1932

Abstract

Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-011942
2018-06-20
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-011942.html?itemId=/content/journals/10.1146/annurev-biochem-062917-011942&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Schmeing TM, Ramakrishnan V 2009. What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–42
    [Google Scholar]
  2. 2.  Steitz TA. 2008. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9:242–53
    [Google Scholar]
  3. 3.  Ramakrishnan V. 2002. Ribosome structure and the mechanism of translation. Cell 108:557–72
    [Google Scholar]
  4. 4.  Arenz S, Wilson DN 2016. Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb. Perspect. Med. 6:a025361
    [Google Scholar]
  5. 5.  Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S et al. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679–88
    [Google Scholar]
  6. 6.  Wimberly BT, Brodersen DE, Clemons WM Jr., Morgan-Warren RJ, Carter AP et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39
    [Google Scholar]
  7. 7.  Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615–23
    [Google Scholar]
  8. 8.  Ban N, Nissen P, Hansen J, Moore PB, Steitz TA 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20
    [Google Scholar]
  9. 9.  Krupkin M, Wekselman I, Matzov D, Eyal Z, Diskin Posner Y et al. 2016. Avilamycin and evernimicin induce structural changes in rProteins uL16 and CTC that enhance the inhibition of A-site tRNA binding. PNAS 113:E6796–805
    [Google Scholar]
  10. 10.  Eyal Z, Matzov D, Krupkin M, Paukner S, Riedl R et al. 2016. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep. 6:39004
    [Google Scholar]
  11. 11.  Belousoff MJ, Shapira T, Bashan A, Zimmerman E, Rozenberg H et al. 2011. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. PNAS 108:2717–22
    [Google Scholar]
  12. 12.  Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M et al. 2010. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. PNAS 107:1983–88
    [Google Scholar]
  13. 13.  Gürel G, Blaha G, Steitz TA, Moore PB 2009. Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui. Antimicrob. Agents Chemother. 53:5010–14
    [Google Scholar]
  14. 14.  Gürel G, Blaha G, Moore PB, Steitz TA 2009. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J. Mol. Biol. 389:146–56
    [Google Scholar]
  15. 15.  Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB et al. 2008. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J. Med. Chem. 51:3353–56
    [Google Scholar]
  16. 16.  Blaha G, Gürel G, Schroeder SJ, Moore PB, Steitz TA 2008. Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. J. Mol. Biol. 379:505–19
    [Google Scholar]
  17. 17.  Schroeder SJ, Blaha G, Tirado-Rives J, Steitz TA, Moore PB 2007. The structures of antibiotics bound to the E site region of the 50S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole. J. Mol. Biol. 367:1471–79
    [Google Scholar]
  18. 18.  Tu D, Blaha G, Moore PB, Steitz TA 2005. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–70
    [Google Scholar]
  19. 19.  Schlunzen F, Pyetan E, Fucini P, Yonath A, Harms JM 2004. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54:1287–94
    [Google Scholar]
  20. 20.  Harms JM, Schlunzen F, Fucini P, Bartels H, Yonath A 2004. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2:4
    [Google Scholar]
  21. 21.  Schlunzen F, Harms JM, Franceschi F, Hansen HA, Bartels H et al. 2003. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11:329–38
    [Google Scholar]
  22. 22.  Hansen JL, Moore PB, Steitz TA 2003. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J. Mol. Biol. 330:1061–75
    [Google Scholar]
  23. 23.  Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA 2002. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10:117–28
    [Google Scholar]
  24. 24.  Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M et al. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–39
    [Google Scholar]
  25. 25.  Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–48
    [Google Scholar]
  26. 26.  Brodersen DE, Clemons WM Jr., Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–54
    [Google Scholar]
