1932

Abstract

RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.

Keyword(s): BLMgenome stabilityRECQL1RECQL4RECQL5WRN
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035428
2014-06-02
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035428.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035428&mimeType=html&fmt=ahah

Literature Cited

  1. Umate P, Tuteja N, Tuteja R. 1.  2011. Genome-wide comprehensive analysis of human helicases. Commun. Integr. Biol. 4:118–37 [Google Scholar]
  2. Bohr VA.2.  2008. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci. 33:609–20 [Google Scholar]
  3. Larsen NB, Hickson ID. 3.  2013. RecQ helicases: conserved guardians of genomic integrity. Adv. Exp. Med. Biol. 767:161–84 [Google Scholar]
  4. Mandell JG, Goodrich KJ, Bahler J, Cech TR. 4.  2005. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J. Biol. Chem. 280:5249–57 [Google Scholar]
  5. Barea F, Tessaro S, Bonatto D. 5.  2008. In silico analyses of a new group of fungal and plant RecQ4-homologous proteins. Comput. Biol. Chem. 32:349–58 [Google Scholar]
  6. Groocock LM, Prudden J, Perry JP, Boddy MN. 6.  2012. The RecQ4 orthologue Hrq1 is critical for DNA interstrand cross-link repair and genome stability in fission yeast. Mol. Cell. Biol. 32:276–87 [Google Scholar]
  7. Choi DH, Lee R, Kwon SH, Bae SH. 7.  2013. Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae. J. Microbiol. 51:105–12 [Google Scholar]
  8. Wu Y.8.  2012. Unwinding and rewinding: double faces of helicase?. J. Nucleic Acids 2012:140601 [Google Scholar]
  9. Gorbalenya AE, Koonin EV. 9.  1993. Helicases: amino acid sequence comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3:419–29 [Google Scholar]
  10. Marino F, Vindigni A, Onesti S. 10.  2013. Bioinformatic analysis of RecQ4 helicases reveals the presence of a RQC domain and a Zn knuckle. Biophys. Chem. 177/178:34–39 [Google Scholar]
  11. Garcia PL, Liu Y, Jiricny J, West SC, Janscak P. 11.  2004. Human RECQ5β, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 23:2882–91 [Google Scholar]
  12. Singleton MR, Dillingham MS, Wigley DB. 12.  2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23–50 [Google Scholar]
  13. Fairman-Williams ME, Guenther UP, Jankowsky E. 13.  2010. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20:313–24 [Google Scholar]
  14. Janscak P, Garcia PL, Hamburger F, Makuta Y, Shiraishi K. 14.  et al. 2003. Characterization and mutational analysis of the RecQ core of the Bloom syndrome protein. J. Mol. Biol. 330:29–42 [Google Scholar]
  15. Lee JW, Kusumoto R, Doherty KM, Lin GX, Zeng W. 15.  et al. 2005. Modulation of Werner syndrome protein function by a single mutation in the conserved RecQ domain. J. Biol. Chem. 280:39627–36 [Google Scholar]
  16. Ren H, Dou SX, Zhang XD, Wang PY, Kanagaraj R. 16.  et al. 2008. The zinc-binding motif of human RECQ5β suppresses the intrinsic strand-annealing activity of its DExH helicase domain and is essential for the helicase activity of the enzyme. Biochem. J. 412:425–33 [Google Scholar]
  17. Bernstein DA, Zittel MC, Keck JL. 17.  2003. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J. 22:4910–21 [Google Scholar]
  18. Pike AC, Shrestha B, Popuri V, Burgess-Brown N, Muzzolini L. 18.  et al. 2009. Structure of the human RECQ1 helicase reveals a putative strand-separation pin. Proc. Natl. Acad. Sci. USA 106:1039–44 [Google Scholar]
  19. Kitano K, Kim SY, Hakoshima T. 19.  2010. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18:177–87 [Google Scholar]
  20. Huber MD, Duquette ML, Shiels JC, Maizels N. 20.  2006. A conserved G4 DNA binding domain in RecQ family helicases. J. Mol. Biol. 358:1071–80 [Google Scholar]
  21. von Kobbe C, Thoma NH, Czyzewski BK, Pavletich NP, Bohr VA. 21.  2003. Werner syndrome protein contains three structure-specific DNA binding domains. J. Biol. Chem. 278:52997–3006 [Google Scholar]
  22. Kitano K, Yoshihara N, Hakoshima T. 22.  2007. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J. Biol. Chem. 282:2717–28 [Google Scholar]
  23. Tadokoro T, Kulikowicz T, Dawut L, Croteau DL, Bohr VA. 23.  2012. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities. Aging 4:417–30 [Google Scholar]
  24. Vindigni A, Marino F, Gileadi O. 24.  2010. Probing the structural basis of RecQ helicase function. Biophys. Chem. 149:67–77 [Google Scholar]
  25. Lucic B, Zhang Y, King O, Mendoza-Maldonado R, Berti M. 25.  et al. 2011. A prominent β-hairpin structure in the winged-helix domain of RECQ1 is required for DNA unwinding and oligomer formation. Nucleic Acids Res. 39:1703–17 [Google Scholar]
  26. Liu Z, Macias MJ, Bottomley MJ, Stier G, Linge JP. 26.  et al. 1999. The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Structure 7:1557–66 [Google Scholar]
  27. Bernstein DA, Keck JL. 27.  2003. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res. 31:2778–85 [Google Scholar]
  28. Bennett RJ, Sharp JA, Wang JC. 28.  1998. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273:9644–50 [Google Scholar]
  29. Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A. 29.  et al. 2005. Accumulation of Werner protein at DNA double-strand breaks in human cells. J. Cell Sci. 118:4153–62 [Google Scholar]
  30. Karmakar P, Seki M, Kanamori M, Hashiguchi K, Ohtsuki M. 30.  et al. 2006. BLM is an early responder to DNA double-strand breaks. Biochem. Biophys. Res. Commun. 348:62–69 [Google Scholar]
  31. Samanta S, Karmakar P. 31.  2012. Recruitment of HRDC domain of WRN and BLM to the sites of DNA damage induced by mitomycin C and methyl methanesulfonate. Cell Biol. Int. 36:873–81 [Google Scholar]
  32. Puranam KL, Blackshear PJ. 32.  1994. Cloning and characterization of RECQL, a potential human homologue of the Escherichia coli DNA helicase RecQ. J. Biol. Chem. 269:29838–45 [Google Scholar]
  33. Sharma S, Stumpo DJ, Balajee AS, Bock CB, Lansdorp PM. 33.  et al. 2007. RECQL, a member of the RecQ family of DNA helicases, suppresses chromosomal instability. Mol. Cell. Biol. 27:1784–94 [Google Scholar]
  34. Sharma S, Brosh RM Jr. 34.  2007. Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS ONE 2:e1297 [Google Scholar]
  35. Futami K, Kumagai E, Makino H, Goto H, Takagi M. 35.  et al. 2008. Induction of mitotic cell death in cancer cells by small interference RNA suppressing the expression of RecQL1 helicase. Cancer Sci. 99:71–80 [Google Scholar]
  36. Sharma S, Brosh RM Jr. 36.  2008. Unique and important consequences of RECQ1 deficiency in mammalian cells. Cell Cycle 7:989–1000 [Google Scholar]
  37. Popuri V, Huang J, Ramamoorthy M, Tadokoro T, Croteau DL, Bohr VA. 37.  2013. RECQL5 plays co-operative and complementary roles with WRN syndrome helicase. Nucleic Acids Res. 41:881–99 [Google Scholar]
