie BJ, Franks WT, Shah GJ, Rienstra CM. 15.  2009. Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy. J. Chem. Phys. 131:095101 [Google Scholar]
  16. Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M. 16.  et al. 2012. Membrane protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat. Methods 9:1212–17 [Google Scholar]
  17. Fitzpatrick AW, Debelouchina GT, Bayro MJ, Clare DK, Caporini MA. 17.  et al. 2013. Atomic structure and hierarchical assembly of a cross-β-amyloid fibril. PNAS 110:5468–73 [Google Scholar]
  18. Lu GJ, Tian Y, Vora N, Marassi FM, Opella SJ. 18.  2013. The structure of the mercury transporter MerF in phospholipid bilayers: A large conformational rearrangement results from N-terminal truncation. J. Am. Chem. Soc. 135:9299–302 [Google Scholar]
  19. Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R. 19.  2013. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154:1257–68 [Google Scholar]
  20. Hong M, Su Y. 20.  2011. Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci. 20:641–55 [Google Scholar]
  21. Andreas LB, Eddy MT, Chou JJ, Griffin RG. 21.  2012. Magic-angle-spinning NMR of the drug resistant S31N M2 proton transporter from influenza A. J. Am. Chem. Soc. 134:7215–18 [Google Scholar]
  22. Wang S, Munro RA, Shi L, Kawamura I, Okitsu T. 22.  et al. 2013. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat. Methods 10:1007–12 [Google Scholar]
  23. Oldfield E. 23.  1973. Are cell membranes fluid?. Science 180:982–83 [Google Scholar]
  24. Singer SJ, Nicolson GL. 24.  1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31 [Google Scholar]
  25. Starling AP, East JM, Lee AG. 25.  1995. Effects of gel phase phospholipid on the Ca2+-ATPase. Biochemistry 34:3084–91 [Google Scholar]
  26. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. 26.  2010. Intermolecular alignment in β2-microglobulin amyloid fibrils. J. Am. Chem. Soc. 132:17077–79 [Google Scholar]
  27. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH. 27.  2008. Amyloid fibrils of the HET-s218-289 prion form a β solenoid with a triangular hydrophobic core. Science 319:1523–26 [Google Scholar]
  28. Su Y, Sarell CJ, Eddy MT, Debelouchina GT, Andreas LB. 28.  et al. 2014. Secondary structure in the core of amyloid fibrils formed from human β2m and its truncated variant ΔN6. J. Am. Chem. Soc. 136:6313–25 [Google Scholar]
  29. Almén MS, Nordström KJ, Fredriksson R, Schiöth HB. 29.  2009. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7:50 [Google Scholar]
  30. Su Y, Li S, Hong M. 30.  2013. Cationic membrane peptides: atomic-level insight of structure–activity relationships from solid-state NMR. Amino Acids 44:821–33 [Google Scholar]
  31. Zhou HX, Cross TA. 31.  2013. Influences of membrane mimetic environments on membrane protein structures. Annu. Rev. Biophys. 42:361–92 [Google Scholar]
  32. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG. 32.  2009. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR. PNAS 106:9244–49 [Google Scholar]
  33. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG. 33.  2010. DNP enhanced frequency selective TEDOR experiments in bacteriorhodopsin. J. Magn. Reson. 202:9–13 [Google Scholar]
  34. Ladizhansky V. 34.  2014. Recent advances in magic-angle spinning solid-state NMR of proteins. Israel J. Chem. 54:86–103 [Google Scholar]
  35. Bhate MP, Wylie BJ, Tian L, McDermott AE. 35.  2010. Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J. Mol. Biol. 401:155–66 [Google Scholar]
  36. Varga K, Tian L, McDermott AE. 36.  2007. Solid-state NMR study and assignments of the KcsA potassium ion channel of S. lividans. Biochim. Biophys. Acta 1774:1604–13 [Google Scholar]