  27. 27.  Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A et al. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–21
    [Google Scholar]
  28. 28.  Selmer M, Dunham CM, Murphy FV 4th, Weixlbaumer A, Petry S et al. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–42
    [Google Scholar]
  29. 29.  Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A et al. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310:827–34
    [Google Scholar]
  30. 30.  Korostelev A, Trakhanov S, Laurberg M, Noller HF 2006. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–77
    [Google Scholar]
  31. 31.  Abdi NM, Fredrick K 2005. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11:1624–32
    [Google Scholar]
  32. 32.  Yoshizawa S, Fourmy D, Puglisi JD 1999. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285:1722–25
    [Google Scholar]
  33. 33.  Powers T, Noller HF 1990. Dominant lethal mutations in a conserved loop in 16S rRNA. PNAS 87:1042–46
    [Google Scholar]
  34. 34.  Ogle JM, Brodersen DE, Clemons WM Jr., Tarry MJ, Carter AP, Ramakrishnan V 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902
    [Google Scholar]
  35. 35.  Jenner L, Starosta AL, Terry DS, Mikolajka A, Filonava L et al. 2013. Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. PNAS 110:3812–16
    [Google Scholar]
  36. 36.  Polikanov YS, Szal T, Jiang F, Gupta P, Matsuda R et al. 2014. Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Mol. Cell 56:541–50
    [Google Scholar]
  37. 37.  Demirci H, Murphy FT, Murphy E, Gregory ST, Dahlberg AE, Jogl G 2013. A structural basis for streptomycin-induced misreading of the genetic code. Nat. Commun. 4:1355
    [Google Scholar]
  38. 38.  Borovinskaya MA, Shoji S, Fredrick K, Cate JH 2008. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA 14:1590–99
    [Google Scholar]
  39. 39.  Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM et al. 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 14:727–32
    [Google Scholar]
  40. 40.  Stanley RE, Blaha G, Grodzicki RL, Strickler MD, Steitz TA 2010. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol. 17:289–93
    [Google Scholar]
  41. 41.  Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N 2013. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. PNAS 110:20994–99
    [Google Scholar]
  42. 42.  Cornish PV, Ermolenko DN, Noller HF, Ha T 2008. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30:578–88
    [Google Scholar]
  43. 43.  Mohan S, Donohue JP, Noller HF 2014. Molecular mechanics of 30S subunit head rotation. PNAS 111:13325–30
    [Google Scholar]
  44. 44.  Bulkley D, Johnson F, Steitz TA 2012. The antibiotic thermorubin inhibits protein synthesis by binding to inter-subunit bridge B2a of the ribosome. J. Mol. Biol. 416:571–78
    [Google Scholar]
  45. 45.  Schuwirth BS, Day JM, Hau CW, Janssen GR, Dahlberg AE et al. 2006. Structural analysis of kasu-gamycin inhibition of translation. Nat. Struct. Mol. Biol. 13:879–86
    [Google Scholar]
  46. 46.  Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM et al. 2006. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat. Struct. Mol. Biol. 13:871–78
    [Google Scholar]
  47. 47.  Polikanov YS, Osterman IA, Szal T, Tashlitsky VN, Serebryakova MV et al. 2014. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome. Mol. Cell 56:531–40
    [Google Scholar]
  48. 48.  Fabbretti A, Schedlbauer A, Brandi L, Kaminishi T, Giuliodori AM et al. 2016. Inhibition of translation initiation complex formation by GE81112 unravels a 16S rRNA structural switch involved in P-site decoding. PNAS 113:E2286–95
    [Google Scholar]
  49. 49.  Brandi L, Fabbretti A, Di Stefano M, Lazzarini A, Abbondi M, Gualerzi CO 2006. Characterization of GE82832, a peptide inhibitor of translocation interacting with bacterial 30S ribosomal subunits. RNA 12:1262–70
    [Google Scholar]
  50. 50.  Omura S, Iwai Y, Hirano A, Awaya J, Suzuki Y, Matsumoto K 1977. A new antibiotic, AM-2504. Agric. Biol. Chem. 41:1827–28
    [Google Scholar]
  51. 51.  Brandi L, Maffioli S, Donadio S, Quaglia F, Sette M et al. 2012. Structural and functional characterization of the bacterial translocation inhibitor GE82832. FEBS Lett 586:3373–78
    [Google Scholar]