  38. Thangavel S, Mendoza-Maldonado R, Tissino E, Sidorova JM, Yin J. 38.  et al. 2010. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol. Cell. Biol. 30:1382–96 [Google Scholar]
  39. Berti M, Chaudhuri AR, Thangavel S, Gomathinayagam S, Kenig S. 39.  et al. 2013. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20:347–54 [Google Scholar]
  40. Mendoza-Maldonado R, Faoro V, Bajpai S, Berti M, Odreman F. 40.  et al. 2011. The human RECQ1 helicase is highly expressed in glioblastoma and plays an important role in tumor cell proliferation. Mol. Cancer 10:83 [Google Scholar]
  41. Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A. 41.  1998. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54:443–52 [Google Scholar]
  42. Bischof O, Kim SH, Irving J, Beresten S, Ellis NA, Campisi J. 42.  2001. Regulation and localization of the Bloom syndrome protein in response to DNA damage. J. Cell Biol. 153:367–80 [Google Scholar]
  43. Barefield C, Karlseder J. 43.  2012. The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res. 40:7358–67 [Google Scholar]
  44. Eladad S, Ye TZ, Hu P, Leversha M, Beresten S. 44.  et al. 2005. Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum. Mol. Genet. 14:1351–65 [Google Scholar]
  45. Chester N, Kuo F, Kozak C, O'Hara CD, Leder P. 45.  1998. Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 12:3382–93 [Google Scholar]
  46. Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M. 46.  et al. 2000. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26:424–29 [Google Scholar]
  47. Goss KH, Risinger MA, Kordich JJ, Sanz MM, Straughen JE. 47.  et al. 2002. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297:2051–53 [Google Scholar]
  48. McDaniel LD, Chester N, Watson M, Borowsky AD, Leder P, Schultz RA. 48.  2003. Chromosome instability and tumor predisposition inversely correlate with BLM protein levels. DNA Repair 2:1387–404 [Google Scholar]
  49. Chester N, Babbe H, Pinkas J, Manning C, Leder P. 49.  2006. Mutation of the murine Bloom's syndrome gene produces global genome destabilization. Mol. Cell. Biol. 26:6713–26 [Google Scholar]
  50. Sanz MM, German J. 50.  2013. Bloom's syndrome. GeneReviews at GeneTests: Medical Genetics Information Resource database, ed. RA Pagon, MP Adam, TD Bird, CR Dolan, CT Fong, K Stephens Seattle: Univ. Wash Updated March 28, 2013. http://www.ncbi.nlm.nih.gov/books/NBK1398/ [Google Scholar]
  51. German J.51.  1997. Bloom's syndrome. XX. The first 100 cancers. Cancer Genet. Cytogenet. 93:100–6 [Google Scholar]
  52. Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA. 52.  et al. 2000. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1:80–84 [Google Scholar]
  53. Baynton K, Otterlei M, Bjørås M, von Kobbe C, Bohr VA, Seeberg E. 53.  2003. WRN interacts physically and functionally with the recombination mediator protein RAD52. J. Biol. Chem. 278:36476–86 [Google Scholar]
  54. Singh DK, Karmakar P, Aamann M, Schurman SH, May A. 54.  et al. 2010. The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell 9:358–71 [Google Scholar]
  55. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L. 55.  et al. 2004. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol. Cell 14:763–74 [Google Scholar]
  56. Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J. 56.  1998. The premature ageing syndrome protein, WRN, is a 3′→5′ exonuclease. Nat. Genet. 20:114–16 [Google Scholar]
  57. Perry JJ, Yannone SM, Holden LG, Hitomi C, Asaithamby A. 57.  et al. 2006. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat. Struct. Mol. Biol. 13:414–22 [Google Scholar]
  58. Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J. 58.  2000. Characterization of the human and mouse WRN 3′→5′ exonuclease. Nucleic Acids Res. 28:2396–405 [Google Scholar]
  59. Shen JC, Loeb LA. 59.  2000. Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA. Nucleic Acids Res. 28:3260–68 [Google Scholar]
  60. Ozgenc A, Loeb LA. 60.  2005. Current advances in unraveling the function of the Werner syndrome protein. Mutat. Res. 577:237–51 [Google Scholar]
  61. Machwe A, Ganunis R, Bohr VA, Orren DK. 61.  2000. Selective blockage of the 3′→5′ exonuclease activity of WRN protein by certain oxidative modifications and bulky lesions in DNA. Nucleic Acids Res. 28:2762–70 [Google Scholar]
  62. Driscoll HC, Matson SW, Sayer JM, Kroth H, Jerina DM, Brosh RM Jr. 62.  2003. Inhibition of Werner syndrome helicase activity by benzo[c]phenanthrene diol epoxide dA adducts in DNA is both strand- and stereoisomer-dependent. J. Biol. Chem. 278:41126–35 [Google Scholar]
  63. Choudhary S, Doherty KM, Handy CJ, Sayer JM, Yagi H. 63.  et al. 2006. Inhibition of Werner syndrome helicase activity by benzo[a]pyrene diol epoxide adducts can be overcome by replication protein A. J. Biol. Chem. 281:6000–9 [Google Scholar]
  64. Harrigan JA, Fan J, Momand J, Perrino FW, Bohr VA, Wilson DM 3rd. 64.  2007. WRN exonuclease activity is blocked by DNA termini harboring 3′ obstructive groups. Mech. Ageing Dev. 128:259–66 [Google Scholar]
  65. Bukowy Z, Harrigan JA, Ramsden DA, Tudek B, Bohr VA, Stevnsner T. 65.  2008. WRN exonuclease activity is blocked by specific oxidatively induced base lesions positioned in either DNA strand. Nucleic Acids Res. 36:4975–87 [Google Scholar]
  66. Lebel M, Leder P. 66.  1998. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Natl. Acad. Sci. USA 95:13097–102 [Google Scholar]
  67. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J. 67.  et al. 2000. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20:3286–91 [Google Scholar]
  68. Moore G, Knoblaugh S, Gollahon K, Rabinovitch P, Ladiges W. 68.  2008. Hyperinsulinemia and insulin resistance in Wrn null mice fed a diabetogenic diet. Mech. Ageing Dev. 129:201–6 [Google Scholar]
  69. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P. 69.  et al. 2004. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36:877–82 [Google Scholar]
  70. Goto M, Ishikawa Y, Sugimoto M, Furuichi Y. 70.  2013. Werner syndrome: a changing pattern of clinical manifestations in Japan (1917–2008). Biosci. Trends 7:13–22 [Google Scholar]
  71. Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. 71.  2013. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS ONE 8:e59709 [Google Scholar]
  72. Yin J, Kwon YT, Varshavsky A, Wang W. 72.  2004. RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum. Mol. Genet. 13:2421–30 [Google Scholar]
  73. Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M. 73.  et al. 2012. RECQL4, the protein mutated in Rothmund–Thomson syndrome, functions in telomere maintenance. J. Biol. Chem. 287:196–209 [Google Scholar]
