1932

Abstract

PIWI-interacting RNAs (piRNAs) are a class of small RNAs that are 24–31 nucleotides in length. They associate with PIWI proteins, which constitute a germline-specific subclade of the Argonaute family, to form effector complexes known as piRNA-induced silencing complexes, which repress transposons via transcriptional or posttranscriptional mechanisms and maintain germline genome integrity. In addition to having a role in transposon silencing, piRNAs in diverse organisms function in the regulation of cellular genes. In some cases, piRNAs have shown transgenerational inheritance to pass on the memory of “self” and “nonself,” suggesting a contribution to various cellular processes over generations. Many piRNA factors have been identified; however, both the molecular mechanisms leading to the production of mature piRNAs and the effector phases of gene silencing are still enigmatic. Here, we summarize the current state of our knowledge on the biogenesis of piRNA, its biological functions, and the underlying mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034258
2015-06-02
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034258.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034258&mimeType=html&fmt=ahah

Literature Cited

  1. Siomi H, Siomi MC. 1.  2009. On the road to reading the RNA-interference code. Nature 457:396–404 [Google Scholar]
  2. Ghildiyal M, Zamore PD. 2.  2009. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10:94–108 [Google Scholar]
  3. Kim VN, Han J, Siomi MC. 3.  2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10:126–39 [Google Scholar]
  4. Peters L, Meister G. 4.  2007. Argonaute proteins: mediators of RNA silencing. Mol. Cell 26:611–23 [Google Scholar]
  5. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. 5.  2006. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–24 [Google Scholar]
  6. Siomi MC, Sato K, Pezic D, Aravin AA. 6.  2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12:246–58 [Google Scholar]
  7. Moazed D. 7.  2009. Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–20 [Google Scholar]
  8. Malone CD, Hannon GJ. 8.  2009. Small RNAs as guardians of the genome. Cell 136:656–68 [Google Scholar]
  9. Ishizu H, Siomi H, Siomi MC. 9.  2012. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 26:2361–73 [Google Scholar]
  10. Ross RJ, Weiner MM, Lin H. 10.  2014. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505:353–59 [Google Scholar]
  11. Stuwe E, Toth KF, Aravin AA. 11.  2014. Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev. 28:423–31 [Google Scholar]
  12. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR. 12.  et al. 2008. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455:1193–97 [Google Scholar]
  13. Thomson T, Lin H. 13.  2009. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol. 25:355–76 [Google Scholar]
  14. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. 14.  1998. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12:3715–27 [Google Scholar]
  15. Li C, Vagin VV, Lee S, Xu J, Ma S. 15.  et al. 2009. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137:509–21 [Google Scholar]
  16. Schmidt A, Palumbo G, Bozzetti MP, Tritto P, Pimpinelli S, Schäfer U. 16.  1999. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 151:749–60 [Google Scholar]
  17. Lin H, Spradling AC. 17.  1997. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–76 [Google Scholar]
  18. Kalmykova AI, Klenov MS, Gvozdev VA. 18.  2005. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res. 33:2052–59 [Google Scholar]
  19. Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA. 19.  2004. The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol. 1:54–58 [Google Scholar]
  20. Sabin LR, Delas MJ, Hannon GJ. 20.  2013. Dogma derailed: the many influences of RNA on the genome. Mol. Cell 49:783–94 [Google Scholar]
  21. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M. 21.  et al. 2007. Discrete small RNA–generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–103 [Google Scholar]
  22. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y. 22.  et al. 2007. A Slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–90 [Google Scholar]
  23. Savitsky M, Kwon D, Georgiev P, Kalmykova A, Gvozdev V. 23.  2006. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev. 20:345–54 [Google Scholar]
  24. Khurana JS, Xu J, Weng Z, Theurkauf WE. 24.  2010. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLOS Genet. 6:e1001246 [Google Scholar]
  25. Pardue ML, DeBaryshe PG. 25.  2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37:485–511 [Google Scholar]
  26. Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH. 26.  et al. 2007. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12:503–14 [Google Scholar]
  27. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. 27.  2007. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–47 [Google Scholar]