  52. 52.  Bulkley D, Brandi L, Polikanov YS, Fabbretti A, O'Connor M et al. 2014. The antibiotics dityromycin and GE82832 bind protein S12 and block EF-G-catalyzed translocation. Cell Rep 6:357–65
    [Google Scholar]
  53. 53.  Lin J, Gagnon MG, Bulkley D, Steitz TA 2015. Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 160:219–27
    [Google Scholar]
  54. 54.  Nissen P, Hansen J, Ban N, Moore PB, Steitz TA 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30
    [Google Scholar]
  55. 55.  Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A et al. 2016. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. PNAS 113:12150–55
    [Google Scholar]
  56. 56.  Bozdogan B, Appelbaum PC 2004. Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents 23:113–19
    [Google Scholar]
  57. 57.  Eyal Z, Matzov D, Krupkin M, Wekselman I, Paukner S et al. 2015. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. PNAS 112:E5805–14
    [Google Scholar]
  58. 58.  Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P 2008. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. PNAS 105:13339–44
    [Google Scholar]
  59. 59.  Dunkle JA, Xiong L, Mankin AS, Cate JH 2010. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. PNAS 107:17152–57
    [Google Scholar]
  60. 60.  Hansen JL, Schmeing TM, Moore PB, Steitz TA 2002. Structural insights into peptide bond formation. PNAS 99:11670–75
    [Google Scholar]
  61. 61.  Polikanov YS, Steitz TA, Innis CA 2014. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21:787–93
    [Google Scholar]
  62. 62.  Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA 2005. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20:437–48
    [Google Scholar]
  63. 63.  Fredrick K, Noller HF 2003. Catalysis of ribosomal translocation by sparsomycin. Science 300:1159–62
    [Google Scholar]
  64. 64.  Kirst HA, Dorman DE, Occolowitz JL, Jones ND, Paschal JW et al. 1985. The structure of A201A, a novel nucleoside antibiotic. J. Antibiot. 38:575–86
    [Google Scholar]
  65. 65.  Hayashi SF, Norcia LJ, Seibel SB, Silvia AM 1997. Structure-activity relationships of hygromycin A and its analogs: protein synthesis inhibition activity in a cell free system. J. Antibiot. 50:514–21
    [Google Scholar]
  66. 66.  Wakisaka Y, Koizumi K, Nishimoto Y, Kobayashi M, Tsuji N 1980. Hygromycin and epihygromycin from a bacterium, Corynebacterium equi No. 2841. J. Antibiot. 33:695–704
    [Google Scholar]
  67. 67.  Polikanov YS, Starosta AL, Juette MF, Altman RB, Terry DS et al. 2015. Distinct tRNA accommodation intermediates observed on the ribosome with the antibiotics hygromycin A and A201A. Mol. Cell 58:832–44
    [Google Scholar]
  68. 68.  Osterman IA, Khabibullina NF, Komarova ES, Kasatsky P, Kartsev VG et al. 2017. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state. Nucleic Acids Res 45:7507–14
    [Google Scholar]
  69. 69.  Chinali G, Moureau P, Cocito CG 1984. The action of virginiamycin M on the acceptor, donor, and catalytic sites of peptidyltransferase. J. Biol. Chem. 259:9563–68
    [Google Scholar]
  70. 70.  Pestka S. 1969. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. PNAS 64:709–14
    [Google Scholar]
  71. 71.  Yamaguchi H, Tanaka N 1966. Inhibition of protein synthesis by blasticidin S. II. Studies on the site of action in E. coli polypeptide synthesizing systems. J. Biochem. 60:632–42
    [Google Scholar]
  72. 72.  Yamaguchi H, Yamamoto C, Tanaka N 1965. Inhibition of protein synthesis by blasticidin S. I. Studies with cell-free systems from bacterial and mammalian cells. J. Biochem. 57:667–77
    [Google Scholar]
  73. 73.  Cerna J, Rychlik I, Lichtenthaler FW 1973. The effect of the aminoacyl-4-aminohexosyl-cytosine group of antibiotics on ribosomal peptidyl transferase. FEBS Lett 30:147–50
    [Google Scholar]
  74. 74.  Pestka S. 1974. The use of inhibitors in studies on protein synthesis. Methods Enzymol 30:261–82
    [Google Scholar]
  75. 75.  Lazaro E, van den Broek LA, San Felix A, Ottenheijm HC, Ballesta JP 1991. Biochemical and kinetic characteristics of the interaction of the antitumor antibiotic sparsomycin with prokaryotic and eukaryotic ribosomes. Biochemistry 30:9642–48
    [Google Scholar]
  76. 76.  Kalpaxis DL, Theocharis DA, Coutsogeorgopoulos C 1986. Kinetic studies on ribosomal peptidyltransferase. The behaviour of the inhibitor blasticidin S. Eur. J. Biochem. 154:267–71