  74. Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P. 74.  et al. 2012. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11:456–66 [Google Scholar]
  75. De S, Kumari J, Mudgal R, Modi P, Gupta S. 75.  et al. 2012. RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J. Cell Sci. 125:2509–22 [Google Scholar]
  76. Ichikawa K, Noda T, Furuichi Y. 76.  2002. Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund-Thomson syndrome caused by the mutation of DNA helicases. Folia Pharmacol. Jpn. 119:219–26 (in Japanese) [Google Scholar]
  77. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H. 77.  et al. 2003. Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum. Mol. Genet. 12:2293–99 [Google Scholar]
  78. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G. 78.  2005. Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund–Thomson syndrome. Hum. Mol. Genet. 14:813–25 [Google Scholar]
  79. Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA. 79.  et al. 2003. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund–Thomson syndrome. J. Natl. Cancer Inst. 95:669–74 [Google Scholar]
  80. Larizza L, Roversi G, Volpi L. 80.  2010. Rothmund–Thomson syndrome. Orphanet J. Rare Dis. 5:2 [Google Scholar]
  81. Van Maldergem L. 81.  2013. Bhaaller–Gerold syndrome. GeneReviews at GeneTests: Medical Genetics Information Resource database, ed. RA Pagon, MP Adam, TD Bird, CR Dolan, CT Fong, K Stephens Seattle: Univ. Wash Updated June 7, 2011. http://www.ncbi.nlm.nih.gov/books/NBK1204/ [Google Scholar]
  82. Siitonen HA, Sotkasiira J, Biervliet M, Benmansour A, Capri Y. 82.  et al. 2009. The mutation spectrum in RECQL4 diseases. Eur. J. Hum. Genet. 17:151–58 [Google Scholar]
  83. Croteau DL, Rossi ML, Ross J, Dawut L, Dunn C. 83.  et al. 2012. RAPADILINO RECQL4 mutant protein lacks helicase and ATPase activity. Biochim. Biophys. Acta 1822:1727–34 [Google Scholar]
  84. Jensen MB, Dunn CA, Keijzers G, Kulikowicz T, Rasmussen LJ. 84.  et al. 2012. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients. Aging 4:790–802 [Google Scholar]
  85. Croteau DL, Singh DK, Hoh Ferrarelli L, Lu H, Bohr VA. 85.  2012. RECQL4 in genomic instability and aging. Trends Genet. 28:624–31 [Google Scholar]
  86. Shimamoto A, Nishikawa K, Kitao S, Furuichi Y. 86.  2000. Human RecQ5β, a large isomer of RecQ5 DNA helicase, localizes in the nucleoplasm and interacts with topoisomerases 3α and 3β. Nucleic Acids Res. 28:1647–55 [Google Scholar]
  87. Kawabe T, Tsuyama N, Kitao S, Nishikawa K, Shimamoto A. 87.  et al. 2000. Differential regulation of human RecQ family helicases in cell transformation and cell cycle. Oncogene 19:4764–72 [Google Scholar]
  88. Popuri V, Tadokoro T, Croteau DL, Bohr VA. 88.  2013. Human RECQL5: guarding the crossroads of DNA replication and transcription and providing backup capability. Crit. Rev. Biochem. Mol. Biol. 48:289–99 [Google Scholar]
  89. Aygün O, Xu X, Liu Y, Takahashi H, Kong SE. 89.  et al. 2009. Direct inhibition of RNA polymerase II transcription by RECQL5. J. Biol. Chem. 284:23197–203 [Google Scholar]
  90. Islam MN, Fox D III, Guo R, Enomoto T, Wang W. 90.  2010. RecQL5 promotes genome stabilization through two parallel mechanisms—interacting with RNA polymerase II and acting as a helicase. Mol. Cell. Biol. 30:2460–72 [Google Scholar]
  91. Jeong YS, Kang Y, Lim KH, Lee MH, Lee J, Koo HS. 91.  2003. Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair 2:1309–19 [Google Scholar]
  92. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W. 92.  et al. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21:3073–84 [Google Scholar]
  93. Wilson DM III, Bohr VA. 93.  2007. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair 6:544–59 [Google Scholar]
  94. Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML. 94.  et al. 2007. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J. Biol. Chem. 282:26591–602 [Google Scholar]
  95. Ahn B, Harrigan JA, Indig FE, Wilson DM III, Bohr VA. 95.  2004. Regulation of WRN helicase activity in human base excision repair. J. Biol. Chem. 279:53465–74 [Google Scholar]
  96. Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E. 96.  et al. 2009. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum. Mol. Genet. 18:3470–83 [Google Scholar]
  97. Wang D, Luo M, Kelley MR. 97.  2004. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol. Cancer Ther. 3:679–86 [Google Scholar]
  98. Harrigan JA, Opresko PL, von Kobbe C, Kedar PS, Prasad R. 98.  et al. 2003. The Werner syndrome protein stimulates DNA polymerase β strand displacement synthesis via its helicase activity. J. Biol. Chem. 278:22686–95 [Google Scholar]
  99. Speina E, Dawut L, Hedayati M, Wang Z, May A. 99.  et al. 2010. Human RECQL5β stimulates flap endonuclease 1. Nucleic Acids Res. 38:2904–16 [Google Scholar]
  100. Harrigan JA, Wilson DM III, Prasad R, Opresko PL, Beck G. 100.  et al. 2006. The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res. 34:745–54 [Google Scholar]
  101. Brosh RM Jr, von Kobbe C, Sommers JA, Karmakar P, Opresko PL. 101.  et al. 2001. Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J. 20:5791–801 [Google Scholar]
  102. Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM Jr. 102.  2004. Stimulation of flap endonuclease-1 by the Bloom's syndrome protein. J. Biol. Chem. 279:9847–56 [Google Scholar]
  103. Sharma S, Sommers JA, Gary RK, Friedrich-Heineken E, Hubscher U, Brosh RM Jr. 103.  2005. The interaction site of flap endonuclease 1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res. 33:6769–81 [Google Scholar]
  104. Sharma S, Otterlei M, Sommers JA, Driscoll HC, Dianov GL. 104.  et al. 2004. WRN helicase and FEN-1 form a complex upon replication arrest and together process branch migrating DNA structures associated with the replication fork. Mol. Biol. Cell 15:734–50 [Google Scholar]
  105. Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JA. 105.  et al. 2012. PARPs and the DNA damage response. Carcinogenesis 33:1433–40 [Google Scholar]
  106. Thomas C, Tulin AV. 106.  2013. Poly-ADP-ribose polymerase: machinery for nuclear processes. Mol. Asp. Med. 34:1124–37 [Google Scholar]
  107. von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L. 107.  et al. 2003. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol. Cell. Biol. 23:8601–13 [Google Scholar]
  108. Sharma S, Phatak P, Stortchevoi A, Jasin M, Larocque JR. 108.  2012. RECQ1 plays a distinct role in cellular response to oxidative DNA damage. DNA Repair 11:537–49 [Google Scholar]
  109. Gottipati P, Vischioni B, Schultz N, Solomons J, Bryant HE. 109.  et al. 2010. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res. 70:5389–98 [Google Scholar]
  110. Tadokoro T, Ramamoorthy M, Popuri V, May A, Tian J. 110.  et al. 2012. Human RECQL5 participates in the removal of endogenous DNA damage. Mol. Biol. Cell 23:4273–85 [Google Scholar]