  28. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A. 28.  et al. 2008. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22:908–17 [Google Scholar]
  29. Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D. 29.  et al. 2008. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31:785–99 [Google Scholar]
  30. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P. 30.  et al. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–7 [Google Scholar]
  31. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. 31.  2006. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202 [Google Scholar]
  32. Grivna ST, Beyret E, Wang Z, Lin H. 32.  2006. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20:1709–14 [Google Scholar]
  33. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T. 33.  et al. 2006. Characterization of the piRNA complex from rat testes. Science 313:363–67 [Google Scholar]
  34. Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M. 34.  et al. 2011. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480:264–67 [Google Scholar]
  35. De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A. 35.  et al. 2011. The endonuclease activity of MILI fuels piRNA amplification that silences LINE1 elements. Nature 480:259–63 [Google Scholar]
  36. Zhao S, Gou LT, Zhang M, Zu LD, Hua MM. 36.  et al. 2013. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Dev. Cell 24:13–25 [Google Scholar]
  37. Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE. 37.  2007. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell 12:45–55 [Google Scholar]
  38. Castañeda J, Genzor P, van der Heijden GW, Sarkeshik A, Yates JR 3rd. 38.  et al. 2014. Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice. EMBO J. 33:1999–2019 [Google Scholar]
  39. Klenov MS, Sokolova OA, Yakushev EY, Stolyarenko AD, Mikhaleva EA. 39.  et al. 2011. Separation of stem cell maintenance and transposon silencing functions of Piwi protein. PNAS 108:18760–65 [Google Scholar]
  40. Xu M, You Y, Hunsicker P, Hori T, Small C. 40.  et al. 2008. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol. Reproduct. 79:51–57 [Google Scholar]
  41. Prud'homme N, Gans M, Masson M, Terzian C, Bucheton A. 41.  1995. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711 [Google Scholar]
  42. Zanni V, Eymery A, Coiffet M, Zytnicki M, Luyten I. 42.  et al. 2013. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. PNAS 110:19842–47 [Google Scholar]
  43. Nishimasu H, Ishizu H, Saito K, Fukuhara S, Kamatani MK. 43.  et al. 2012. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491:284–87 [Google Scholar]
  44. Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ. 44.  2012. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491:279–83 [Google Scholar]
  45. Pane A, Wehr K, Schupbach T. 45.  2007. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12:851–62 [Google Scholar]
  46. Haase AD, Fenoglio S, Muerdter F, Guzzardo PM, Czech B. 46.  et al. 2010. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev. 24:2499–504 [Google Scholar]
  47. Saito K, Ishizu H, Komai M, Kotani H, Kawamura Y. 47.  et al. 2010. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24:2493–98 [Google Scholar]
  48. Olivieri D, Sykora MM, Sachidanandam R, Mechtler K, Brennecke J. 48.  2010. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29:3301–17 [Google Scholar]
  49. Zamparini AL, Davis MY, Malone CD, Vieira E, Zavadil J. 49.  et al. 2011. Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development 138:4039–50 [Google Scholar]
  50. Handler D, Olivieri D, Novatchkova M, Gruber FS, Meixner K. 50.  et al. 2011. A systematic analysis of Drosophila TUDOR domain–containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J. 30:3977–93 [Google Scholar]
  51. Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. 51.  2012. shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 18:1446–57 [Google Scholar]
  52. Qi H, Watanabe T, Ku HY, Liu N, Zhong M, Lin H. 52.  2011. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J. Biol. Chem. 286:3789–97 [Google Scholar]
  53. Handler D, Meixner K, Pizka M, Lauss K, Schmied C. 53.  et al. 2013. The genetic makeup of the Drosophila piRNA pathway. Mol. Cell 50:762–77 [Google Scholar]
  54. Vagin VV, Yu Y, Jankowska A, Luo Y, Wasik KA. 54.  et al. 2013. Minotaur is critical for primary piRNA biogenesis. RNA 19:1064–77 [Google Scholar]
  55. Kawaoka S, Izumi N, Katsuma S, Tomari Y. 55.  2011. 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell 43:1015–22 [Google Scholar]
  56. Saito K, Sakaguchi Y, Suzuki T, Siomi H, Siomi MC. 56.  2007. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev. 21:1603–8 [Google Scholar]
  57. Horwich MD, Li C, Matranga C, Vagin V, Farley G. 57.  et al. 2007. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17:1265–72 [Google Scholar]