    [Google Scholar]
  77. 77.  Svidritskiy E, Ling C, Ermolenko DN, Korostelev AA 2013. Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. PNAS 110:12283–88
    [Google Scholar]
  78. 78.  Pathak BK, Mondal S, Barat C 2017. Inhibition of Escherichia coli ribosome subunit dissociation by chloramphenicol and blasticidin: a new mode of action of the antibiotics. Lett. Appl. Microbiol. 64:79–85
    [Google Scholar]
  79. 79.  Carr G, Seyedsayamdost MR, Chandler JR, Greenberg EP, Clardy J 2011. Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264. Org. Lett. 13:3048–51
    [Google Scholar]
  80. 80.  Chandler JR, Truong TT, Silva PM, Seyedsayamdost MR, Carr G et al. 2012. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein. mBio 3:e00499–12
    [Google Scholar]
  81. 81.  Amunts A, Fiedorczuk K, Truong TT, Chandler J, Greenberg EP, Ramakrishnan V 2015. Bactobolin A binds to a site on the 70S ribosome distinct from previously seen antibiotics. J. Mol. Biol. 427:753–55
    [Google Scholar]
  82. 82.  Wilson DN, Arenz S, Beckmann R 2016. Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr. Opin. Struct. Biol. 37:123–33
    [Google Scholar]
  83. 83.  Cruz-Vera LR, Sachs MS, Squires CL, Yanofsky C 2011. Nascent polypeptide sequences that influence ribosome function. Curr. Opin. Microbiol. 14:160–66
    [Google Scholar]
  84. 84.  Blaha GM, Polikanov YS, Steitz TA 2012. Elements of ribosomal drug resistance and specificity. Curr. Opin. Struct. Biol. 22:750–58
    [Google Scholar]
  85. 85.  LaMarre J, Mendes RE, Szal T, Schwarz S, Jones RN, Mankin AS 2013. The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrob. Agents Chemother. 57:1173–79
    [Google Scholar]
  86. 86.  Almutairi MM, Park SR, Rose S, Hansen DA, Vazquez-Laslop N et al. 2015. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides. PNAS 112:12956–61
    [Google Scholar]
  87. 87.  Subramanian SL, Ramu H, Mankin AS 2012. Inducible resistance to macrolide antibiotics. Antibiotic Discovery and Development TJ Dougherty, MJ Pucci 455–84 Boston, MA: Springer
    [Google Scholar]
  88. 88.  Davis AR, Gohara DW, Yap MN 2014. Sequence selectivity of macrolide-induced translational attenuation. PNAS 111:15379–84
    [Google Scholar]
  89. 89.  Kannan K, Kanabar P, Schryer D, Florin T, Oh E et al. 2014. The general mode of translation inhibition by macrolide antibiotics. PNAS 111:15958–63
    [Google Scholar]
  90. 90.  Kannan K, Vazquez-Laslop N, Mankin AS 2012. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151:508–20
    [Google Scholar]
  91. 91.  Bulkley D, Innis CA, Blaha G, Steitz TA 2010. Revisiting the structures of several antibiotics bound to the bacterial ribosome. PNAS 107:17158–63
    [Google Scholar]
  92. 92.  Moazed D, Noller HF 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–84
    [Google Scholar]
  93. 93.  Vester B, Douthwaite S 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45:1–12
    [Google Scholar]
  94. 94.  Bommakanti AS, Lindahl L, Zengel JM 2008. Mutation from guanine to adenine in 25S rRNA at the position equivalent to E. coli A2058 does not confer erythromycin sensitivity in Sacchromyces cerevisae. RNA 14:460–64
    [Google Scholar]
  95. 95.  Poulsen SM, Kofoed C, Vester B 2000. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. J. Mol. Biol. 304:471–81
    [Google Scholar]
  96. 96.  Lonks JR, Goldmann DA 2005. Telithromycin: a ketolide antibiotic for treatment of respiratory tract infections. Clin. Infect. Dis. 40:1657–64
    [Google Scholar]
  97. 97.  Douthwaite S. 2001. Structure-activity relationships of ketolides versus macrolides. Clin. Microbiol. Infect. 7:Suppl. 311–17
    [Google Scholar]
  98. 98.  Bertrand D, Bertrand S, Neveu E, Fernandes P 2010. Molecular characterization of off-target activities of telithromycin: a potential role for nicotinic acetylcholine receptors. Antimicrob. Agents Chemother. 54:5399–402
    [Google Scholar]
  99. 99.  Zhanel GG, Hartel E, Adam H, Zelenitsky S, Zhanel MA et al. 2016. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs 76:1737–57
    [Google Scholar]
  100. 100.  Llano-Sotelo B, Dunkle J, Klepacki D, Zhang W, Fernandes P et al. 2010. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother. 54:4961–70