  111. Popp O, Veith S, Fahrer J, Bohr VA, Burkle A, Mangerich A. 111.  2013. Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions. ACS Chem. Biol. 8:179–88 [Google Scholar]
  112. Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM. 112.  2006. The Rothmund–Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp. Cell Res. 312:3443–57 [Google Scholar]
  113. Helleday T.113.  2010. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31:955–60 [Google Scholar]
  114. Kamileri I, Karakasilioti I, Garinis GA. 114.  2012. Nucleotide excision repair: new tricks with old bricks. Trends Genet. 28:566–73 [Google Scholar]
  115. Trego KS, Chernikova SB, Davalos AR, Perry JJ, Finger LD. 115.  et al. 2011. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10:1998–2007 [Google Scholar]
  116. Fan W, Luo J. 116.  2008. RecQ4 facilitates UV light–induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). J. Biol. Chem. 283:29037–44 [Google Scholar]
  117. Boboila C, Alt FW, Schwer B. 117.  2012. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol. 116:1–49 [Google Scholar]
  118. Ciccia A, Elledge SJ. 118.  2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204 [Google Scholar]
  119. Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M. 119.  et al. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–508 [Google Scholar]
  120. Rooney S, Chaudhuri J, Alt FW. 120.  2004. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 200:115–31 [Google Scholar]
  121. Fattah F, Lee EH, Weisensel N, Wang Y, Lichter N, Hendrickson EA. 121.  2010. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet. 6:e1000855 [Google Scholar]
  122. Bothmer A, Robbiani DF, Feldhahn N, Gazumyan A, Nussenzweig A, Nussenzweig MC. 122.  2010. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med. 207:855–65 [Google Scholar]
  123. Bunting SF, Callen E, Wong N, Chen HT, Polato F. 123.  et al. 2010. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243–54 [Google Scholar]
  124. Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA. 124.  2000. Ku complex interacts with and stimulates the Werner protein. Genes Dev. 14:907–12 [Google Scholar]
  125. Li B, Comai L. 125.  2000. Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J. Biol. Chem. 275:28349–52 [Google Scholar]
  126. Yannone SM, Roy S, Chan DW, Murphy MB, Huang S. 126.  et al. 2001. Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J. Biol. Chem. 276:38242–48 [Google Scholar]
  127. Karmakar P, Snowden CM, Ramsden DA, Bohr VA. 127.  2002. Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res. 30:3583–91 [Google Scholar]
  128. Kusumoto-Matsuo R, Opresko PL, Ramsden D, Tahara H, Bohr VA. 128.  2010. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. Aging 2:274–84 [Google Scholar]
  129. Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A. 129.  et al. 2008. Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 47:7548–56 [Google Scholar]
  130. Bohr VA, Souza Pinto N, Nyaga SG, Dianov G, Kraemer K. 130.  et al. 2001. DNA repair and mutagenesis in Werner syndrome. Environ. Mol. Mutagen. 38:227–34 [Google Scholar]
  131. Oshima J, Huang S, Pae C, Campisi J, Schiestl RH. 131.  2002. Lack of WRN results in extensive deletion at nonhomologous joining ends. Cancer Res. 62:547–51 [Google Scholar]
  132. Damerla RR, Knickelbein KE, Strutt S, Liu FJ, Wang H, Opresko PL. 132.  2012. Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences. Cell Cycle 11:3036–44 [Google Scholar]
  133. Chen L, Huang S, Lee L, Davalos A, Schiestl RH. 133.  et al. 2003. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2:191–99 [Google Scholar]
  134. Parvathaneni S, Stortchevoi A, Sommers JA, Brosh RM Jr, Sharma S. 134.  2013. Human RECQ1 interacts with Ku70/80 and modulates DNA end-joining of double-strand breaks. PLoS ONE 8:e62481 [Google Scholar]
  135. Audebert M, Salles B, Calsou P. 135.  2004. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J. Biol. Chem. 279:55117–26 [Google Scholar]
  136. Wang M, Wu W, Wu W, Rosidi B, Zhang L. 136.  et al. 2006. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34:6170–82 [Google Scholar]
  137. Dinkelmann M, Spehalski E, Stoneham T, Buis J, Wu Y. 137.  et al. 2009. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat. Struct. Mol. Biol. 16:808–13 [Google Scholar]
  138. Xie A, Kwok A, Scully R. 138.  2009. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat. Struct. Mol. Biol. 16:814–18 [Google Scholar]
  139. Zhang Y, Jasin M. 139.  2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18:80–84 [Google Scholar]
  140. Bothmer A, Rommel PC, Gazumyan A, Polato F, Reczek CR. 140.  et al. 2013. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. J. Exp. Med. 210:115–23 [Google Scholar]
  141. Wang H, Rosidi B, Perrault R, Wang M, Zhang L. 141.  et al. 2005. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res. 65:4020–30 [Google Scholar]
  142. Aggarwal M, Sommers JA, Morris C, Brosh RM Jr. 142.  2010. Delineation of WRN helicase function with EXO1 in the replicational stress response. DNA Repair 9:765–76 [Google Scholar]
  143. Gravel S, Chapman JR, Magill C, Jackson SP. 143.  2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22:2767–72 [Google Scholar]
  144. Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. 144.  2008. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl. Acad. Sci. USA 105:16906–11 [Google Scholar]
  145. Doherty KM, Sharma S, Uzdilla LA, Wilson TM, Cui S. 145.  et al. 2005. RECQ1 helicase interacts with human mismatch repair factors that regulate genetic recombination. J. Biol. Chem. 280:28085–94 [Google Scholar]
  146. Cheng WH, von Kobbe C, Opresko PL, Arthur LM, Komatsu K. 146.  et al. 2004. Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J. Biol. Chem. 279:21169–76 [Google Scholar]
  147. Cheng WH, Sakamoto S, Fox JT, Komatsu K, Carney J, Bohr VA. 147.  2005. Werner syndrome protein associates with γH2AX in a manner that depends upon Nbs1. FEBS Lett. 579:1350–56 [Google Scholar]
  148. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL. 148.  et al. 2011. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25:350–62 [Google Scholar]
  149. Sallmyr A, Tomkinson AE, Rassool FV. 149.  2008. Up-regulation of WRN and DNA ligase IIIα in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112:1413–23 [Google Scholar]
  150. Babbe H, McMenamin J, Hobeika E, Wang J, Rodig SJ. 150.  et al. 2009. Genomic instability resulting from Blm deficiency compromises development, maintenance, and function of the B cell lineage. J. Immunol. 182:347–60 [Google Scholar]