  58. Sienski G, Donertas D, Brennecke J. 58.  2012. Transcriptional silencing of transposons by Piwi and Maelstrom and its impact on chromatin state and gene expression. Cell 151:964–80 [Google Scholar]
  59. Murota Y, Ishizu H, Nakagawa S, Iwasaki YW, Shibata S. 59.  et al. 2014. Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep. 8:103–13 [Google Scholar]
  60. Malone CD, Brennecke J, Dus M, Stark A, McCombie WR. 60.  et al. 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–35 [Google Scholar]
  61. Soper SF, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL. 61.  et al. 2008. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev. Cell 15:285–97 [Google Scholar]
  62. Frost RJ, Hamra FK, Richardson JA, Qi X, Bassel-Duby R, Olson EN. 62.  2010. MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. PNAS 107:11847–52 [Google Scholar]
  63. Huang H, Gao Q, Peng X, Choi SY, Sarma K. 63.  et al. 2011. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20:376–87 [Google Scholar]
  64. Xiol J, Cora E, Koglgruber R, Chuma S, Subramanian S. 64.  et al. 2012. A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Mol. Cell 47:970–79 [Google Scholar]
  65. Watanabe T, Chuma S, Yamamoto Y, Kuramochi-Miyagawa S, Totoki Y. 65.  et al. 2011. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20:364–75 [Google Scholar]
  66. Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA. 66.  et al. 2010. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. PNAS 107:11841–46 [Google Scholar]
  67. Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE. 67.  et al. 2013. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27:390–99 [Google Scholar]
  68. Wang SH, Elgin SC. 68.  2011. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. PNAS 108:21164–69 [Google Scholar]
  69. Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H. 69.  2013. A major epigenetic programming mechanism guided by piRNAs. Dev. Cell 24:502–16 [Google Scholar]
  70. Ohtani H, Iwasaki YW, Shibuya A, Siomi H, Siomi MC, Saito K. 70.  2013. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev. 27:1656–61 [Google Scholar]
  71. Muerdter F, Guzzardo PM, Gillis J, Luo Y, Yu Y. 71.  et al. 2013. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell 50:736–48 [Google Scholar]
  72. Donertas D, Sienski G, Brennecke J. 72.  2013. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev. 27:1693–705 [Google Scholar]
  73. Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H. 73.  et al. 2007. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 21:2300–11 [Google Scholar]
  74. Rangan P, Malone CD, Navarro C, Newbold SP, Hayes PS. 74.  et al. 2011. piRNA production requires heterochromatin formation in Drosophila. Curr. Biol. 21:1373–79 [Google Scholar]
  75. Czech B, Preall JB, McGinn J, Hannon GJ. 75.  2013. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell 50:749–61 [Google Scholar]
  76. Lim AK, Kai T. 76.  2007. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. PNAS 104:6714–19 [Google Scholar]
  77. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. 77.  2008. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–92 [Google Scholar]
  78. Elbashir SM, Lendeckel W, Tuschl T. 78.  2001. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15:188–200 [Google Scholar]
  79. Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z. 79.  et al. 2014. RNA clamping by vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157:1698–711 [Google Scholar]
  80. Nishida KM, Iwasaki YW, Murota Y, Nagao A, Mannen T. 80.  et al. 2015. Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. Cell Rep 10:193–203 [Google Scholar]
  81. Chen C, Nott TJ, Jin J, Pawson T. 81.  2011. Deciphering arginine methylation: Tudor tells the tale. Nat. Rev. Mol. Cell Biol. 12:629–42 [Google Scholar]
  82. Chen C, Jin J, James DA, Adams-Cioaba MA, Park JG. 82.  et al. 2009. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. PNAS 106:20336–41 [Google Scholar]
  83. Kirino Y, Kim N, de Planell–Saguer M, Khandros E, Chiorean S. 83.  et al. 2009. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat. Cell Biol. 11:652–58 [Google Scholar]
  84. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. 84.  2009. Loss of the Mili-interacting Tudor domain–containing protein 1 activates transposons and alters the Mili-associated small RNA profile. Nat. Struct. Mol. Biol. 16:639–46 [Google Scholar]
  85. Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y. 85.  et al. 2009. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 28:3820–31 [Google Scholar]
  86. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X. 86.  et al. 2009. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23:1749–62 [Google Scholar]
  87. Munn K, Steward R. 87.  2000. The shut-down gene of Drosophila melanogaster encodes a novel FK506-binding protein essential for the formation of germline cysts during oogenesis. Genetics 156:245–56 [Google Scholar]