    [Google Scholar]
  101. 101.  Noeske J, Huang J, Olivier NB, Giacobbe RA, Zambrowski M, Cate JH 2014. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob. Agents Chemother. 58:5269–79
    [Google Scholar]
  102. 102.  Vannuffel P, Cocito C 1996. Mechanism of action of streptogramins and macrolides. Drugs 51:Suppl. 120–30
    [Google Scholar]
  103. 103.  Depardieu F, Courvalin P 2001. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45:319–23
    [Google Scholar]
  104. 104.  Manzella JP. 2001. Quinupristin-dalfopristin: a new antibiotic for severe gram-positive infections. Am. Fam. Physician 64:1863–66
    [Google Scholar]
  105. 105.  Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–48
    [Google Scholar]
  106. 106.  Otvos L Jr 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6:497–511
    [Google Scholar]
  107. 107.  Otvos L Jr., Insug O, Rogers ME, Consolvo PJ, Condie BA et al. 2000. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150–59
    [Google Scholar]
  108. 108.  Otvos L Jr 2005. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11:697–706
    [Google Scholar]
  109. 109.  Krizsan A, Volke D, Weinert S, Strater N, Knappe D, Hoffmann R 2014. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew. Chem. Int. Ed. Engl. 53:12236–39
    [Google Scholar]
  110. 110.  Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R et al. 2014. The host antimicrobial peptide Bac71–35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Cell Chem. Biol. 21:1639–47
    [Google Scholar]
  111. 111.  Graf M, Mardirossian M, Nguyen F, Seefeldt AC, Guichard G et al. 2017. Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep. 34:702–11
    [Google Scholar]
  112. 112.  Seefeldt AC, Graf M, Pérébaskine N, Nguyen F, Arenz S et al. 2016. Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res 44:2429–38
    [Google Scholar]
  113. 113.  Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA 2016. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res 44:2439–50
    [Google Scholar]
  114. 114.  Seefeldt AC, Nguyen F, Antunes S, Pérébaskine N, Graf M et al. 2015. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat. Struct. Mol. Biol. 22:470–75
    [Google Scholar]
  115. 115.  Roy RN, Lomakin IB, Gagnon MG, Steitz TA 2015. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nat. Struct. Mol. Biol. 22:466–69
    [Google Scholar]
  116. 116.  Florin T, Maracci C, Graf M, Karki P, Klepacki D et al. 2017. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat. Struct. Mol. Biol. 24:752–57
    [Google Scholar]
  117. 117.  Berthold N, Czihal P, Fritsche S, Sauer U, Schiffer G et al. 2013. Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens. Antimicrob. Agents Chemother. 57:402–9
    [Google Scholar]
  118. 118.  Uehara Y, Hori M, Umezawa H 1976. Specific inhibition of the termination process of protein synthesis by negamycin. Biochim. Biophys. Acta 442:251–62
    [Google Scholar]
  119. 119.  Metelev M, Osterman IA, Ghilarov D, Khabibullina NF, Komarova ES et al. 2017. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat. Chem. Biol. 13:1129–36
    [Google Scholar]
  120. 120.  Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T et al. 2008. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30:26–38
    [Google Scholar]
  121. 121.  Arenz S, Juette MF, Graf M, Nguyen F, Huter P et al. 2016. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. PNAS 113:7527–32
    [Google Scholar]
  122. 122.  Mikolajka A, Liu H, Chen Y, Starosta AL, Marquez V et al. 2011. Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. Chem. Biol. 18:589–600
    [Google Scholar]
  123. 123.  Belova L, Tenson T, Xiong L, McNicholas PM, Mankin AS 2001. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. PNAS 98:3726–31
    [Google Scholar]
  124. 124.  D'Costa VM, King CE, Kalan L, Morar M, Sung WW et al. 2011. Antibiotic resistance is ancient. Nature 477:457–61
    [Google Scholar]
  125. 125.  Li XZ, Plesiat P, Nikaido H 2015. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin. Microbiol. Rev. 28:337–418
    [Google Scholar]
  126. 126.  Fernández L, Hancock REW 2012. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25:661–81
    [Google Scholar]