  151. Cui S, Klima R, Ochem A, Arosio D, Falaschi A, Vindigni A. 151.  2003. Characterization of the DNA-unwinding activity of human RECQ1, a helicase specifically stimulated by human replication protein A. J. Biol. Chem. 278:1424–32 [Google Scholar]
  152. Brosh RM Jr, Li JL, Kenny MK, Karow JK, Cooper MP. 152.  et al. 2000. Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. J. Biol. Chem. 275:23500–8 [Google Scholar]
  153. Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK. 153.  et al. 1999. Functional and physical interaction between WRN helicase and human replication protein A. J. Biol. Chem. 274:18341–50 [Google Scholar]
  154. Rossi ML, Ghosh AK, Kulikowicz T, Croteau DL, Bohr VA. 154.  2010. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair 9:796–804 [Google Scholar]
  155. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S. 155.  et al. 2007. Human CtIP promotes DNA end resection. Nature 450:509–14 [Google Scholar]
  156. Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S. 156.  et al. 2010. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112–16 [Google Scholar]
  157. Mimitou EP, Symington LS. 157.  2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–74 [Google Scholar]
  158. Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 158.  2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–94 [Google Scholar]
  159. Liao S, Toczylowski T, Yan H. 159.  2011. Mechanistic analysis of Xenopus EXO1's function in 5′-strand resection at DNA double-strand breaks. Nucleic Acids Res. 39:5967–77 [Google Scholar]
  160. Yan H, Toczylowski T, McCane J, Chen C, Liao S. 160.  2011. Replication protein A promotes 5′→3′ end processing during homology-dependent DNA double-strand break repair. J. Cell Biol. 192:251–61 [Google Scholar]
  161. Wu L, Davies SL, Levitt NC, Hickson ID. 161.  2001. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J. Biol. Chem. 276:19375–81 [Google Scholar]
  162. Bugreev DV, Yu X, Egelman EH, Mazin AV. 162.  2007. Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Genes Dev. 21:3085–94 [Google Scholar]
  163. Schwendener S, Raynard S, Paliwal S, Cheng A, Kanagaraj R. 163.  et al. 2010. Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. J. Biol. Chem. 285:15739–45 [Google Scholar]
  164. Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A. 164.  et al. 2003. Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol. Cell. Biol. 23:3527–35 [Google Scholar]
  165. Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G. 165.  2005. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol. Cell. Biol. 25:3431–42 [Google Scholar]
  166. Prince PR, Emond MJ, Monnat RJ Jr. 166.  2001. Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev. 15:933–38 [Google Scholar]
  167. Franchitto A, Pirzio LM, Prosperi E, Sapora O, Bignami M, Pichierri P. 167.  2008. Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway. J. Cell Biol. 183:241–52 [Google Scholar]
  168. Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ Jr. 168.  2002. Homologous recombination resolution defect in Werner syndrome. Mol. Cell. Biol. 22:6971–78 [Google Scholar]
  169. Rodriguez-Lopez AM, Whitby MC, Borer CM, Bachler MA, Cox LS. 169.  2007. Correction of proliferation and drug sensitivity defects in the progeroid Werner's syndrome by Holliday junction resolution. Rejuvenation Res. 10:27–40 [Google Scholar]
  170. Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S. 170.  et al. 2006. Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res. 34:2751–60 [Google Scholar]
  171. Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P. 171.  et al. 2006. Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J. Cell Sci. 119:5137–46 [Google Scholar]
  172. Kohzaki M, Chiourea M, Versini G, Adachi N, Takeda S. 172.  et al. 2012. The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis 33:1203–10 [Google Scholar]
  173. Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I. 173.  2005. The human Rothmund–Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J. Cell Sci. 118:4261–69 [Google Scholar]
  174. LeRoy G, Carroll R, Kyin S, Seki M, Cole MD. 174.  2005. Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines. Nucleic Acids Res. 33:6251–57 [Google Scholar]
  175. Bugreev DV, Brosh RM Jr, Mazin AV. 175.  2008. RECQ1 possesses DNA branch migration activity. J. Biol. Chem. 283:20231–42 [Google Scholar]
  176. Sowd G, Lei M, Opresko PL. 176.  2008. Mechanism and substrate specificity of telomeric protein POT1 stimulation of the Werner syndrome helicase. Nucleic Acids Res. 36:4242–56 [Google Scholar]
  177. Opresko PL, Sowd G, Wang H. 177.  2009. The Werner syndrome helicase/exonuclease processes mobile D-loops through branch migration and degradation. PLoS ONE 4:e4825 [Google Scholar]
  178. Karow JK, Constantinou A, Li JL, West SC, Hickson ID. 178.  2000. The Bloom's syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl. Acad. Sci. USA 97:6504–8 [Google Scholar]
  179. Bachrati CZ, Borts RH, Hickson ID. 179.  2006. Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Res. 34:2269–79 [Google Scholar]
  180. Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. 180.  2008. Identification of Holliday junction resolvases from humans and yeast. Nature 456:357–61 [Google Scholar]
  181. Ciccia A, McDonald N, West SC. 181.  2008. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu. Rev. Biochem. 77:259–87 [Google Scholar]
  182. Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A. 182.  et al. 2009. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138:78–89 [Google Scholar]
  183. Munoz IM, Hain K, Declais AC, Gardiner M, Toh GW. 183.  et al. 2009. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35:116–27 [Google Scholar]
  184. Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP. 184.  et al. 2009. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138:63–77 [Google Scholar]
  185. Adams MD, McVey M, Sekelsky JJ. 185.  2003. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–67 [Google Scholar]
  186. Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H. 186.  2006. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase α in the initiation of DNA replication. Mol. Cell. Biol. 26:4843–52 [Google Scholar]
  187. Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J. 187.  et al. 2005. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund–Thomson syndrome. Cell 121:887–98 [Google Scholar]
  188. Abe T, Yoshimura A, Hosono Y, Tada S, Seki M, Enomoto T. 188.  2011. The N-terminal region of RECQL4 lacking the helicase domain is both essential and sufficient for the viability of vertebrate cells: role of the N-terminal region of RECQL4 in cells. Biochim. Biophys. Acta 1813:473–79 [Google Scholar]
  189. Capp C, Wu J, Hsieh TS. 189.  2009. Drosophila RecQ4 has a 3′–5′ DNA helicase activity that is essential for viability. J. Biol. Chem. 284:30845–52 [Google Scholar]