  37. Eddy MT, Ong TC, Clark L, Teijido O, van der Wel PC. 37.  et al. 2012. Lipid dynamics and protein–lipid interactions in 2D crystals formed with the β-barrel integral membrane protein VDAC1. J. Am. Chem. Soc. 134:6375–87 [Google Scholar]
  38. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ. 38.  et al. 2012. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–83 [Google Scholar]
  39. Tang M, Comellas G, Rienstra CM. 39.  2013. Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc. Chem. Res. 46:2080–88 [Google Scholar]
  40. Cross TA, Dong H, Sharma M, Busath DD, Zhou HX. 40.  2012. M2 protein from influenza A: from multiple structures to biophysical and functional insights. Curr. Opin. Virol. 2:128–33 [Google Scholar]
  41. Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG. 41.  2010. Magic angle spinning NMR investigation of influenza A M218-60: support for an allosteric mechanism of inhibition. J. Am. Chem. Soc. 132:10958–60 [Google Scholar]
  42. Chiti F, Dobson CM. 42.  2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66 [Google Scholar]
  43. Sipe JD, Cohen AS. 43.  2000. Review: History of the amyloid fibril. J. Struct. Biol. 130:88–98 [Google Scholar]
  44. Barnhart MM, Chapman MR. 44.  2006. Curli biogenesis and function. Annu. Rev. Microbiol. 60:131–47 [Google Scholar]
  45. White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS. 45.  et al. 2009. Globular tetramers of β2-microglobulin assemble into elaborate amyloid fibrils. J. Mol. Biol. 389:48–57 [Google Scholar]
  46. Sarell CJ, Woods LA, Su Y, Debelouchina GT, Ashcroft AE. 46.  et al. 2013. Expanding the repertoire of amyloid polymorphs by co-polymerization of related protein precursors. J. Biol. Chem. 288:7327–37 [Google Scholar]
  47. Lansbury PT, Costa PR, Griffiths JM, Simon EJ, Auger M. 47.  et al. 1995. Structural model for the β-amyloid fibril: interstrand alignment of an antiparallel β-sheet comprising a C-terminal peptide. Nat. Struct. Biol. 2:990–98 [Google Scholar]
  48. Benzinger TLS, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG. 48.  et al. 2000. Two-dimensional structure of β-amyloid10-35 fibrils. Biochemistry 393491–99
  49. Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW. 49.  et al. 2000. Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–59 [Google Scholar]
  50. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M. 50.  2005. Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR. PNAS 102:15871–76 [Google Scholar]
  51. Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT. 51.  et al. 2011. Structured regions of α-synuclein fibrils include the early-onset Parkinson's disease mutation sites. J. Mol. Biol. 411:881–95 [Google Scholar]
  52. Lv G, Kumar A, Giller K, Orcellet ML, Riedel D. 52.  et al. 2012. Structural comparison of mouse and human α-synuclein amyloid fibrils by solid-state NMR. J. Mol. Biol. 420:99–111 [Google Scholar]
  53. Luckgei N, Schütz AK, Bousset L, Habenstein B, Sourigues Y. 53.  et al. 2013. The conformation of the prion domain of Sup35p in isolation and in the full-length protein. Angew. Chem. Int. Ed. 52:12741–44 [Google Scholar]
  54. Shewmaker F, Wickner RB, Tycko R. 54.  2006. Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. PNAS 103:19754–59 [Google Scholar]
  55. Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP. 55.  2010. Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 132:2393–403 [Google Scholar]
  56. Debelouchina GT, Bayro MJ, van der Wel PC, Caporini MA, Barnes AB. 56.  et al. 2010. Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys. Chem. Chem. Phys. 12:5911–19 [Google Scholar]