  88. Liu L, Qi H, Wang J, Lin H. 88.  2011. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development 138:1863–73 [Google Scholar]
  89. Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C. 89.  et al. 2011. Heterotypic piRNA ping-pong requires qin, a protein with both E3 ligase and Tudor domains. Mol. Cell 44:572–84 [Google Scholar]
  90. Anand A, Kai T. 90.  2012. The Tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J. 31:870–82 [Google Scholar]
  91. Patil VS, Kai T. 91.  2010. Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Curr. Biol. 20:724–30 [Google Scholar]
  92. Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J. 92.  2012. The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol. Cell 47:954–69 [Google Scholar]
  93. Hirano T, Iwasaki YW, Lin ZY, Imamura M, Seki NM. 93.  et al. 2014. Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA 20:1223–37 [Google Scholar]
  94. Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J. 94.  et al. 2013. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50:67–81 [Google Scholar]
  95. Mohn F, Sienski G, Handler D, Brennecke J. 95.  2014. The Rhino–Deadlock–Cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157:1364–79 [Google Scholar]
  96. Zhang Z, Wang J, Schultz N, Zhang F, Parhad SS. 96.  et al. 2014. The HP1 homolog Rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157:1353–63 [Google Scholar]
  97. Klattenhoff C, Xi H, Li C, Lee S, Xu J. 97.  et al. 2009. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138:1137–49 [Google Scholar]
  98. Yamanaka S, Siomi MC, Siomi H. 98.  2014. piRNA clusters and open chromatin structure. Mobile DNA 5:22 [Google Scholar]
  99. Kazazian HH Jr. 99.  2004. Mobile elements: drivers of genome evolution. Science 303:1626–32 [Google Scholar]
  100. Bergman CM, Quesneville H, Anxolabehere D, Ashburner M. 100.  2006. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol. 7:R112 [Google Scholar]
  101. Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC. 101.  et al. 2011. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 147:1551–63 [Google Scholar]
  102. Kidwell MG, Kidwell JF, Sved JA. 102.  1977. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–33 [Google Scholar]
  103. de Vanssay A, Bouge AL, Boivin A, Hermant C, Teysset L. 103.  et al. 2012. Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature 490:112–15 [Google Scholar]
  104. Le Thomas A, Stuwe E, Li S, Du J, Marinov G. 104.  et al. 2014. Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes Dev. 28:1667–80 [Google Scholar]
  105. Rongo C, Lehmann R. 105.  1996. Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet. 12:102–9 [Google Scholar]
  106. Megosh HB, Cox DN, Campbell C, Lin H. 106.  2006. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr. Biol. 16:1884–94 [Google Scholar]
  107. Jahn CL, Klobutcher LA. 107.  2002. Genome remodeling in ciliated protozoa. Annu. Rev. Microbiol. 56:489–520 [Google Scholar]
  108. Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. 108.  2002. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110:689–99 [Google Scholar]
  109. Mochizuki K. 109.  2010. DNA rearrangements directed by non-coding RNAs in ciliates. Wiley Interdiscip. Rev. RNA 1:376–87 [Google Scholar]
  110. Fang W, Wang X, Bracht JR, Nowacki M, Landweber LF. 110.  2012. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement. Cell 151:1243–55 [Google Scholar]
  111. Ruby JG, Jan C, Player C, Axtell MJ, Lee W. 111.  et al. 2006. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–207 [Google Scholar]
  112. Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N. 112.  et al. 2008. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol. Cell 31:67–78 [Google Scholar]
  113. Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ. 113.  et al. 2008. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 31:79–90 [Google Scholar]
  114. Wang G, Reinke V. 114.  2008. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr. Biol. 18:861–67 [Google Scholar]
  115. Cecere G, Zheng GX, Mansisidor AR, Klymko KE, Grishok A. 115.  2012. Promoters recognized by forkhead proteins exist for individual 21U-RNAs. Mol. Cell 47:734–45 [Google Scholar]
  116. Goh WS, Seah JW, Harrison EJ, Chen C, Hammell CM, Hannon GJ. 116.  2014. A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis. Genes Dev. 28:797–807 [Google Scholar]
  117. Weick EM, Sarkies P, Silva N, Chen RA, Moss SM. 117.  et al. 2014. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif–dependent piRNAs in C. elegans. Genes Dev. 28:783–96 [Google Scholar]
  118. de Albuquerque BF, Luteijn MJ, Cordeiro Rodrigues RJ, van Bergeijk P, Waaijers S. 118.  et al. 2014. PID-1 is a novel factor that operates during 21U-RNA biogenesis in Caenorhabditis elegans. Genes Dev. 28:683–88 [Google Scholar]
  119. Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S. 119.  et al. 2012. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337:574–78 [Google Scholar]