  190. Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y. 190.  2009. MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J. 28:3005–14 [Google Scholar]
  191. Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Lee JK. 191.  2009. Assembly of the Cdc45–Mcm2-7–GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc. Natl. Acad. Sci. USA 106:15628–32 [Google Scholar]
  192. Xu Y, Lei Z, Huang H, Dui W, Liang X. 192.  et al. 2009. dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS ONE 4:e6107 [Google Scholar]
  193. Bartos JD, Wang W, Pike JE, Bambara RA. 193.  2006. Mechanisms by which Bloom protein can disrupt recombination intermediates of Okazaki fragment maturation. J. Biol. Chem. 281:32227–39 [Google Scholar]
  194. Poot M, Hoehn H, Runger TM, Martin GM. 194.  1992. Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp. Cell Res. 202:267–73 [Google Scholar]
  195. Hand R, German J. 195.  1975. A retarded rate of DNA chain growth in Bloom's syndrome. Proc. Natl. Acad. Sci. USA 72:758–62 [Google Scholar]
  196. Sidorova JM, Kehrli K, Mao F, Monnat R Jr. 196.  2013. Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. DNA Repair 12:128–39 [Google Scholar]
  197. Sidorova JM, Li N, Folch A, Monnat RJ Jr. 197.  2008. The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 7:796–807 [Google Scholar]
  198. Franchitto A, Pichierri P. 198.  2004. Werner syndrome protein and the MRE11 complex are involved in a common pathway of replication fork recovery. Cell Cycle 3:1331–39 [Google Scholar]
  199. Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PMJ, Fry M. 199.  2001. Interactions between the Werner syndrome helicase and DNA polymerase δ specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J. Biol. Chem. 276:16439–46 [Google Scholar]
  200. Selak N, Bachrati CZ, Shevelev I, Dietschy T, van Loon B. 200.  et al. 2008. The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase δ. Nucleic Acids Res. 36:5166–79 [Google Scholar]
  201. Lukusa T, Fryns JP. 201.  2008. Human chromosome fragility. Biochim. Biophys. Acta 1779:3–16 [Google Scholar]
  202. Glover TW.202.  2006. Common fragile sites. Cancer Lett. 232:4–12 [Google Scholar]
  203. Pirzio LM, Pichierri P, Bignami M, Franchitto A. 203.  2008. Werner syndrome helicase activity is essential in maintaining fragile site stability. J. Cell Biol. 180:305–14 [Google Scholar]
  204. Murfuni I, De Santis A, Federico M, Bignami M, Pichierri P, Franchitto A. 204.  2012. Perturbed replication induced genome wide or at common fragile sites is differently managed in the absence of WRN. Carcinogenesis 33:1655–63 [Google Scholar]
  205. Chan KL, Palmai-Pallag T, Ying S, Hickson ID. 205.  2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11:753–60 [Google Scholar]
  206. Pellicioli A, Muzi-Falconi M. 206.  2013. A blooming resolvase at chromosomal fragile sites. Nat. Cell Biol. 15:883–85 [Google Scholar]
  207. Shah SN, Opresko PL, Meng X, Lee MY, Eckert KA. 207.  2010. DNA structure and the Werner protein modulate human DNA polymerase δ–dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res. 38:1149–62 [Google Scholar]
  208. Lu X, Parvathaneni S, Hara T, Lal A, Sharma S. 208.  2013. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D. Mol. Cancer 12:29 [Google Scholar]
  209. Sale JE, Lehmann AR, Woodgate R. 209.  2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13:141–52 [Google Scholar]
  210. Kamath-Loeb AS, Lan L, Nakajima S, Yasui A, Loeb LA. 210.  2007. Werner syndrome protein interacts functionally with translesion DNA polymerases. Proc. Natl. Acad. Sci. USA 104:10394–99 [Google Scholar]
  211. Maddukuri L, Ketkar A, Eddy S, Zafar MK, Griffin WC, Eoff RL. 211.  2012. Enhancement of human DNA polymerase η activity and fidelity is dependent upon a bipartite interaction with the Werner syndrome protein. J. Biol. Chem. 287:42312–23 [Google Scholar]
  212. Phillips LG, Sale JE. 212.  2010. The Werner's syndrome protein collaborates with REV1 to promote replication fork progression on damaged DNA. DNA Repair 9:1064–72 [Google Scholar]
  213. Kamath-Loeb AS, Shen JC, Schmitt MW, Loeb LA. 213.  2012. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ. J. Biol. Chem. 287:12480–90 [Google Scholar]
  214. Brosh RM Jr, Waheed J, Sommers JA. 214.  2002. Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase. J. Biol. Chem. 277:23236–45 [Google Scholar]
  215. Choudhary S, Sommers JA, Brosh RM Jr. 215.  2004. Biochemical and kinetic characterization of the DNA helicase and exonuclease activities of Werner syndrome protein. J. Biol. Chem. 279:34603–13 [Google Scholar]
  216. Machwe A, Lozada EM, Xiao L, Orren DK. 216.  2006. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins. BMC Mol. Biol. 7:1 [Google Scholar]
  217. Machwe A, Xiao L, Groden J, Orren DK. 217.  2006. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45:13939–46 [Google Scholar]
  218. Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK. 218.  2007. Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res. 35:5729–47 [Google Scholar]
  219. Popuri V, Croteau DL, Brosh RM Jr, Bohr VA. 219.  2012. RECQ1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. Cell Cycle 11:4252–65 [Google Scholar]
  220. Kanagaraj R, Saydam N, Garcia PL, Zheng L, Janscak P. 220.  2006. Human RECQ5β helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res. 34:5217–31 [Google Scholar]
  221. Chaudhuri AR, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D. 221.  et al. 2012. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19:417–23 [Google Scholar]
  222. Aygün O, Svejstrup JQ. 222.  2010. RECQL5 helicase: connections to DNA recombination and RNA polymerase II transcription. DNA Repair 9:345–53 [Google Scholar]
  223. Ellis NA, Lennon DJ, Proytcheva M, Alhadeff B, Henderson EE, German J. 223.  1995. Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am. J. Hum. Genet. 57:1019–27 [Google Scholar]
  224. Chan KL, Hickson ID. 224.  2011. New insights into the formation and resolution of ultra-fine anaphase bridges. Semin. Cell Dev. Biol. 22:906–12 [Google Scholar]
  225. Manthei KA, Keck JL. 225.  2013. The BLM dissolvasome in DNA replication and repair. Cell Mol. Life Sci. 70:4067–84 [Google Scholar]
  226. Cejka P, Plank JL, Dombrowski CC, Kowalczykowski SC. 226.  2012. Decatenation of DNA by the S. cerevisiae Sgs1-Top3-Rmi1 and RPA complex: a mechanism for disentangling chromosomes. Mol. Cell 47:886–96 [Google Scholar]
  227. Ramamoorthy M, Tadokoro T, Rybanska I, Ghosh AK, Wersto R. 227.  et al. 2012. RECQL5 cooperates with topoisomerase II α in DNA decatenation and cell cycle progression. Nucleic Acids Res. 40:1621–35 [Google Scholar]