  57. Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. 57.  2010. Magic angle spinning NMR analysis of β2-microglobulin amyloid fibrils in two distinct morphologies. J. Am. Chem. Soc. 132:10414–23 [Google Scholar]
  58. Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE. 58.  et al. 2011. Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J. Am. Chem. Soc. 133:13967–74 [Google Scholar]
  59. Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG. 59.  2010. High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry 49:7474–84 [Google Scholar]
  60. Reichhardt C, Cegelski L. 60.  2014. Solid-state NMR for bacterial biofilms. Mol. Phys. 112:887–94 [Google Scholar]
  61. McCrate OA, Zhou X, Reichhardt C, Cegelski L. 61.  2013. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J. Mol. Biol. 425:4286–94 [Google Scholar]
  62. Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda R. 62.  et al. 2009. The functional curli amyloid is not based on in-register parallel β-sheet structure. J. Biol. Chem. 284:25065–76 [Google Scholar]
  63. Tycko R, Wickner RB. 63.  2013. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc. Chem. Res. 46:1487–96 [Google Scholar]
  64. Mishra R, Hoop CL, Kodali R, Sahoo B, van der Wel PC, Wetzel R. 64.  2012. Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J. Mol. Biol. 424:1–14 [Google Scholar]
  65. De Paëpe G, Lewandowski JR, Loquet A, Böckmann A, Griffin RG. 65.  2008. Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129:245101 [Google Scholar]
  66. De Paëpe G, Lewandowski J, Loquet A, Eddy M, Megy S. 66.  et al. 2011. Heteronuclear proton assisted recoupling. J. Chem. Phys. 134:095101 [Google Scholar]
  67. Lewandowski JR, De Paëpe G, Eddy MT, Griffin RG. 67.  2009. 15N–15N proton assisted recoupling in magic angle spinning NMR. J. Am. Chem. Soc. 131:5769–76 [Google Scholar]
  68. Lewandowski JR, De Paëpe G, Eddy MT, Struppe J, Maas W, Griffin RG. 68.  2009. Proton assisted recoupling at high spinning frequencies. J. Phys. Chem. B 113:9062–69 [Google Scholar]
  69. Lewandowski JR, De Paëpe G, Griffin RG. 69.  2007. Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129:728–29 [Google Scholar]
  70. De Paëpe G. 70.  2012. Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63:661–84 [Google Scholar]
  71. Scholz I, Huber M, Manolikas T, Meier BH, Ernst M. 71.  2008. MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem. Phys. Lett. 460:278–83 [Google Scholar]
  72. Weingarth M, Bodenhausen G, Tekely P. 72.  2009. Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields. J. Am. Chem. Soc. 131:13937–39 [Google Scholar]
  73. Hou G, Yan S, Sun S, Han Y, Byeon IJ. 73.  et al. 2011. Spin diffusion driven by R-symmetry sequences: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids. J. Am. Chem. Soc. 133:3943–53 [Google Scholar]
  74. Elena B, Lesage A, Steuernagel S, Böckmann A, Emsley L. 74.  2005. Proton to carbon-13 INEPT in solid-state NMR spectroscopy. J. Am. Chem. Soc. 127:17296–302 [Google Scholar]
  75. Chen L, Kaiser JM, Polenova T, Yang J, Rienstra CM, Mueller LJ. 75.  2007. Backbone assignments in solid-state proteins using J-based 3D heteronuclear correlation spectroscopy. J. Am. Chem. Soc. 129:10650–51 [Google Scholar]
  76. Nadaud PS, Helmus JJ, Kall SL, Jaroniec CP. 76.  2009. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. J. Am. Chem. Soc. 131:8108–20 [Google Scholar]
  77. Su Y, Hu F, Hong M. 77.  2012. Paramagnetic Cu(II) for probing membrane protein structure and function: inhibition mechanism of the influenza M2 proton channel. J. Am. Chem. Soc. 134:8693–702 [Google Scholar]