  120. Lee HC, Gu W, Shirayama M, Youngman E, Conte D Jr, Mello CC. 120.  2012. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150:78–87 [Google Scholar]
  121. Shirayama M, Seth M, Lee HC, Gu W, Ishidate T. 121.  et al. 2012. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150:65–77 [Google Scholar]
  122. Conine CC, Moresco JJ, Gu W, Shirayama M, Conte D Jr. 122.  et al. 2013. Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans. Cell 155:1532–44 [Google Scholar]
  123. Seth M, Shirayama M, Gu W, Ishidate T, Conte D Jr, Mello CC. 123.  2013. The C. elegans CSR-1 Argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27:656–63 [Google Scholar]
  124. Wedeles CJ, Wu MZ, Claycomb JM. 124.  2013. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell 27:664–71 [Google Scholar]
  125. Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP. 125.  et al. 2012. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150:88–99 [Google Scholar]
  126. Luteijn MJ, van Bergeijk P, Kaaij LJ, Almeida MV, Roovers EF. 126.  et al. 2012. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J. 31:3422–30 [Google Scholar]
  127. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. 127.  2001. Double-stranded RNA–mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11:1017–27 [Google Scholar]
  128. Nishida KM, Saito K, Mori T, Kawamura Y, Nagami-Okada T. 128.  et al. 2007. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13:1911–22 [Google Scholar]
  129. Nagao A, Mituyama T, Huang H, Chen D, Siomi MC, Siomi H. 129.  2010. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA 16:2503–15 [Google Scholar]
  130. Rouget C, Papin C, Boureux A, Meunier AC, Franco B. 130.  et al. 2010. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467:1128–32 [Google Scholar]
  131. Robine N, Lau NC, Balla S, Jin Z, Okamura K. 131.  et al. 2009. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 19:2066–76 [Google Scholar]
  132. Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y. 132.  et al. 2009. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461:1296–99 [Google Scholar]
  133. Gou LT, Dai P, Yang JH, Xue Y, Hu YP. 133.  et al. 2014. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24:680–700 [Google Scholar]
  134. Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y. 134.  et al. 2011. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–52 [Google Scholar]
  135. McClintock B. 135.  1956. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21:197–216 [Google Scholar]
  136. Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Gout JF. 136.  et al. 2014. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509:447–52 [Google Scholar]
  137. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H. 137.  et al. 2014. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509:633–36 [Google Scholar]
  138. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C. 138.  et al. 2012. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149:693–707 [Google Scholar]
  139. Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M. 139.  et al. 2011. Identification of piRNAs in the central nervous system. RNA 17:1090–99 [Google Scholar]
  140. Rinkevich Y, Rosner A, Rabinowitz C, Lapidot Z, Moiseeva E, Rinkevich B. 140.  2010. Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate. Dev. Biol. 345:94–104 [Google Scholar]
  141. Rinkevich Y, Voskoboynik A, Rosner A, Rabinowitz C, Paz G. 141.  et al. 2013. Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev. Cell 24:76–88 [Google Scholar]
  142. Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C. 142.  2010. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330:1824–27 [Google Scholar]
  143. Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin H. 143.  2002. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 21:3988–99 [Google Scholar]
  144. Suzuki R, Honda S, Kirino Y. 144.  2012. PIWI expression and function in cancer. Front. Genet. 3:204 [Google Scholar]
  145. Lee JH, Schutte D, Wulf G, Fuzesi L, Radzun HJ. 145.  et al. 2006. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genet. 15:201–11 [Google Scholar]
  146. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV. 146.  et al. 2011. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–27 [Google Scholar]
  147. Edrey YH, Park TJ, Kang H, Biney A, Buffenstein R. 147.  2011. Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Exp. Gerontol. 46:116–23 [Google Scholar]
  148. de Wit E, de Laat W. 148.  2012. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26:11–24 [Google Scholar]
  149. Dekker J, Rippe K, Dekker M, Kleckner N. 149.  2002. Capturing chromosome conformation. Science 295:1306–11 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034258
Loading
/content/journals/10.1146/annurev-biochem-060614-034258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error