  228. Russell B, Bhattacharyya S, Keirsey J, Sandy A, Grierson P. 228.  et al. 2011. Chromosome breakage is regulated by the interaction of the BLM helicase and topoisomerase IIα. Cancer Res. 71:561–71 [Google Scholar]
  229. Calado R, Young N. 229.  2012. Telomeres in disease. F1000 Med. Rep. 4:8 [Google Scholar]
  230. O'Sullivan RJ, Karlseder J. 230.  2010. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 11:171–81 [Google Scholar]
  231. Liu D, O'Connor MS, Qin J, Songyang Z. 231.  2004. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279:51338–42 [Google Scholar]
  232. Palm W, de Lange T. 232.  2008. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42:301–34 [Google Scholar]
  233. Harley CB, Futcher AB, Greider CW. 233.  1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–60 [Google Scholar]
  234. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP. 234.  et al. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–52 [Google Scholar]
  235. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P. 235.  et al. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–98 [Google Scholar]
  236. Sfeir A, de Lange T. 236.  2012. Removal of shelterin reveals the telomere end-protection problem. Science 336:593–97 [Google Scholar]
  237. Du X, Shen J, Kugan N, Furth EE, Lombard DB. 237.  et al. 2004. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol. Cell. Biol. 24:8437–46 [Google Scholar]
  238. Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J. 238.  et al. 2009. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103 [Google Scholar]
  239. Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A. 239.  et al. 2012. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J. 31:2839–51 [Google Scholar]
  240. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA. 240.  2002. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem. 277:41110–19 [Google Scholar]
  241. Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK. 241.  et al. 2004. Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum. Mol. Genet. 13:1919–32 [Google Scholar]
  242. Machwe A, Xiao L, Orren DK. 242.  2004. TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23:149–56 [Google Scholar]
  243. Li B, Jog SP, Reddy S, Comai L. 243.  2008. WRN controls formation of extrachromosomal telomeric circles and is required for TRF2ΔB-mediated telomere shortening. Mol. Cell. Biol. 28:1892–904 [Google Scholar]
  244. Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID. 244.  et al. 2005. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J. Biol. Chem. 280:32069–80 [Google Scholar]
  245. Lee OH, Kim H, He Q, Baek HJ, Yang D. 245.  et al. 2011. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol. Cell. Proteomics 10:M110.001628 [Google Scholar]
  246. Reddy S, Li B, Comai L. 246.  2010. Processing of human telomeres by the Werner syndrome protein. Cell Cycle 9:3137–38 [Google Scholar]
  247. Crabbe L, Verdun RE, Haggblom CI, Karlseder J. 247.  2004. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–53 [Google Scholar]
  248. Liu FJ, Barchowsky A, Opresko PL. 248.  2010. The Werner syndrome protein suppresses telomeric instability caused by chromium (VI) induced DNA replication stress. PLoS ONE 5:e11152 [Google Scholar]
  249. Arnoult N, Saintome C, Ourliac-Garnier I, Riou JF, Londono-Vallejo A. 249.  2009. Human POT1 is required for efficient telomere C-rich strand replication in the absence of WRN. Genes Dev. 23:2915–24 [Google Scholar]
  250. Mohaghegh P, Karow JK, Brosh RM Jr, Bohr VA, Hickson ID. 250.  2001. The Bloom's and Werner's syndrome proteins are DNA structure–specific helicases. Nucleic Acids Res. 29:2843–49 [Google Scholar]
  251. Fouché N, Özgür S, Roy D, Griffith JD. 251.  2006. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 34:6044–50 [Google Scholar]
  252. Machwe A, Karale R, Xu X, Liu Y, Orren DK. 252.  2011. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) Holliday junctions to functional replication forks. Biochemistry 50:6774–88 [Google Scholar]
  253. Ferrarelli LK, Popuri V, Ghosh AK, Tadokoro T, Canugovi C. 253.  et al. 2013. The RECQL4 protein, deficient in Rothmund–Thomson syndrome is active on telomeric D-loops containing DNA metabolism blocking lesions. DNA Repair 12:518–28 [Google Scholar]
  254. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A. 254.  et al. 1999. Mammalian telomeres end in a large duplex loop. Cell 97:503–14 [Google Scholar]
  255. Verdun RE, Karlseder J. 255.  2006. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127:709–20 [Google Scholar]
  256. Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ. 256.  2012. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806 [Google Scholar]
  257. Wang RC, Smogorzewska A, de Lange T. 257.  2004. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119:355–68 [Google Scholar]
  258. Hagelstrom RT, Blagoev KB, Niedernhofer LJ, Goodwin EH, Bailey SM. 258.  2010. Hyper telomere recombination accelerates replicative senescence and may promote premature aging. Proc. Natl. Acad. Sci. USA 107:15768–73 [Google Scholar]
  259. Laud PR, Multani AS, Bailey SM, Wu L, Ma J. 259.  et al. 2005. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 19:2560–70 [Google Scholar]
  260. Mendez-Bermudez A, Hidalgo-Bravo A, Cotton VE, Gravani A, Jeyapalan JN, Royle NJ. 260.  2012. The roles of WRN and BLM RecQ helicases in the alternative lengthening of telomeres. Nucleic Acids Res. 40:10809–20 [Google Scholar]
  261. Bhattacharyya S, Keirsey J, Russell B, Kavecansky J, Lillard-Wetherell K. 261.  et al. 2009. Telomerase-associated protein 1, HSP90, and topoisomerase IIα associate directly with the BLM helicase in immortalized cells using ALT and modulate its helicase activity using telomeric DNA substrates. J. Biol. Chem. 284:14966–77 [Google Scholar]
  262. Temime-Smaali N, Guittat L, Wenner T, Bayart E, Douarre C. 262.  et al. 2008. Topoisomerase IIIα is required for normal proliferation and telomere stability in alternative lengthening of telomeres. EMBO J. 27:1513–24 [Google Scholar]
  263. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O'Neil NJ. 263.  et al. 2008. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135:261–71 [Google Scholar]
  264. Uringa EJ, Youds JL, Lisaingo K, Lansdorp PM, Boulton SJ. 264.  2011. RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res. 39:1647–55 [Google Scholar]
  265. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. 265.  2000. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14:927–39 [Google Scholar]
  266. Deans AJ, West SC. 266.  2009. FANCM connects the genome instability disorders Bloom's syndrome and Fanconi anemia. Mol. Cell 36:943–53 [Google Scholar]