  78. Su Y, Mani R, Hong M. 78.  2008. Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example. J. Am. Chem. Soc. 130:8856–64 [Google Scholar]
  79. Sengupta I, Nadaud PS, Jaroniec CP. 79.  2013. Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc. Chem. Res. 46:2117–26 [Google Scholar]
  80. Matsuki Y, Eddy MT, Herzfeld J. 80.  2009. Spectroscopy by integration of frequency and time domain information (SIFT) for fast acquisition of high resolution dark spectra. J. Am. Chem. Soc. 131:4648–56 [Google Scholar]
  81. Matsuki Y, Eddy MT, Griffin RG, Herzfeld J. 81.  2010. Rapid 3D MAS NMR spectroscopy at critical sensitivity. Angew. Chem. Int. Ed. 49:1–5 [Google Scholar]
  82. Paramasivam S, Suiter CL, Hou G, Sun S, Palmer M. 82.  et al. 2012. Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J. Phys. Chem. B 116:7416–27 [Google Scholar]
  83. Laage S, Sachleben JR, Steuernagel S, Pierattelli R, Pintacuda G, Emsley L. 83.  2009. Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J. Magn. Reson. 196:133–41 [Google Scholar]
  84. Hong M, Jakes K. 84.  1999. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J. Biomol. NMR 14:71–74 [Google Scholar]
  85. Lundström P, Teilum K, Carstensen T, Bezsonova I, Wiesner S. 85.  et al. 2007. Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. J. Biomol. NMR 38:199–212 [Google Scholar]
  86. Higman VA, Flinders J, Hiller M, Jehle S, Markovic S. 86.  et al. 2009. Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J. Biomol. NMR 44:245–60 [Google Scholar]
  87. Eddy MT, Belenky M, Sivertsen A, Griffin RG, Herzfeld J. 87.  2013. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR. J. Biomol. NMR 57:129–39 [Google Scholar]
  88. Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E. 88.  et al. 2011. Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew. Chem. Int. Ed. 50:11697–701 [Google Scholar]
  89. Huber M, Hiller S, Schanda P, Ernst M, Böckmann A. 89.  et al. 2011. A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–18 [Google Scholar]
  90. Zhou D, Shea J, Nieuwkoop A, Franks W, Wylie B. 90.  et al. 2007. Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew. Chem. Int. Ed. 46:8380–83 [Google Scholar]
  91. Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K. 91.  et al. 2014. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J. Am. Chem. Soc. 136:12489–97 [Google Scholar]
  92. Moms GA, Freeman R. 92.  1979. Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc. 101:760–62 [Google Scholar]
  93. Pines A, Gibby MG, Waugh JS. 93.  1973. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59:569–90 [Google Scholar]
  94. Hu KN, Song C, Yu HH, Swager TM, Griffin RG. 94.  2008. High-frequency dynamic nuclear polarization using biradicals: a multifrequency EPR lineshape analysis. J. Chem. Phys. 128:052302 [Google Scholar]
  95. Ernst RR, Bodenhausen G, Wokaun A. 95.  1991. Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford, UK: Clarendon
  96. Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT. 96.  et al. 2013. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew. Chem. Int. Ed. 52:10858–61 [Google Scholar]
  97. Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA. 97.  et al. 2013. Dynamic nuclear polarization study of inhibitor binding to the M218-60 proton transporter from influenza A. Biochemistry 52:2774–82 [Google Scholar]
  98. Barnes A, Corzilius B, Mak-Jurkauskas M, Andreas L, Bajaj V. 98.  et al. 2010. Resolution and polarization distribution in cryogenic DNP/MAS experiments. Phys. Chem. Chem. Phys. 12:5861–67 [Google Scholar]
  99. Overhauser AW. 99.  1953. Polarization of nuclei in metals. Phys. Rev. 92:411 [Google Scholar]