  127. 127.  Helser TL, Davies JE, Dahlberg JE 1972. Mechanism of kasugamycin resistance in Escherichia coli. Nat. New Biol. 235:6–9
    [Google Scholar]
  128. 128.  Grossman TH. 2016. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 6:a025387
    [Google Scholar]
  129. 129.  Connell SR, Tracz DM, Nierhaus KH, Taylor DE 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47:3675–81
    [Google Scholar]
  130. 130.  Arenz S, Nguyen F, Beckmann R, Wilson DN 2015. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. PNAS 112:5401–6
    [Google Scholar]
  131. 131.  Sharkey LK, Edwards TA, O'Neill AJ 2016. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 7:e01975
    [Google Scholar]
  132. 132.  Leski TA, Bangura U, Jimmy DH, Ansumana R, Lizewski SE et al. 2013. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int. J. Antimicrob. Agents 42:83–86
    [Google Scholar]
  133. 133.  Forsberg KJ, Patel S, Wencewicz TA, Dantas G 2015. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem. Biol. 22:888–97
    [Google Scholar]
  134. 134.  Park J, Gasparrini AJ, Reck MR, Symister CT, Elliott JL et al. 2017. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat. Chem. Biol. 13:730–36
    [Google Scholar]
  135. 135.  Linkevicius M, Sandegren L, Andersson DI 2016. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob. Agents Chemother. 60:789–96
    [Google Scholar]
  136. 136.  Garneau-Tsodikova S, Labby KJ 2016. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. MedChemComm 7:11–27
    [Google Scholar]
  137. 137.  Maus CE, Plikaytis BB, Shinnick TM 2005. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49:3192–97
    [Google Scholar]
  138. 138.  Honore N, Cole ST 1994. Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother. 38:238–42
    [Google Scholar]
  139. 139.  Wachino J, Arakawa Y 2012. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic gram-negative bacteria: an update. Drug Resist. Update 15:133–48
    [Google Scholar]
  140. 140.  Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y et al. 2007. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol. Microbiol. 63:1096–106
    [Google Scholar]
  141. 141.  Gupta P, Sothiselvam S, Vazquez-Laslop N, Mankin AS 2013. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat. Commun. 4:1984
    [Google Scholar]
  142. 142.  Ramu H, Mankin A, Vazquez-Laslop N 2009. Programmed drug-dependent ribosome stalling. Mol. Microbiol. 71:811–24
    [Google Scholar]
  143. 143.  Giessing AM, Jensen SS, Rasmussen A, Hansen LH, Gondela A et al. 2009. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. RNA 15:327–36
    [Google Scholar]
  144. 144.  Smith LK, Mankin AS 2008. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob. Agents Chemother. 52:1703–12
    [Google Scholar]
  145. 145.  Fyfe C, Grossman TH, Kerstein K, Sutcliffe J 2016. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb. Perspect. Med. 6:a025395
    [Google Scholar]
  146. 146.  Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D et al. 2017. The ribosomal protein uL22 modulates the shape of the protein exit tunnel. Structure 25:1233–41e3
    [Google Scholar]
  147. 147.  Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR et al. 2014. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10:963–68
    [Google Scholar]
  148. 148.  Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J et al. 2014. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–14
    [Google Scholar]
  149. 149.  Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D et al. 2016. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–16
    [Google Scholar]
  150. 150.  Donia MS, Fischbach MA 2015. Small molecules from the human microbiota. Science 349:1254766
    [Google Scholar]
  151. 151.  Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM et al. 2016. A platform for the discovery of new macrolide antibiotics. Nature 533:338–45
    [Google Scholar]
  152. 152.  Schroeder SJ, Blaha G, Moore PB 2007. Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit. Antimicrob. Agents Chemother. 51:4462–65
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-011942
Loading
/content/journals/10.1146/annurev-biochem-062917-011942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error