  267. Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S. 267.  et al. 2011. Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome. EMBO J. 30:692–705 [Google Scholar]
  268. Chaudhury I, Sareen A, Raghunandan M, Sobeck A. 268.  2013. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res. 41:6444–59 [Google Scholar]
  269. Stracker TH, Petrini JH. 269.  2011. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12:90–103 [Google Scholar]
  270. Pichierri P, Ammazzalorso F, Bignami M, Franchitto A. 270.  2011. The Werner syndrome protein: linking the replication checkpoint response to genome stability. Aging 3:311–18 [Google Scholar]
  271. Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C. 271.  et al. 2008. WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks. Mol. Biol. Cell 19:3923–33 [Google Scholar]
  272. Patro BS, Frohlich R, Bohr VA, Stevnsner T. 272.  2011. WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. J. Cell Sci. 124:3967–79 [Google Scholar]
  273. Pichierri P, Nicolai S, Cignolo L, Bignami M, Franchitto A. 273.  2012. The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling. Oncogene 31:2809–23 [Google Scholar]
  274. Pichierri P, Rosselli F, Franchitto A. 274.  2003. Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22:1491–500 [Google Scholar]
  275. Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P. 275.  2010. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J. 29:3156–69 [Google Scholar]
  276. Davies SL, North PS, Dart A, Lakin ND, Hickson ID. 276.  2004. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24:1279–91 [Google Scholar]
  277. Park SJ, Lee YJ, Beck BD, Lee SH. 277.  2006. A positive involvement of RecQL4 in UV-induced S-phase arrest. DNA Cell Biol. 25:696–703 [Google Scholar]
  278. Grierson PM, Acharya S, Groden J. 278.  2013. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription. Mutat. Res. 743–744:89–96 [Google Scholar]
  279. Laine JP, Opresko PL, Indig FE, Harrigan JA, von Kobbe C, Bohr VA. 279.  2003. Werner protein stimulates topoisomerase I DNA relaxation activity. Cancer Res. 63:7136–46 [Google Scholar]
  280. Christmann M, Tomicic MT, Gestrich C, Roos WP, Bohr VA, Kaina B. 280.  2008. WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. DNA Repair 7:1999–2009 [Google Scholar]
  281. Sidorova JM.281.  2008. Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair 7:1776–86 [Google Scholar]
  282. Shiratori M, Suzuki T, Itoh C, Goto M, Furuichi Y, Matsumoto T. 282.  2002. WRN helicase accelerates the transcription of ribosomal RNA as a component of an RNA polymerase I–associated complex. Oncogene 21:2447–54 [Google Scholar]
  283. Brosh RM Jr. 283.  2013. DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer 13:542–58 [Google Scholar]
  284. Aggarwal M, Sommers JA, Shoemaker RH, Brosh RM Jr. 284.  2011. Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc. Natl. Acad. Sci. USA 108:1525–30 [Google Scholar]
  285. Nguyen GH, Dexheimer TS, Rosenthal AS, Chu WK, Singh DK. 285.  et al. 2013. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem. Biol. 20:55–62 [Google Scholar]
  286. Aggarwal M, Banerjee T, Sommers JA, Iannascoli C, Pichierri P. 286.  et al. 2013. Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional Fanconi anemia pathway. Cancer Res. 73:5497–507 [Google Scholar]
  287. Moser R, Toyoshima M, Robinson K, Gurley KE, Howie HL. 287.  et al. 2012. MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol. Cancer Res. 10:535–45 [Google Scholar]
  288. von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X. 288.  et al. 2002. Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J. Biol. Chem. 277:22035–44 [Google Scholar]
  289. Singh DK, Popuri V, Kulikowicz T, Shevelev I, Ghosh AK. 289.  et al. 2012. The human RecQ helicases BLM and RECQL4 cooperate to preserve genome stability. Nucleic Acids Res. 40:6632–48 [Google Scholar]
  290. Bachrati CZ, Hickson ID. 290.  2003. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374:577–606 [Google Scholar]
  291. Sharma S, Sommers JA, Choudhary S, Faulkner JK, Cui S. 291.  et al. 2005. Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1. J. Biol. Chem. 280:28072–84 [Google Scholar]
  292. Popuri V, Bachrati CZ, Muzzolini L, Mosedale G, Costantini S. 292.  et al. 2008. The human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J. Biol. Chem. 283:17766–76 [Google Scholar]
  293. Ghosh A, Rossi ML, Aulds J, Croteau D, Bohr VA. 293.  2009. Telomeric D-loops containing 8-oxo-2′-deoxyguanosine are preferred substrates for Werner and Bloom syndrome helicases and are bound by POT1. J. Biol. Chem. 284:31074–84 [Google Scholar]
  294. Xu X, Liu Y. 294.  2009. Dual DNA unwinding activities of the Rothmund–Thomson syndrome protein, RECQ4. EMBO J. 28:568–77 [Google Scholar]
  295. Zittel MC, Keck JL. 295.  2005. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence. Nucleic Acids Res. 33:6982–91 [Google Scholar]
  296. Karow JK, Newman RH, Freemont PS, Hickson ID. 296.  1999. Oligomeric ring structure of the Bloom's syndrome helicase. Curr. Biol. 9:597–600 [Google Scholar]
  297. Vindigni A, Hickson ID. 297.  2009. RecQ helicases: multiple structures for multiple functions?. HFSP J. 3:153–64 [Google Scholar]
  298. Suzuki T, Kohno T, Ishimi Y. 298.  2009. DNA helicase activity in purified human RECQL4 protein. J. Biochem. 146:327–35 [Google Scholar]
  299. Muzzolini L, Beuron F, Patwardhan A, Popuri V, Cui S. 299.  et al. 2007. Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity. PLoS Biol. 5:e20 [Google Scholar]
  300. Cheng WH, von Kobbe C, Opresko PL, Fields KM, Ren J. 300.  et al. 2003. Werner syndrome protein phosphorylation by Abl tyrosine kinase regulates its activity and distribution. Mol. Cell. Biol. 23:6385–95 [Google Scholar]
  301. Harrigan JA, Piotrowski J, Di Noto L, Levine RL, Bohr VA. 301.  2007. Metal-catalyzed oxidation of the Werner syndrome protein causes loss of catalytic activities and impaired protein-protein interactions. J. Biol. Chem. 282:36403–11 [Google Scholar]
  302. Muftuoglu M, Kusumoto R, Speina E, Beck G, Cheng WH, Bohr VA. 302.  2008. Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS ONE 3:e1918 [Google Scholar]
  303. Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M. 303.  2002. DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J. Biol. Chem. 277:50934–40 [Google Scholar]
  304. Kawabe Y, Seki M, Seki T, Wang WS, Imamura O. 304.  et al. 2000. Covalent modification of the Werner's syndrome gene product with the ubiquitin-related protein, SUMO-1. J. Biol. Chem. 275:20963–66 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035428
Loading
/content/journals/10.1146/annurev-biochem-060713-035428
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error