  100. Carver TR, Slichter CP. 100.  1956. Experimental verification of the Overhauser nuclear polarization effect. Phys. Rev. 102:975–80 [Google Scholar]
  101. Barnes AB, Nanni EA, Herzfeld J, Griffin RG, Temkin RJ. 101.  2012. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization. J. Magn. Reson. 221:147–53 [Google Scholar]
  102. Abragam A, Goldman M. 102.  1978. Principles of dynamic nuclear polarization. Rep. Prog. Phys. 41:395–467 [Google Scholar]
  103. Atsarkin VA. 103.  1978. Dynamic polarization of nuclei in solid dielectrics. Soviet Phys. Solid State 21:725–44 [Google Scholar]
  104. Jefferies CD. 104.  1957. Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys. Rev. 106:164–65 [Google Scholar]
  105. Jefferies CD. 105.  1960. Dynamic orientation of nuclei by forbidden transitions in paramagnetic resonance. Phys. Rev. 117:1056–69 [Google Scholar]
  106. Abragam A, Proctor WG. 106.  1958. Une nouvelle méthode de polarisation dynamique des noyaux atomiques dans les solides. C. R. Hebd. Séances Acad. Sci. 246:2253–56 [Google Scholar]
  107. Kessenikh AV, Luschikov VL, Manenkov AA, Taran YV. 107.  1963. Proton polarization in irradiated polyethylenes. Soviet Phys. Solid State 5:321–29 [Google Scholar]
  108. Kessenikh AV, Manenkov AA. 108.  1963. Dynamic polarization of nuclei during saturation of nonuniformly broadened electron paramagnetic resonance lines. Soviet Phys. Solid State 5:835–37 [Google Scholar]
  109. Kessenikh AV, Manenkov AA, Pyatnitskii GI. 109.  1964. On explanation of experimental data on dynamic polarization of protons in irradiated polyethylenes. Soviet Phys. Solid State 6:641–43 [Google Scholar]
  110. Wind RA, Duijvestijn MJ, Van der Lugt C, Manenschijn A, Vriend J. 110.  1985. Applications of dynamic nuclear polarization in 13C NMR in solids. Prog. Nucl. Magn. Reson. Spectrosc. 17:33–67 [Google Scholar]
  111. Hausser KH, Stehlik D. 111.  1968. Dynamic nuclear polarization in liquids. Adv. Magn. Reson. 3:79–139 [Google Scholar]
  112. van der Wel PC, Hu KN, Lewandowski J, Griffin R. 112.  2006. Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J. Am. Chem. Soc. 128:10840–46 [Google Scholar]
  113. Smith AA, Corzilius B, Barnes AB, Maly T, Griffin RG. 113.  2012. Solid effect dynamic nuclear polarization and polarization pathways. J. Chem. Phys. 136:015101 [Google Scholar]
  114. Singel DJ, Seidel H, Kendrick RD, Yannoni CS. 114.  1989. A spectrometer for EPR, DNP, and multinuclear high-resolution NMR. J. Magn. Reson. 81:145–61 [Google Scholar]
  115. Afeworki M, McKay RA, Schaefer J. 115.  1992. Selective observation of the interface of heterogeneous polycarbonate/polystyrene blends by dynamic nuclear polarization carbon-13 NMR spectroscopy. Macromolecules 25:4084–91 [Google Scholar]
  116. Becerra LR, Gerfen GJ, Temkin RJ, Singel DL, Griffin RG. 116.  1993. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys. Rev. Lett. 71:3561–64 [Google Scholar]
  117. Gerfen GJ, Becerra LR, Hall DA, Griffin RG, Temkin RJ, Singel DJ. 117.  1995. High frequency (140 GHz) dynamic nuclear polarization: polarization transfer to a solute in frozen aqueous solution. J. Chem. Phys. 102:9494–97 [Google Scholar]
  118. Nanni EA, Barnes AB, Griffin RG, Temkin RJ. 118.  2011. THz dynamic nuclear polarization NMR. IEEE Trans. Terahertz Sci. Technol. 1:145–63 [Google Scholar]
  119. Allen PJ, Creuzet F, De Groot HJM, Griffin RG. 119.  1991. Apparatus for low-temperature magic-angle spinning NMR. J. Magn. Reson. 92:614–17 [Google Scholar]
  120. Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, van der Wel PC. 120.  et al. 2009. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J. Magn. Reson. 198:261–70 [Google Scholar]
  121. Woskov PW, Bajaj VS, Hornstein MK, Temkin RJ, Griffin RG. 121.  2005. Corrugated waveguide and directional coupler for CW 250 GHz gyrotron DNP experiments. IEEE Trans. Microw. Theory Tech. 53:1863–69 [Google Scholar]
  122. Hu KN, Yu H-H, Swager TM, Griffin RG. 122.  2004. Dynamic nuclear polarization with biradicals. J. Am. Chem. Soc. 126:10844–45 [Google Scholar]
  123. Hu KN, Bajaj VS, Rosay M, Griffin RG. 123.  2007. High-frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J. Chem. Phys. 126:044512 [Google Scholar]
  124. Wollan DS. 124.  1976. Dynamic nuclear polarization with an inhomogeneously broadened ESR line. I. Theory. Phys. Rev. B 13:3671 [Google Scholar]
  125. Maly T, Debelouchina GT, Bajaj VS, Hu KN, Joo CG. 125.  et al. 2008. Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 128:052211 [Google Scholar]
  126. Haze O, Corzilius B, Smith AA, Griffin RG, Swager TM. 126.  2012. Water-soluble narrow-line radicals for dynamic nuclear polarization. J. Am. Chem. Soc. 134:14287–90 [Google Scholar]
  127. Can TV, Caporini MA, Mentink-Vigier F, Corzilius B, Walish JJ. 127.  et al. 2014. Overhauser effects in insulating solids. J. Chem. Phys. 141:064202 [Google Scholar]
  128. Hu KN, Debelouchina GT, Smith AA, Griffin RG. 128.  2011. Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J. Chem. Phys. 134:125105 [Google Scholar]
  129. Hu KN, Song C, Yu H-H, Swager TM, Griffin RG. 129.  2008. High-frequency dynamic nuclear polarization using biradicals: a multifrequency EPR lineshape analysis. J. Chem. Phys. 128:052321 [Google Scholar]
  130. Thurber K, Tycko R. 130.  2012. Theory for cross effect dynamic nuclear polarization under magic angle spinning in solid state nuclear magnetic resonance: the importance of level crossings. J. Chem. Phys. 137:084508 [Google Scholar]
  131. Hovav Y, Feintuch A, Vega S. 131.  2010. Theoretical aspects of dynamic nuclear polarization in the solid state—the solid effect. J. Magn. Reson. 207:176–89 [Google Scholar]
  132. Mentink-Vigier F, Akbey Ü, Hovav Y, Vega S, Oschkinat H, Feintuch A. 132.  2013. Fast passage dynamic nuclear polarization on rotating solids. J. Magn. Reson. 224:13–21 [Google Scholar]
  133. Mak-Jurkauskas ML, Griffin RG. 133.  2007. High-frequency dynamic nuclear polarization. Solid-State NMR of Biopolymers AE McDermott, T Polenova 159–74 New York: Wiley [Google Scholar]
  134. Maricq MM, Waugh JS. 134.  1977. Rotational spin echoes and high resolution NMR in powders. Chem. Phys. Lett. 47:327–29 [Google Scholar]
  135. Maricq MM, Waugh JS. 135.  1979. NMR in rotating solids. J. Chem. Phys. 70:3300–16 [Google Scholar]
  136. Matsuki Y, Maly T, Ouari O, Karoui H, Le Moigne F. 136.  et al. 2009. Dynamic nuclear polarization with a rigid biradical. Angew. Chem. Int. Ed. 48:4996–5000 [Google Scholar]
  137. Song C, Hu KN, Joo C-G, Swager TM, Griffin RG. 137.  2006. TOTAPOL—a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J. Am. Chem. Soc. 128:11385–90 [Google Scholar]
  138. La Mar GN, Horrocks WD, Holm RH. 138.  1973. NMR of Paramagnetic Molecules: Principles and Applications San Diego: Academic
  139. Satterlee JD. 139.  1990. Fundamental concepts of NMR in paramagnetic systems. Part II: Relaxation phenomena. Concepts Magn. Res. 2:119–29 [Google Scholar]
  140. Corzilius B, Andreas LB, Smith AA, Ni QZ, Griffin RG. 140.  2014. Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions. J. Magn. Reson. 240:113–23 [Google Scholar]
  141. Akbey Ü, Franks WT, Linden A, Lange S, Griffin RG. 141.  et al. 2010. Dynamic nuclear polarization of deuterated proteins. Angew. Chem. Int. Ed. 49:7803–6 [Google Scholar]
  142. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Temkin RJ. 142.  et al. 2008. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid state NMR. PNAS 105:883–88 [Google Scholar]
  143. Bajaj V, Mak-Jurkauskas M, Belenky M, Herzfeld J, Griffin R. 143.  2009. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR. PNAS 106:9244 [Google Scholar]
  144. Debelouchina GT, Bayro MJ, Fitzpatrick AW, Ladizhansky V, Colvin MT. 144.  et al. 2013. Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy. J. Am. Chem. Soc. 135:19237–47 [Google Scholar]
  145. Lopez del Amo JM, Schneider D, Loquet A, Lange A, Reif B. 145.  2013. Cryogenic solid state NMR studies of fibrils of the Alzheimer's disease amyloid-β peptide: perspectives for DNP. J. Biomol. NMR 56:359–63 [Google Scholar]
  146. Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S. 146.  2013. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J. Am. Chem. Soc. 135:5105–10 [Google Scholar]
  147. Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B. 147.  2010. Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J. Am. Chem. Soc. 132:5940–41 [Google Scholar]
  148. Wang T, Park YB, Caporini MA, Rosay M, Zhong L. 148.  et al. 2013. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. PNAS 110:16444–49 [Google Scholar]
  149. Jacso T, Franks WT, Rose H, Fink U, Broecker J. 149.  et al. 2012. Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew. Chem. Int. Ed. 51:432–35 [Google Scholar]
  150. Renault M, García J, Cordeiro TN, Baldus M, Pons M. 150.  2013. Protein oligomers studied by solid-state NMR—the case of the full-length nucleoid-associated protein histone–like nucleoid structuring protein. FEBS J. 280:2916–28 [Google Scholar]
  151. Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A. 151.  et al. 2013. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J. Biomol. NMR 56:85–93 [Google Scholar]
  152. Reggie L, Lopez JJ, Collinson I, Glaubitz C, Lorch M. 152.  2011. Dynamic nuclear polarization–enhanced solid-state NMR of a 13C-labeled signal peptide bound to lipid-reconstituted Sec translocon. J. Am. Chem. Soc. 133:19084–86 [Google Scholar]
  153. Linden AH, Lange S, Franks WT, Akbey Ü, Specker E. 153.  et al. 2011. Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J. Am. Chem. Soc. 133:19266–69 [Google Scholar]
  154. Ravera E, Corzilius B, Michaelis VK, Rosa C, Griffin RG. 154.  et al. 2013. Dynamic nuclear polarization of sedimented solutes. J. Am. Chem. Soc. 135:1641–44 [Google Scholar]
  155. Fricke P, Demers JP, Becker S, Lange A. 155.  2014. Studies on the MxiH protein in T3SS needles using DNP-enhanced ssNMR spectroscopy. ChemPhysChem 15:57–60 [Google Scholar]
  156. Debelouchina GT, Bayro M, van der Wel PC, Caporini M, Barnes A. 156.  et al. 2010. Dynamic nuclear polarization–enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys. Chem. Chem. Phys. 12:5911–19 [Google Scholar]
  157. Rosay M, Lansing JC, Haddad KC, Bachovchin WW, Herzfeld J. 157.  et al. 2003. High frequency dynamic nuclear polarization in MAS spectra of membrane and soluble proteins. J. Am. Chem. Soc. 125:13626–27 [Google Scholar]
  158. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA. 158.  et al. 2007. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–57 [Google Scholar]
  159. Loquet A, Giller K, Becker S, Lange A. 159.  2010. Supramolecular interactions probed by 13C–13C solid-state NMR spectroscopy. J. Am. Chem. Soc. 132:15164–66 [Google Scholar]
  160. Caporini MA, Bajaj VS, Veshtort M, Fitzpatrick A, MacPhee CE. 160.  et al. 2010. High resolution determination of interstrand distances and alignment in amyloid fibrils. J. Phys. Chem. B 114:13555–61 [Google Scholar]
  161. Bateman DA, Tycko R, Wickner RB. 161.  2011. Experimentally derived structural constraints for amyloid fibrils of wild-type transthyretin. Biophys. J. 101:2485–92 [Google Scholar]
  162. Lopez del Amo JM, Schneider D, Loquet A, Lange A, Reif B. 162.  2013. Cryogenic solid state NMR studies of fibrils of the Alzheimer's disease amyloid-β peptide: perspectives for DNP. J. Biomol. NMR 56:359–63 [Google Scholar]
  163. Bajaj VS, van der Wel PC, Griffin RG. 163.  2009. Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J. Am. Chem. Soc. 131:118–28 [Google Scholar]
  164. Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D. 164.  et al. 2012. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J. Am. Chem. Soc. 134:16899–908 [Google Scholar]
  165. Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paëpe G. 165.  2012. Rapid natural-abundance 2D 13C–13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. Angew. Chem. Int. Ed. 51:11766–69 [Google Scholar]
  166. Takahashi H, Viverge B, Lee D, Rannou P, De Paëpe G. 166.  2013. Towards structure determination of self-assembled peptides using dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 52:6979–82 [Google Scholar]
  167. Asami S, Szekely K, Schanda P, Meier BH, Reif B. 167.  2012. Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J. Biomol. NMR 54:155–68 [Google Scholar]
  168. Linser R, Dasari M, Hiller M, Higman V, Fink U. 168.  et al. 2011. Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew. Chem. Int. Ed. 50:4508–12 [Google Scholar]
  169. Asami S, Reif B. 169.  2013. Proton-detected solid-state NMR spectroscopy at aliphatic sites: application to crystalline systems. Acc. Chem. Res. 46:2089–97 [Google Scholar]
  170. Chevelkov V, Rehbein K, Diehl A, Reif B. 170.  2006. Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew. Chem. Int. Ed. 45:3878–81 [Google Scholar]
  171. Knight MJ, Felli IC, Pierattelli R, Bertini I, Emsley L. 171.  et al. 2012. Rapid measurement of pseudocontact shifts in metalloproteins by proton-detected solid-state NMR spectroscopy. J. Am. Chem. Soc. 134:14730–33 [Google Scholar]
  172. Lewandowski JR, Dumez J-N, Akbey Ü, Lange S, Emsley L, Oschkinat H. 172.  2011. Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic angle spinning. J. Phys. Chem. Lett. 2:2205–11 [Google Scholar]
  173. Linser R, Chevelkov V, Diehl A, Reif B. 173.  2007. Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins. J. Magn. Reson. 189:209–16 [Google Scholar]
  174. Zhou DH, Nieuwkoop AJ, Berthold DA, Comellas G, Sperling LJ. 174.  et al. 2012. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J. Biomol. NMR 54:291–305 [Google Scholar]
  175. Zheng L, Fishbein WK, Griffin RG, Herzfeld J. 175.  1993. Two-dimensional solid-state proton NMR and proton exchange. J. Am. Chem. Soc.6254–61
  176. Zhou D, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra C. 176.  2007. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J. Am. Chem. Soc. 129:11791–801 [Google Scholar]
  177. Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW. 177.  2003. Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J. Am. Chem. Soc. 125:15831–36 [Google Scholar]
  178. Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H. 178.  et al. 2011. Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J. Am. Chem. Soc. 133:17434–43 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034206
Loading
/content/journals/10.1146/annurev-biochem-060614-034206
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error